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Materials: Pure Co foil (>99.95%, Sigma-Aldrich) was used as a starting substance 

for the fabrication of cobalt complexes. H2C2O4 were purchased from Aladdin Ltd. in 

Shanghai. Acetone and ethanol were purchased from Tianjin Chemical Corporation. 

RuCl3·3H2O and Nafion (5 wt%) were bought from Sigma-Aldrich Chemical Reagent 

Co., Ltd. All chemical regents were used as received without further purification. The 

water used throughout all experiments was purified through a Millipore system.

Preparation of Co3O4 NA/CF: CoC2O4·2H2O NA/CF was prepared as follows. In a 

typical synthesis, a piece of Co foil (1 cm × 2 cm, thickness: 0.5 mm) was well cleaned 

by sonication sequentially in acetone, water and ethanol for 10 min each before use, 

and was immediately dried in the oven at 50 °C for 5 min. CoC2O4·2H2O NA/CF 

were electrodeposited in (0.05 M, 50 mL) H2C2O4 solution, with potential of 1.0 V for 

150 min at 25 °C. The CoC2O4·2H2O array was converted to Co3O4 by thermal 

decomposition under Ar conditions at 400 °C for 2 h. The weight increment (x mg) of 

Co foil can be directly weighted after the growth of Co3O4. Co3O4 loading = x mg 

(MCo3O4/MO) = x mg (240/16) = 15x mg, where M is the molecular weight or atomic 

weight. For Co3O4 NA/CF electrode, the loading mass of Co3O4 is about 1.9 mg cm–2. 

To investigate the formation processes, morphology changes and electrocatalytic 

performance for CoC2O4·2H2O NA/CF, different reaction times (10, 70, and 150 min) 

and potentials (0.5 and 1.0 V) were used while keeping other parameters unchanged. 

These redox reactions may be:

Co – 2 e– = Co2+

Co2+ + C2O4
2–·+ 2H2O = CoC2O4·2H2O

3CoC2O4·2H2O + 2O2 = Co3O4 + 6CO2 + 6H2O

Synthesis of Co3O4 sheets: 1 g of Co(CH3COO)2 4H2O, and 0.05 g of PVP (Mw = 

30000 g/mol) were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined 

stainless steel autoclave, which was then filled with 80 mL mixture solution of 

ethylene glycol and water. The autoclave was sealed and maintained at 180 °C for 12 

Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2018



2

h, and then cooled down to room temperature. The final products were centrifuged, 

rinsed with distilled water and ethanol several times to remove any impurities. The as-

prepared precursors were finally calcined at 350 °C in N2 for 3 h.

Synthesis of Co3O4 spheres: 1 g of Co(CH3COO)2 4H2O and 0.05 g of PVP (Mw = 

30000 g/mol) were loaded into a 100 mL poly(tetrafluoroethylene) (PTFE)-lined 

stainless steel autoclave, which was then filled with 80 mL ethylene glycol. The 

autoclave was sealed and maintained at 180 °C for 12 h, and then cooled down to 

room temperature. The final products were centrifuged, rinsed with distilled water and 

ethanol several times to remove any impurities. The as-prepared precursors were 

finally calcined at 350 °C in N2 for 3 h.

Synthesis of RuO2: RuO2 was prepared in accordance with reported work.1 Briefly, 

2.61 g of RuCl3·3H2O and 1.0 mL KOH (1.0 M) were added into 100 mL distilled 

water and stirred for 45 min at 100 °C. Then the above solution was centrifuged for 

10 minutes and filtered. The precipitates were collected by centrifugation and washed 

with water for several times, followed by drying at 70 °C. Finally, the product was 

annealed at 300 °C for 3 h under air atmosphere. RuO2 ink was prepared by 

dispersing 20 mg of catalyst into 490 µL of water/ethanol (v/v = 1:1) and 10 µL of 5 

wt% Nafion using sonication for 30 min. Then 11.3 µL of the RuO2 ink (containing 

452 µg of RuO2) was loaded onto a bare Co foil of 0.25 cm2 in geometric area 

(loading: 1.9 mg cm–2).

Characterizations: The XRD patterns were obtained from a LabX XRD-6100 X-ray 

diffractometer with Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm 

(SHIMADZU, Japan). Scanning electron microscope (SEM) measurements were 

recorded on a XL30 ESEM FEG scanning electron microscope at an accelerating 

voltage of 20 kV. The structures of the samples were determined by transmission 

electron microscopy (TEM) images collected on a HITACHI H-8100 electron 

microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. X-ray photoelectron 

spectroscopy (XPS) data of the samples was collected on an ESCALABMK II X-ray 

photoelectron spectrometer using Mg as the exciting source. Brunauer-Emmett-Teller 

(BET) measurements were performed by using N2 absorption method with a 



3

Micromeritics Tristar II 3020 instrument at 77 K. All the samples were degassed at 

150 °C under vacuum for over 6 h.

Electrochemical measurements: Electrochemical measurements were performed 

with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a 

standard three-electrode system. Co3O4 NA/CF foil was used as the working electrode. 

A graphite plate and Hg/HgO were used as the counter electrode and the reference 

electrode, respectively. The temperature of solution was kept at 25 °C for all the 

measurements via the adjustment of air condition and heating support, which ensured 

the variation of diffusion coefficient below 1%. The potentials reported in this work 

were calibrated to RHE other than especially explained, using the following equation: 

E (RHE) = E (Hg/HgO) + (0.098 + 0.059 pH) V. Electrochemical preparation curves 

were obtained by amperometric i-t curve with a scan rate of 100 mV s–1.

Tafel plots calculation: The Tafel plots are employed to evaluate the OER catalytic 

kinetics and fitted with the following equation (1):

η = b log j + a                        (1)

Where j is the current density and b is the Tafel slope.

TOF calculation: The TOF is quantified the concentration of active site and 

calculates by the equation (2):

TOF = jA/4Fm                       (2)

Where j is current density (A cm–2) at defined overpotential; A is the geometric area 

of the testing electrode; 4 indicates the mole of electrons consumed for evolving one 

mole O2 from water; F is the Faradic constant (96485 C mol–1); m is the number of 

active sites (mol), which can be extracted from the linear relationship between the 

oxidation peak currents and scan rates by the equation (3):

slope = n2F2m/4RT                   (3)
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Where n is the numbers of electron transferred; R and T are the ideal gas constant and 

the absolute temperature, respectively.
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Fig. S1. SEM image of bare Co foil.
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Fig. S2. SEM images of CoC2O4·2H2O NA/CF with different electrodeposited 

condition in 0.05 M H2C2O4 solution: 10 min (A and a), 70 min (B and b), 150 min (C 

and c), 0.5 V (A, B and C), 1.0 V (a, b and c).
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Fig. S3. Side-viewed SEM images of CoC2O4·2H2O NA/CF with different 

electrodeposited condition in 0.05 M H2C2O4 solution: 10 min (A and a), 70 min (B 

and b), 150 min (C and c), 0.5 V (A, B and C), 1.0 V (a, b and c).
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Fig. S4. Nitrogen adsorption-desorption isotherms (a) and the corresponding pore size 

distribution (b).
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Fig. S5. Nyquist plots for CoC2O4·2H2O NA/CF and Co3O4 NA/CF in the frequency 

range from 0.01 to 106 Hz at open circuit potential (0.251 V vs. Hg/HgO) in 1.0 M 

KOH.
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Fig. S6. CVs for (a) Co3O4 NA/CF and (b) CoC2O4·2H2O NA/CF in the non-faradaic 

capacitance current range at scan rates of 20, 40, 60, 80, and 100 mV s–1. 

Corresponding capacitive currents at -0.30 V vs. Hg/HgO as a function of scan rates 

for (c) Co3O4 NA/CF and (d) CoC2O4·2H2O NA/CF.
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Fig. S7. Scheme of the proposed OER mechanism on Co3O4.
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Table S1. Comparison of OER performance for Co3O4 NA/CF with other Co-based 

WOCs in alkaline media.

Catalyst j (mA cm−2) η (mV) Electrolyte Ref.

15 308
50 343

1.0 M KOH

15 347
Co3O4 NA/CF

50 379
0.1 M KOH

This work

Co3O4 nanocrystal 
/carbon paper 50 420 1.0 M KOH 2

Co@Co3O4/NC 25 ~390 0.1 M KOH 3
CoOx NPs/BNG 25 ~340 0.1 M KOH 4

Co-CNT/PC 25 ~390 0.1 M KOH 5
Co3O4C-NA 25 ~350 0.1 M KOH 6

Co3O4/NiCo2O4 50 ~418 1.0 M KOH 7
Co3O4 25 ~326 1.0 M KOH 8

Co3O4-MTA 150 360 1.0 M KOH 9
Co3O4/MNTs 25 ~373 1.0 M KOH 10

Co-P films 25 365 1.0 M KOH 11
Co-S nanosheets 50 410 1.0 M KOH 12

NiCo2S4 nanowires 100 340 1.0 M KOH 13
NiCo LDH 50 440 1.0 M KOH 14

Hierarchical ZnxCo3-

xO4
50 400 1.0 M KOH 15

Au@Co3O4 Core-
Shell 25 370 0.1 M KOH 16

Cobalt carbonate 
hydroxide 30 720 0.1 M KOH 17

Co3O4/carbon
porous nanowire 50 390 0.1 M KOH 18

Cobalt carbonate 
hydroxide/MWCNT 50 353 0.1 M KOH 19

CeO2/CoSe2 30 338 0.1 M KOH 20
CuxCo3-xO4 

nanoparticles 100 367 1.0 M KOH 21

Co3O4 nanoparticles 50 510 0.1 M KOH 22
mesoporous Co3O4 100 525 1.0 M KOH 23

graphene–CoO 
nanohybrids 15 430 0.1 M KOH 24

NiCo2S4@graphene 30 470 1.0 M KOH 25
Mn3O4/CoSe2 50 450 1.0 M KOH 26
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