Supporting Information

Oxidation-Reductive Coupling of Alcohols Catalyzed by Oxo-Vanadium Complexes

Eric M. Steffensmeier and Kenneth M. Nicholas*

Department of Chemistry and Biochemistry

University of Oklahoma, Norman OK 73019

Table of Contents

Page Content

S2-3	Preparation of ligands and vanadium Complexes
S3-4	Procedures for oxidation/reductive coupling, kinetic isotope effect
S5	IR spectrum of 2
S6	¹ H NMR spectrum of 2
S7	¹³ C NMR spectrum of 2
S8	IR spectrum of 4
S9	¹ H NMR spectrum of 4
S10	¹³ C NMR spectrum of 4
S11	$^{1}\text{H}-^{1}\text{H}$ COSY of 4
S12	$^{13}\text{C}^{-1}\text{H}$ HSQC of 4
S13	IR spectrum of 3
S14	¹ H NMR spectrum of 3
S15	¹³ C NMR spectrum of 3
S16	$^{13}\text{C}^{-1}\text{H}$ HSQC of 3
S17	¹ H NMR spectrum of allyl alcohol reaction mixture
S18	¹ H NMR spectrum of cinnamyl alcohol reaction mixture
S19	¹ H NMR spectrum of benzyl alcohol reaction mixture
S20	¹ H NMR spectrum of cyclohexylmethanol reaction mixture
S21	¹ H NMR spectrum of benzhydrol reaction mixture
S22	¹ H NMR spectrum of isolated benzhydrol isolated product
S23	¹ H NMR spectrum of cyclopropylbenzyl alcohol reaction mixture
S24-26	GC/MS data of cyclopropylbenzyl alcohol reaction mixture
S27	¹ H NMR spectrum of benzoin reaction product
S28	¹ H NMR spectrum of 1-phenylethanol reaction product
S29-31	GC/MS data of 1-phenylethanol reaction product
S32	Mass Spectrometry data of Kinetic Isotope Effect Study with benzhydrol

Preparation of Ligands and Vanadium Complexes

NBu₄VO₃ was prepared as described by Day et al. (V.W. Day, W.G. Klemperer and A. Yagasaki, *Chem. Lett.* 1990, 1267).

Preparation of Salicylimine ligand

Salicaldehyde (1.77 g, 14.5 mmol) was dissolved in methanol (200 mL). 2-Aminophenol (1.58 g, 14.5 mmol) is then added. The solution was heated at reflux for 2 h. After cooling to rt for 1-2 days a dark orange-red crystalline solid formed and was collected by filtration and air dried. NMR: (300 MHz, DMSO-d₆) δ 13.84 (s, 1H), 9.79 (s, 1H), 8.99 (s, 1H), 7.64 (dd, 1H, J = 8.0, 1.7 Hz), 7.46-7.36 (m, 2H), 7.16 (ddd, 1H, J = 8.0, 7.4, 1.6 Hz), 7.03-6.95 (m, 3H), 6.91 (ddd, 1H, J = 8.6, 7.6, 1.4 Hz).

Preparation of S₂-dipic ligand

Pyridine 2,6-dithiocarboxylic acid was prepared using a published procedure. P. B. Chatterjee and D. C. Crans, *Inorg. Chem.* **2012**, 51, 9144-9146.

Preparation of 2

Pyridine 2,6-dithiocarboxylic acid (0.053 g, 0.267 mmol) is dissolved in acetone (50 mL) followed by the addition of Bu_4NVO_3 (0.091 g, 0.266 mmol). The solution turned brown immediately and darkened while stirring overnight. The solvent is removed in vacuo, leaving Bu_4N (S₂-dipic)VO₂ (0.151 g) as a light brown, polycrystalline solid, which was spectroscopically pure and used without further purification in the reactivity study.

IR (KBr pellet, cm⁻¹): 3087 (m, v_{C-H}), 2962, 2983 (s, v_{C-H}), 1675 (s, $v_{O=C}$), 1491(m, $v_{C=C}$), 1342 (w, $v_{C=C}$), 949 (m, $v_{V=O}$), 751 (m, v_{V-O}).

¹**H** NMR (CDCl₃, ppm, 400 MHz): 8.35 (broad, *para*), 8.20 (broad, *meta*), 3.41 (broad, NC<u>**H**</u>₂CH₂CH₂CH₃), 1.73 (broad, NCH₂C<u>**H**</u>₂CH₂CH₃), 1.46 (broad, NCH₂CH₂C<u>**H**</u>₂CH₃), 0.98 (broad, NCH₂CH₂CH₂C<u>**H**</u>₃).

¹³C{¹H} NMR ($\overline{CDCl_3}$, ppm, 400 MHz): 167.44 (s, O=C-O), 149.74 (s, *ortho* to N), 144.86 (s, *para* to N), 125.48 (s, *meta* to N), 58.74 (s, N<u>C</u>H₂CH₂CH₂CH₂CH₃), 23.96 (s, NCH₂<u>C</u>H₂CH₂CH₃), 19.70 (s, NCH₂CH₂CH₃), 13.66 (s, NCH₂CH₂CH₂CH₃).

Preparation of 3

Method 1: NBu₄VO₃ (0.186 g, 0.545 mmol) is dissolved in methanol (50 mL). Then the ligand **1** (0.113 g, 0.545 mmol) was added. The color changed immediately to a dark brown color and the solution was stirred overnight. The solvent was removed under vacuum, leaving dark brown complex **3** (0.295 g) as an amorphous solid, which was spectroscopically pure and used as is in the reactivity study.

Method 2: NBu₄VO₃ (0.305 g, 0.892 mmol) is dissolved in dry THF (50 mL). Then compound **1** (0.190 g, 0.892 mmol) was added. The color changed immediately to a dark brown color, and the solution was stirred overnight. The solvent was removed under vacuum, leaving catalyst **3** (0.460 g), which was spectroscopically pure.

IR (KBr pellet, cm⁻¹): 3094 (m, v_{C-H}), 2971 (s, v_{C-H}), 2876 (s, v_{C-H}), 1609 (s, $v_{N=C}$), 1532 (m, $v_{C=C}$), 1472 (m, $v_{C=C}$), 1291(m, v_{N-C}), 981 (s, $v_{V=O}$), 752 (m, $v_{V=O}$).

¹**H NMR** (CDCl₃, ppm, 400 MHz): 9.01 (H1), 7.53 (H9), 7.45 (H6), 7.33 (H4), 7.08 (H11), 7.00 (H12), 6.81 (H5/H3), 6.69 (H10), 3.45 (H14), 1.64 (H15), 1.35 (H16), 0.93 (H17).

¹³C{¹H} NMR (CDCl₃, ppm, 400 MHz): 167.11 (s, C7), 164.38 (s, C13), 154.22 (s, C1), 136.88 (s, C2), 133.47 (s, C4), 133.07 (s, C6), 128.56 (s, C11), 121.58 (s, C8), 120.69 (s, C5), 119.84 (s, C12), 117.14 (s, C10), 116.28 (s, C3), 113.86 (s, C9), 58.20 (s, C14), 23.86 (s, C15), 19.61 (s, C16), 13.68 (s, C17).

Preparation of 4

From 3 recrystallized in MeOH: Compound **3** (0.150 g, 0.279 mmol) is dissolved in 25 mL MeOH. The flask was sealed to slow the evaporation. Over the next 2 weeks, crystals began to form on the side of the flask. The solution is then removed, leaving compound **4**, a brown, crystalline solid. The structure of **3**, as a methanol adduct was verified by X-ray diffraction. The NMR and IR data for **3** were in agreement with those reported (Kraehmer, V.; Rehder, D. *Dalton Transactions* **2012**, *41*, 5225-5234).

From $OV(O^iPr)_3 + LH_2$ *in MeOH:* $OV(O^iPr)_3$ (0.590 g, 2.42 mmol) is dissolved in MeOH (100 mL). To this solution, the imine ligand LH₂ (0.515 g, 2.42 mmol) is added. After stirring overnight, the solvent is removed under vacuum, leaving 4 (0.801 g, 2.37 mmol, 98 %), a dark brown polycrystalline solid, which was spectroscopically pure and used as is in the reactivity study.

IR (KBr pellet, cm⁻¹): 3096 (w, v_{C-H}), 2942 (w, v_{C-H}), 1605 (s, $v_{N=C}$), 1537 (m, $v_{C=C}$), 1451 (m, $v_{C=C}$), 1295 (m, v_{N-C}), 982 (s, $v_{V=O}$).

¹**H** NMR (CDCl₃, ppm, 400 MHz): 9.17 (s, H1), 7.70 (d, H6, ${}^{3}J({}^{1}H-{}^{1}H) = 7.8$ Hz), 7.63 (t, H4, ${}^{3}J({}^{1}H-{}^{1}H) = 7.9$ Hz), 7.61 (d, H9, ${}^{3}J({}^{1}H-{}^{1}H) = 7.9$ Hz), 7.30 (t, H11, ${}^{3}J({}^{1}H-{}^{1}H) = 8.1$ Hz), 7.20 (d, H3, ${}^{3}J({}^{1}H-{}^{1}H) = 8.4$ Hz), 7.12 (t, H5, ${}^{3}J({}^{1}H-{}^{1}H) = 7.5$ Hz), 7.03 (d, H12, ${}^{3}J({}^{1}H-{}^{1}H) = 8.2$ Hz), 6.97 (t, H10, ${}^{3}J({}^{1}H-{}^{1}H) = 7.7$ Hz), 5.33 (s, H14).

¹³C{¹H} NMR (CDCl₃, ppm, 400 MHz): 165.64 (s, C7), 164.66 (s, C13), 154.02 (s, C1), 136.38 (s, C2), 135.40 (s, C4), 132.97 (s, C6), 130.18 (s, C11), 121.26 (s, C5), 121.15 (s, C8), 120.18 (s, C10), 118.37 (s, C3), 116.37 (s, C12), 114.66 (s, C9), 72.82 (s, C14).

Representative Procedure for Oxidation/Reductive Coupling of Alcohols

Into a 10 mL glass pressure tube (Ace Glass) was added the catalyst (0.100 mmol), benzhydrol (0.184 g, 1.00 mmol), 5 mL of benzene and a magnetic spin bar. The tube was purged with nitrogen, manually sealed and then heated with stirring at 150 °C for 24 h. To determine the percent conversion and a yield by NMR, 300 μ L of the reaction mixture were dispensed into an NMR tube, along with 5 μ L of DMF and ca. 500 μ L of CDCl₃. A ¹H NMR spectrum was obtained and processed using MestreNova. The integration of the signals relative to the DMF signals is used to ascertain the amounts for percent conversion and yield.

Procedure for Reductive Coupling Kinetics Experiment

In a pressure tube, the catalyst (0.100 mmol) is added to benzhydrol (0.184 g, 1.00 mmol). Benzene (5 mL) is added and the tube is purged with N_2 . The tube is then sealed and heated to 150 °C for 2, 4, 8, 17, or 24 h.

D-Benzhydrol synthesis

In a dry Schlenk flask, NaBD₄ (0.0776 g, 1.85 mmol) is suspended in Et₂O (25 mL) and cooled to 0 °C. Benzophenone (0.309 g, 1.70 mmol) is added to the flask followed by the dropwise addition of MeOH (20 mL). The solution is stirred overnight and 5 mL of H₂O is added. The solvent is removed in vacuo, the crude product is then dissolved in Et₂O, and the solution dried over Na₂SO₄. After filtration to remove the drying agent, the solvent is removed in vacuo, leaving d-benzhydrol (0.111 g, 0.601 mmol, 35.4%). The EI-Mass spectrum was used to confirm that the product was 98.3% d₁-benzhydrol.

Kinetic Isotope Effect

 D_1 -benzhydrol (0.111 g, 0.60 mmol) and H₂-benzhydrol (0.107 g, 0.60 mmol) are mixed. In a pressure tube, the catalyst **3** (0.0536 g, 0.100 mmol) is added to the benzhydrol mixture. Benzene (5 mL) is added and the tube is purged with nitrogen, then sealed and heated to 150 °C for 24 h. MS analysis on page S32.

Configurational stability of 1-phenylethanol under RC conditions

Complex **3** (0.103 g, 0.191 mmol) is placed in a pressure reactor tube. *S*-1-phenylethanol (0.252 g, 2.07 mmol) is added along with benzene (5 mL). The tube is sealed and heated for 2 h. The unreacted alcohol substrate is separated using column chromatography over SiO₂ with a 1:1 mixture of ethyl acetate:hexane as the eluent. The solvents were removed in vacuo, leaving the 1-phenylethanol (0.226 g, 1.85 mmol, 89.6% recovered). Measured optical rotations, ([ROH] = 1.2 g/100 mL, CHCl₃): pure *S*-1-phenylethanol: - 0.27° ; recovered alcohol after reaction: - 0.076° . % ee = 28, 64 % *S*, 36 % *R*.

() SHIMADZU

NBu₄⁺

🕀 SHIMADZU

O OMe

S16


```
: D:\GCMS\HPCHEM\1\DATA\1902KMNB.D
File : D:\GCMS\HPCHEM\1\DATA\1902KMNB.D
Operator : Foster
Acquired : 10 Jan 2017 13:37 using AcqMethod COFFEE22
Instrument : GCMS
Sample Name: 1-49
Misc Info : Scan; 20:1 split; 1uL
Vial Number: 1
File
Abundance
                                                                TIC: 1902KMNB.D
  1500000
  1400000
                                                                                             В
  1300000
  1200000
  1100000
   1000000
   900000
   800000
   700000
   600000
                                                                                                                         D
   500000
                                                                                                              (2 isomers)
   400000
   300000
                                                                                                        С
                                                       A NBu_3
   200000
    100000
         0
 Time-> 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00
```


S30

Computational Methods

The B3LYP ^[a] method resident in Gaussian 09 ^[b] was used to determine the energy minimized structures and electronic energies of Figure 2 (0 K, vacuum); the 6-31-G(d) basis set was used for H, C, N, O atoms and LANL2DZ for V.

[a] D. Becke, "Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys. **98** (1993) 5648-52.

[b] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Aus:n, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Mar:n, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.