# Photocatalytic hydrogenation of azobenzene to hydrazobenzene on cadmium sulfide under visible light irradiation

Yasuhiro Shiraishi, a,b\* Miyu Katayama, Masaki Hashimoto<sup>a</sup> and Takayuki Hirai<sup>a</sup>

 <sup>a</sup> Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
<sup>b</sup> Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan shiraish@cheng.es.osaka-u.ac.jp

## **Electronic Supplementary Information (ESI†)**

## CONTENTS

| Experimental methods |                                                          | .2 |
|----------------------|----------------------------------------------------------|----|
| Fig. S1              | SEM images of the CdS used                               | .3 |
| Fig. S2              | Time course of hydrazobenzene photoreaction on CdS       | .4 |
| Fig. S3              | XPS (S 2p level) of CdS                                  | .4 |
| Fig. S4              | Absorption spectra of some catalysts                     | .5 |
| Fig. S5              | Effect of water addition on photoreaction and adsorption | .6 |

### **Experimental methods**

#### **Catalyst Preparation**

BiVO<sub>4</sub>,<sup>[1]</sup> Ag<sub>3</sub>PO<sub>4</sub>,<sup>[2]</sup> and g-C<sub>3</sub>N<sub>4</sub><sup>[3]</sup> were prepared according to literature procedure. CdS loaded with 0.5 and 1.0 wt % Pt (Pt/CdS) were prepared as follows:<sup>[4]</sup> CdS (200 mg) and different amount of H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O (2.7 or 5.3 mg) were added to a 2-PrOH/water mixture (30 mL) within a borosilicate glass bottle ( $\varphi$  35 mm; capacity, 50 mL). The bottle was sealed with a rubber septum cap. The catalyst was dispersed well by ultrasonication for 5 min, and Ar gas was bubbled through the solution for 5 min. The bottle was photoirradiated at  $\lambda$  >420 nm with magnetic stirring using a 2 kW Xe lamp (USHIO Inc.) at 303 K.<sup>[5]</sup> The resultant was recovered by filtration, washed with water, and dried in vacuo, affording grey powders of Pt/CdS.

#### Photoreaction

Azobenzene or hydrazobenzene (50 µmol) were dissolved in a 2-PrOH solution (5 mL). The solution and catalyst were added to a Pyrex glass tube ( $\varphi$  12 mm; capacity, 20 mL). The solution and catalyst were added to a Pyrex glass tube ( $\varphi$  12 mm; capacity, 20 mL). The tube was sealed with a rubber septum cap. The catalyst was dispersed well by ultrasonication for 5 min, and Ar gas was bubbled through the solution for 7 min. The tube was photoirradiated with magnetic stirring using a 2 kW Xe lamp.<sup>[5]</sup> The temperature of solution during photoirradiation was ca. 303 K. After the reaction, the catalyst was recovered by centrifugation, and the resulting solution was analyzed by GC–FID (Shimadzu GC-2010 system). The substrate and product concentrations were calibrated with authentic samples. Analysis was performed at least three times and the errors were ±0.2%. For action spectrum analysis, photoreactions were carried out using a 2-PrOH/water (9/1 v/v) mixture (2 mL) containing azobenzene (20 µ mol) and CdS (10 mg) for 2 h, where the incident light was monochromated by band-pass glass filters.<sup>[6]</sup>

#### Analysis

Diffuse-reflectance UV-vis, XPS,<sup>[7]</sup> and ICP analysis<sup>[8]</sup> were performed according to literature procedure.

#### References

- [1] A. Kudo, K. Omori and H. Kato, J. Am. Chem. Soc., 1999, 121, 11459-11467.
- [2] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. S. Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, *Nature Mater.*, 2010, 9, 559–564.
- [3] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa and T. Hirai, ACS Catal., 2014, 4, 774–780.
- [4] Y. Shiraishi, Y. Sugano, S. Tanaka and T. Hirai, *Angew. Chem.*, *Int. Ed.*, 2010, **49**, 1656–1660.
- [5] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka and T. Hirai,

Angew. Chem. Int. Ed., 2014, 53, 13454–13459.

- [6] Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, J. Am. Chem. Soc., 2016, 138, 10019–10025.
- [7] H. Sakamoto, T. Ohara, N. Yasumoto, Y. Shiraishi, S. Ichikawa, S. Tanaka, and T. Hirai, *J. Am. Chem. Soc.*, 2015, **137**, 9324–9332.
- [8] D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, J. Am. Chem. Soc., 2012, 134, 6309–6315



Fig. S1 Typical SEM images of the CdS used.



**Fig. S2** Time-dependent change in the amounts of substrate and product during photoreaction of hydrazobenzene on CdS. The reaction conditions are identical to those in Fig. 1 (manuscript).



**Fig. S3** XPS chart (S 2p region) of (a) CdS, (b) CdS obtained after visible light irradiation in a 2-PrOH/water mixture, and (c) the sample obtained after adsorption of azobenzene onto the photoirradiated CdS (b).



**Fig. S4** UV-vis absorption spectra of (black) some catalysts and (red) the catalysts obtained after photoirradiation in a 2-PrOH/water mixture under Ar followed by adsorption of azobenzene under Ar.



**Fig. S5** (Top) Effect of water added on the conversion of azobenzene and the hydrazobenzene selectivity by photoreaction of azobenzene on CdS for 5 h. Reaction conditions are identical to those in Fig. 1 (manuscript). (Bottom) Effect of water added on the amount of azobenzene adsorbed onto CdS by stirring in the dark condition for 5 h.