Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

S 1

An Acyclic Zincagermylene: Rapid Activation of Dihydrogen at Sub-Ambient

Temperature

Martin M. Juckel,^a Jamie Hicks,^a Dandan Jiang^b, Lili Zhao,^{*b,c} Gernot Frenking,^{*b,c,d} Cameron

Jones*a

^aSchool of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia. Email:

cameron.jones@monash.edu.

^bInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

^cFachbereich Chemie, Philipps-Universität Marburg, 35032, Marburg, Germany.

Electronic Supplementary Information (30 pages)

Contents	1. Experimental	S2
	2. X-Ray Crystallography	S5
	3. Computational studies	S7
	4. References	S29

1. Experimental

General considerations.

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity dinitrogen. Pentane was distilled over Na/K alloy (50:50), while hexane was distilled over molten potassium. ¹H, ¹³C{¹H}, ²⁹Si{¹H} and ¹¹B{¹H} NMR spectra were recorded on either Bruker DPX300 or Bruker AvanceIII 400 spectrometers and were referenced to the resonances of the solvent used, external SiMe₄, or external BF₃.OEt₂. Mass spectra were collected using an Agilent Technologies 5975D inert MSD with a solid state probe. FTIR spectra were collected for solid samples on an Agilent Cary 630 attenuated total reflectance (ATR) spectrometer. The microanalysis were carried out at the Science Centre, London Metropolitan University. Melting points were determined in sealed glass capillaries under dinitrogen, and are uncorrected. (TBoN)GeCl¹ and L*Zn–Mg(^{Mes}Nacnac)² were prepared by literature methods. All other reagents were used as received.

:Ge(ZnL*)(TBoN) 2. A solution of (TBoN)GeCl (1.00 g, 1.71 mmol) in hexane (30 mL) was added to a suspension of L*Zn-Mg(MesNacnac) 1 (1.74 g, 1.71 mmol) in hexane (20 mL) at -80 °C over 5 min. The reaction mixture was warmed to room temperature and stirred for 2 hrs, affording a dark green solution. Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL). The dark green extract was filtered and the filtrate concentrated (to *ca.* 10 mL), affording dark blue crystals of 2 overnight at -25 °C (1.48 g, 71 %). N.B. Crystals of 2 used for the X-ray diffraction experiment were grown from a pentane solution. M.p. 182-184 °C; ¹H NMR (400 MHz, C_6D_6 , 298 K) $\delta = -0.03$ (s, 9H, Si(CH₃)₃), 1.20-1.28 (overlapping m, 45H, Si{CH(CH₃)₂}₃), Si{CH(CH₃)₂}₃, CH(CH₃)₂), 1.93 (s, 3H, ArCH₃), 3.04 (br., 2H, CH(CH₃)₂), 3.56 (br., 2H, $CH(CH_3)_2$), 6.18 (s, 2H, {N(Dip)C(H)}_2), 6.65 (s, 2H, Ph₂CH), 6.96-7.33 (m, 28H, ArH); ¹³C{¹H} NMR (75 MHz, C_6D_6 , 298 K): $\delta = 5.1$ (Si(CH₃)₃), 14.9 (Si{CH(CH₃)₂}₃), 16.3 (Si{CH(CH₃)₂}₃), 19.6 (br., $CH(CH_3)_2$), 21.1 (ArCH₃), 28.6 (CH(CH₃)₂), 51.8 (Ph₂CH), 118.9 ({N(Dip)C(H)}₂), 124.1, 126.5, 128.6, 128.7, 129.5, 130.1, 130.2, 130.5, 139.5, 142.0, 145.3, 147.6 (Ar-*C*); ²⁹Si{¹H} NMR (80 MHz, C₆D₆, 298 K): $\delta = 1.83$, 1.66; ¹¹B{¹H} NMR (128 MHz, C₆D₆, 298 K): $\delta = 23.2$; UV/vis (hexane) $[\lambda_{max}, nm (\epsilon, M^{-1} \text{ cm}^{-1})]$: 590 (141); IR v/cm⁻¹ (ATR): 1599 (w), 1523 (m), 1492 (m), 1240 (m), 1202 (m), 1177 (m), 1117 (m), 1075 (m), 1029 (m), 970 (w), 758 (m), 732 (m), 703 (s), 679 (m); MS/EI *m/z* (%): 595.5 (L*H⁺, 19.6), 552.4 (L*H-Pr^{*i*+}, 57.7), 475.5 (TBoNH⁺, 9.3), 167.1 (Ph₂CH⁺, 100); anal. calcd. for C₇₁H₉₃BGeN₄Si₂Zn: C 70.62 %, H 7.76 %, N 4.64 %, found: C 70.44 %, H 7.65 %, N 4.75 %.

Figure S1. ¹H NMR spectrum (C_6D_6 , 298 K) of compound **2**. Resonances arising from pentane of crystallisation, silicone grease and minor secondary amine decomposition products marked.

Ge(H)₂(ZnL*)(TBoN) 3. A suspension of 2 (1.00 g, 0.83 mmol) in hexane (30 mL) was stirred rapidly under an atmosphere of H₂. The green suspension turned yellow within 2 mins and was stirred for a further 20 mins. Volatiles were then removed in vacuo and the residue extracted with hexane (30 mL). The yellow extract was filtered and the filtrate concentrated (to ca. 10 mL), affording colorless crystals of 3 overnight at -25 °C (821 mg, 82 %). N.B. Exposure of a C₆D₆ benzene solution of 2 to an atmosphere of H_2 led to the near quantitative formation of 3 in less that 5 secs (as determined by ¹H NMR spectroscopy). M.p. 196-200 °C; ¹H NMR (400 MHz, C₆D₆, 298 K) $\delta = -0.14$ (s, 9H, Si(CH₃)₃), 1.18-1.24 (overlapping m, 33H, Si{CH(CH₃)₂}₃, Si{CH(CH₃)₂}₃, $CH(CH_3)_2$, 1.39 (d, J = 6.7 Hz, 12H, $CH(CH_3)_2$) 1.82 (s, 3H, ArCH₃), 3.46 (br., 4H, $CH(CH_3)_2$), 3.88 (s, 2H, GeH₂) 6.12 (s, 2H, {N(Dip)C(H)}₂), 6.58 (s, 2H, Ph₂CH), 6.88-7.33 (m, 28H, ArH); ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K): $\delta = 3.5$ (Si(CH₃)₃), 14.9 (Si{CH(CH₃)₂}), 16.2 (Si{CH(CH₃)₂}), 19.5 (br., CH(CH₃)₂), 21.1 (ArCH₃), 28.6 ((CH(CH₃)₂) 51.5 (Ph₂CH), 118.6 ({N(Dip)C(H)}₂), 123.9, 126.6, 127.9, 128.3, 128.4, 129.5, 129.6, 130.5, 140.8, 141.4, 145.3, 146.9 (Ar-C); ²⁹Si{¹H} NMR (80 MHz, C₆D₆, 298 K): δ = 3.31, 4.50; ¹¹B{¹H} NMR (128 MHz, C₆D₆, 298 K): $\delta = 23.6$; IR v/cm⁻¹ (Nujol): 2054 (s, GeH str.), 1995 (s, Ge-H str.), 1253 (m), 1227 (w), 1208 (w), 1179 (w), 1155 (w), 1110 (w), 1075 (w), 1029 (w), 805 (m), 759 (m), 738 (m), 699 (m), 655 (m); MS/EI *m/z* (%): 595.5 (L*H⁺, 8.2), 552.4 (L*H-Pr^{*i*+}, 35.1), 475.5 (TBoNNH⁺, 42.3), 386.3 ((BoN)⁺, 13.9) 167.1 (Ph₂CH⁺, 100), 73 ((TMS)⁺, 20.5). N.B. a reproducible microanalysis could not be obtained for the compound as it consistently crystallised with small amounts of L*H and TBoNH (*ca.* 5%) which could not be separated by fractional crystallisation. N.B. The di-deuteride analogue of **3**, *viz.* **3-D**, was prepared by treating a C₆D₆ solution of **2** with an excess of D₂ gas at 20 °C. ²H NMR (C₆D₆, 61.4 MHz, 298 K): δ = 3.86 ppm. Any kinetic isotope effect relating to the rate of the deuteration *vs.* hydrogenation reactions was not determined.

Figure S2. ¹H NMR spectrum (C_6D_6 , 298 K) of compound **3**. Resonances arising from pentane of crystallisation, silicone grease and minor secondary amine decomposition products marked.

Figure S3. ²H NMR spectrum (C_6D_6 , 298 K) of compound **3-D** prepared *in situ* from the reaction of **2** with D_2 .

2. X-Ray Crystallography

Crystals of **2**, **3** and :Ge(ZnL*)(L) **1S** suitable for X-ray structural determination were mounted in silicone oil. Crystallographic measurements were made using the Australian Synchrotron ($\lambda = 0.71090$ Å). The software package Blu-Ice³ was used for synchrotron data acquisition, while the program XDS⁴ was employed for synchrotron data reduction. All structures were solved by direct methods and refined on F² by full matrix least squares (SHELX97⁵) using all unique data. Hydrogen atoms are included in calculated positions (riding model), except the hydride hydrogens of **3**, the atomic displacement parameters of which were refined isotropically. Crystal data, details of data collections and refinements for all structures can be found in their CIF files and are summarized in Table S1.

	2·(pentane)	3	18
empirical formula	$C_{74}H_{100.2}BGeN_4Si_2Zn$	C ₇₁ H ₉₃ BGeN ₄ Si ₂ Zn	C ₇₈ H ₈₄ GeN ₂ Si ₂ Zn
formula weight	1250.73	1209.46	1243.61
crystal system	monoclinic	triclinic	monoclinic
space group	$P2_{1}/n$	<i>P</i> -1	$P2_{1}/c$
a (Å)	12.268(3)	12.899(3)	15.104(3)
b (Å)	40.891(8)	15.071(3)	19.536(4)
c (Å)	14.886(3)	19.496(4)	23.139(5)
α (°)	90	82.02(3)	90
β (°)	90	88.06(3)	106.57(3)
γ (°)	90	65.04(3)	90
V (Å ³)	7323(3)	3401.4(12)	6544(2)
Z	4	2	4
T (K)	100(2)	100(2)	100(2)
$\rho_{calcd} \left(g \cdot cm^3\right)$	1.134	1.181	1.262
μ (mm ⁻¹)	0.812	0.871	0.908
F(000)	2669	1288	2624
reflns collected	104463	57853	51132
unique reflns	13594	12638	11422
R _{int}	0.1637	0.0877	0.0340
R1 [I > $2\sigma(I)$]	0.0556	0.0541	0.0476
wR2 (all data)	0.1462	0.1387	0.1129
largest peak and	1.11, -1.10	1.12, -0.98	0.75, -0.67
hole (e·Å ⁻³)			
CCDC no.	1576729	1576728	1576727

 Table S1. Crystal structure and refinement data for 2, 3 and :Ge(ZnL*)(L) 1S.

Figure S4. ORTEP diagram of :Ge(ZnL*)(L) **1S** (20% thermal ellipsoids; hydrogen atoms omitted). Zn(1)-N(1) 1.902(2), Zn(1)-Ge(1) 2.4950(9), Ge(1)-N(2) 1.860(3), N(1)-Zn(1)-Ge(1) 156.31(8), N(2)-Ge(1)-Zn(1) 110.69(8).

3. Computational Studies

Geometry optimizations without symmetry restrictions were carried out with the Gaussian 09⁶ optimizer in association with Turbomole 6.6⁷ energies and gradients. The calculations were performed for all molecules using the BP86⁸ functional with def2-TZVPP⁹ basis set and dispersion correction by Grimme¹⁰ with Becke-Johnson damping D3(BJ) in conjunction with the resolution-of-identity (RI)¹¹ approximation (termed as RI-BP86+D3(BJ)/def2-TZVPP). Frequency results were examined to confirm stationary points as transition states (only one imaginary frequency) or minima (no imaginary frequencies). The RI-BP86+D3(BJ)/def2-TZVPP calculated frequencies were used to obtain zero-point energy-corrected enthalpies and free energies at 298.15 K and 1 atm. For comparision, different functions, such B3LYP,¹² and M06-2X,¹³ were also examined for the first H₂ activation step by using the def2-TZVPP basis set. For the key H₂ activation step, solvent effects were also estimated by single-point calculations with different functions (i.e., BP86, B3LYP, and M06-2X) at the RI-BP86+D3(BJ)/def2-TZVPP optimized geometries in the gas phase by means of the SMD¹⁴ method with Gaussian 09 and COSMO¹⁵ method with Turbomole 6.6,⁷ using the experimental solvent (toluene, $\varepsilon = 2.37$).

The orbital interactions have been investigated with the EDA-NOCV method¹⁶ which combines the energy decomposition analysis (EDA)¹⁷ with the natural orbital for chemical valence (NOCV)^{18,19} method. The interaction energy between the fragments ΔE_{int} which are calculated with

the frozen geometry is decomposed into four main components ΔE_{elstat} (electrostatic interactions), ΔE_{Pauli} (Pauli repulsion), ΔE_{disp} (dispersion interactions), and ΔE_{orb} (orbital interactions). The latter term can be separated into contributions which come from pairwise orbital interactions, which makes it possible to identify the dominant orbitals of the interactions in the transition state. For a detailed description of the method²⁰⁻²², we refer to the literature. The EDA-NOCV calculations were carried out with the program package ADF.^{23,24} We analyzed the electron density distribution with the QTAIM (Quantum Theory of Atoms in Molecules) method that was developed by Bader.²⁵ Wiberg bond index P and partial charges q were obtained from a single-point calculation of the molecules with BP86/def2-TZVPP basis sets by using NBO 6.0²⁶ as implemented with Gaussian 09 program.⁶

All energies discussed in this study are ΔG values at 298 K and 1 atm at the RI-BP86+D3(BJ)/def2-TZVPP unless specified; the electronic energies without zero point corrections are also given for reference.

2M

3M

Me₂NGe

ZnNMe₂

Me₂NGeH₂

Figure S5. Optimized structures of **2'**, **2M**, **3'**, **3M** and fragments after breaking the Ge-Zn bond calculated at the BP86-D3(BJ)/def2-TZVPP level. Non-hydride hydrogens are omitted for clarity. Bond distance in Å, angles in degrees.

Figure S6. Computed energy profile for the reaction of **2'** with H_2 at the RI-BP86+(D3BJ)/def2-TZVPP level of theory. Key bond distances are given in Å. Non-hydride hydrogens have been omitted for clarity.

GeH1 = 1.552, GeH2 = 1.546, H1H2 = 2.494 GeZn = 2.382, GeN1 = 1.889, ZnN2 = 1.882

H₂Ge(TBoN)(ZnL*) A

GeH1 = 1.573, ZnH2 = 1.632, H1H2 = 2.229 GeZn = 2.497, GeN1 = 1.900, ZnN2 = 1.873

(TBoN)Ge(H)Zn(H)L* C

GeH1 = 2.553, ZnH2 = 2.889, H1H2 = 0.780 GeZn = 2.487, GeN1 = 1.914, ZnN2 = 1.906

(TBoN)Ge(µ-H₂)ZnL* B

GeH1 = 1.908, GeH2 = 1.782 ZnH1 = 1.718, ZnH2 = 1.794 GeZn = 2.734, GeN1 = 1.929, ZnN2 = 1.890

L*ZnH

Figure S7. Optimized structures of isomers of $H_2Ge(TBoN)(ZnL^*)$ (**3'**) and fragments after breaking the Ge-Zn bond calculated at the BP86-D3(BJ)/def2-SVP level. Non-hydride hydrogens are omitted for clarity. Bond distance in Å, angles in degrees.

(b) $Me_2NGe(H_2)$ -ZnNMe₂ (**3M**)

Figure S8. Laplacian distribution $\nabla^2 \rho(\mathbf{r})$ of (a) **2M** and (b) of **3M** in the Ge-Zn-N plane. Dashed red lines indicate areas of charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$) while blue lines show areas of charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$) at the BP86/def2-TZVPP level. The solid lines connecting the atomic nuclei are the bond paths. Solid red lines indicate the zero-flux surfaces. Green dots are bond critical points.

	q(Ge)	q(Zn)	q(GeN1R ₂)	q(ZnN2R ₂)	P(Ge-Zn)
2-M	0.23	0.91	-0.20	0.20	0.81
3-M	0.30	1.12	-0.41ª	0.41	0.69
2'	0.28	1.04	-0.28	0.28	0.77
3'	0.37	1.19	-0.41ª	0.41	0.68

Table S2. Calculated NBO partial charges q and Wiberg bond orders P of the zinca-germanium bonded compounds **2'**, **3'**, **2M** and **3M** at the BP86/def2-TZVPP level.

^aInclusive of hydridic hydrogen atoms at Ge.

	2'	3'
Fragments	$R_2NGe(D) + ZnL(D)$	$R_2NGeH_2(D) + ZnL(D)$
ΔE_{int}	-81.2	-88.0
ΔE_{Pauli}	161.2	160.2
$\Delta E_{elstat}^{[a]}$	-120.4 (49.7 %)	-124.3 (50.1 %)
$\Delta E_{orb}{}^{[a]}$	-81.6 (33.7 %)	-87.8 (35.4 %)
$\Delta E_{disp}{}^{[a]}$	-40.4 (16.6 %)	-36.0 (14.5 %)
$\Delta E_{\rho 1} \ ^{[b]}$	-30.8 (37.7 %)	-46.5 (53.0 %)
$\Delta E_{\rho 2} \ ^{[b]}$	-30.2 (37.0 %)	-25.5 (29.0 %)
$\Delta E_{\rho 3} \ ^{[b]}$	-4.7 (5.8 %)	-2.7 (3.1 %)
$\Delta E_{\rho 4} \ ^{[b]}$	-3.3 (4.0 %)	-2.2 (2.5 %)
ΔE_{rest}	-12.6 (15.5 %)	-10.9 (12.4 %)

Table S3. EDA-NOCV results at the BP86+D3(BJ)/TZ2P+ level of theory for **2**' and **3**'. The interacting fragments are in the electronic doublet (D) states. Energy values are given in kcal/mol.

^aThe values in parentheses give the percentage contribution to the total attractive interactions ΔE_{elstat} + ΔE_{orb} + ΔE_{disp} .

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb}

Figure S9. Plot of deformation densities $\Delta \rho_{1-4}$ of the pairwise orbital interactions between the two fragments in **2'** and **3'**, associated interaction energies ΔE_{orb} (in kcal/mol) and eigenvalues v. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red—blue.

Table S4. Bond dissociation energies D_e (kcal/mol) for the dissociation reactions of **2M**, **3M**, **2'** and **3'** yielding fragments in the doublet (D) state at the BP86+D3(BJ)/def2-TZVPP level of theory.

Table S5. Computed barriers of **TS1** with different methods, using the def2-TZVPP basis set at the BP86+(D3BJ)/def2-TZVPP optimized geometry. The single point and COSMO calculations were conducted by using the Gauss-Turbomole program, the SMD solvent model is used by Gaussian program.

		Gas phase	e		COSMO			SMD	
Methods	BP86 +(D3BJ)	B3LYP +(D3BJ)	M06-2X +(D3ABC)	BP86 +(D3BJ)	B3LYP +(D3BJ)	M06-2X +(D3ABC)	BP86	B3LYP	M06-2X
ΔG [ΔE]	23.1 [14.4]	25.6 [16.9]	23.9 [15.1]	23.1 [14.4]	25.6 [16.9]	23.9 [15.2]	18.6 [9.8]	21.5 [12.8]	22.5 [13.8]

Table S6. H₂ activation barriers computed using different functions, BP86, B3LYP, and M06-2X at the RI-BP86+D3(BJ)/def2-TZVPP optimized geometries. Solvent effects were also estimated by single-point calculations with different functionals by means of the SMD and COSMO methods, using the experimental solvent (toluene, $\varepsilon = 2.37$).

	Functions	H ₂	2'	TS1
	BP86+(D3BJ)	-1.177952843123	-7443.402147967	-7444.557196886
Gas phase	B3LYP+(D3BJ)	-1.173495008828	-7440.479412888	-7441.626044061
	M06-2X+(D3ABC)	-1.168929581656	-7440.929598965	-7442.074402912
	BP86+(D3BJ)	-1.178124496909	-7443.410419158	-7444.565578892
COSMO	B3LYP+(D3BJ)	-1.173674543359	-7440.487640145	-7441.634384013
	M06-2X+(D3ABC)	-1.169125533954	-7440.939229720	-7442.084207894
	BP86	-1.17742919028	-7442.68983045	-7443.85158822
SMD	B3LYP	-1.17953103297	-7442.35979311	-7443.51897664
	M06-2X	-1.16822932549	-7440.95691959	-7442.10320819

Table S7. Relative energies (ΔE , ΔE_o , ΔG , in kcal/mol) for A-D, and ((TBoN)GeH + L*ZnH) (see Figure S7) at the BP86+D3(BJ)/def2-SVP level of theory.

Energy	Α	В	С	D	(TBoN)GeH + L*ZnH
ΔΕ	0.0	20.7	20.0	14.5	52.2
ΔE_o	0.0	18.3	19.1	13.6	49.1
ΔG	0.0	18.0	18.0	13.5	32.1

Table S8. EDA-NOCV results at the BP86+D3(BJ)/TZ2P+ level of theory of Me₂NGe-ZnNMe₂ using different electronic states (singlet:S; doublet: D, triplet: T) of the fragments Me₂NGe and ZnNMe₂. The smaller ΔE_{orb} value suggests that the description in terms of dative bonding is more favorable. Energy values are given in kcal/mol.

	TS1	
Fragments	$2(S) + H_2(S)$	2 (T) + H ₂ (T)
ΔE_{int}	-32.5	-180.1
ΔE_{Pauli}	139.5	105.2
ΔE_{disp}	-3.6	-3.6
$\Delta E_{elstat}{}^{[a]}$	-65.4 (38.8 %)	-103.5 (36.7 %)
$\Delta E_{orb}{}^{[a]}$	-103.0 (61.2 %)	-178.2 (63.3 %)
$\Delta E_{\rho 1} \ ^{[b]}$	-92.5.2 (89.8%)	
$\Delta E_{\rho 2} \ ^{[b]}$	-7.7 (7.5%)	
ΔE_{rest}	-2.8 (2.7%)	

^aThe values in parentheses give the percentage contribution to the total attractive interactions ΔE_{elstat} + ΔE_{orb} .

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb}

Figure S10. Plot of deformation densities $\Delta \rho_{1-2}$ of the pairwise orbital interactions between the two fragments in **TS1**, associated interaction energies ΔE_{orb} (in kcal/mol) and eigenvalues v. The eigenvalues v indicate the size of the charge flow, and the direction of charge flow is red→blue. Shape of the most important interacting occupied and vacant orbitals of fragments.

Table S9. Coordinates and energies (in hartree) of the calculated structures at the BP86-D3(BJ)/def2-TZVPP level.

D_{2}	(DJ)/del2-		-1.					
H_2				Н	[6.3021096	27.7621851	11.3041089
Ene	ergy = -1.177	952843123		Н	[6.9773778	27.5024857	9.6797118
Н	-2.0277411	1.3206099	0.0000000	С		0.7674978	25.3085993	12.6025167
Н	-1.2780585	1.3206099	0.0000000	Н	[0.0600227	24.6296299	12.0999890
				С		6.1675484	20.3337821	9.1192452
2'				Н	[6.1772223	20.8159725	8.1418561
Ene	rgv = -7443.	402147967		С		6.5883831	24.7915359	8.0206161
Ge	3.7342231	26.7722171	7.2737304	Н	[7.3995959	25,4948625	8.2040024
Zn	3.3342461	25.4725541	9.3435604	С		3.3459278	28.9717317	10.6395860
Si	4 8773054	28 8186886	9 5687232	H	[2 7647403	29 8619975	10 3652305
Si	2 4584658	24 4954279	12 2704979	Н	-	3 6132266	29 0447500	11 7034636
N	3 6102407	30 5951379	6 71 54 8 2 1	Н	[2 6876735	28 1006940	10 5220510
N	5 1476916	29 3369112	5 5734955	C II	1	6 8885118	19 1529727	9 3197059
N	2 6539843	29.3309112	10 5621574	н	ſ	7 4541368	18 7193441	8 4946422
N	4 4505270	28.4157011	7 9053766	C II	1	0.0119277	24 0431031	9 2978110
C	6.0300481	28.4137011	5 0878722	с ц	Г	0.6151301	24.0431031	9.2978110
C	2 6674080	20.5200700	0 2040402		1	-1 2471000	24.0050542	10 1/61637
с u	2.0074089	20.0082093	9.2949402	C C		-1.24/1990	24.0400400	2 0107641
П	2 9 1 9 0 2 9 5	19.0434923	9.2003909 5.4602227	U U	r	4.23/1413	20.2030010	2.0107041
	2 2 4 1 0 1 0 2	31.1732133	5.4002557	п	L T	4.7139001	29.2020540	2.012/000
П	3.3410103	32.0//103/	5.1450074	П	L r	3.238/390	28.2909590	1.0084339
C	3.11/8303	21.8883607	9.7945760	H		4.83/6/9/	27.5733538	1.32301/5
U U	4./308/98	30.4280340	4./82238/		r	5.9//1/30	24./529180	0./03208/
Н	5.1/8212/	30.5939410	3.7985925	Н		6.3215023	25.4058188	5.962/325
С	4.6024215	22.1641791	9.9827805	C	-	1.1532090	29.0604459	7.0247666
H	4.7089410	22.7611705	10.899/258	Н	_	2.0882600	28.7137200	6.5609488
C	2.2143484	22.9/45598	9.9629611	C		3.5379613	26.2225460	3.4059/15
C	5.0961951	23.0496840	8.8401272	Н		4.0484901	25.5141205	2.7387288
C	2.6253999	31.0713970	7.6323394	Н		2.5002659	26.3213950	3.0587570
C	1.3434826	20.4891714	8.8673887	Н	_	3.5228209	25.8036852	4.4206700
C	5.6211519	27.5048234	4.0176674	С		-1.6945770	22.9161437	10.8478505
С	-0.2036033	24.3538963	7.8149615	Н	[-1.1471568	21.9792876	10.7637121
С	0.9093189	22.8293724	9.4313740	C		4.6270505	33.8469114	9.2362055
С	5.4347133	20.9083660	10.1638463	Н	[3.9512703	34.5656221	9.7201233
С	6.5365782	26.5723192	3.5096936	Н	[5.5361116	34.3951632	8.9539254
Η	6.2410459	25.9343887	2.6764513	Н	[4.9015918	33.0877992	9.9772467
С	4.4908943	23.0136677	7.5710657	C		3.5231216	34.3401264	7.0347342
Η	3.6616058	22.3284834	7.3980259	Н	[3.0657171	33.9386857	6.1224448
С	2.8191839	32.2973873	8.3106030	Н	[4.3720768	34.9740234	6.7429247
С	4.9361224	23.8434659	6.5407048	Н	[2.7739299	34.9768082	7.5268800
Η	4.4572182	23.7985908	5.5627314	C		8.1775656	27.2251057	5.1517202
С	4.2269941	27.5938854	3.4209620	Н	[9.1650109	27.0962805	5.5917779
Н	3.6318523	28.2522158	4.0681388	С		0.9234179	24.3800151	6.9765890
С	7.3064786	28.1834106	5.6801401	Н	[1.8969902	24.1024808	7.3829137
С	3.9829668	33.2215293	7.9898121	С		5.8160609	30.4510991	9.6012783
Η	4.7468008	32.6273654	7.4671109	Н	[6.8786365	30.3165492	9.3617187
С	-1.4486929	24.6570642	7.2551062	Н	[5.7560109	30.8982796	10.6035237
Н	-2.3421627	24.6228066	7.8763973	Н	[5.4002525	31.1702526	8.8875051
С	6.1623495	23.9368266	9.0413334	С		5.2467531	24.9936855	12.6553007
Н	6.6529837	23.9695784	10.0143260	Н	[6.0707441	25.7124603	12.7841234
C	7.8058193	26.4350777	4.0629732	Н	[5.4111758	24.4731057	11.7036307
H	8.5027111	25.7005777	3.6592514	Н	[5.3335677	24.2484254	13.4583461
C	0 5019485	21 6017397	8 8940296	C		-1 5588313	25 0152685	5 9069635
Ĥ	-0.4986123	21.5257377	8.4629314	н	[-2.5393941	25.2538947	5,4941779
C	3 8833347	25 6965876	12 6826339	C II	-	0 8641649	19 1534907	8 3638619
й	3 8661994	26 4126010	11 8374166	ч	[0 5375587	18 5105578	9 1960847
C	2 5946104	22.8431091	13 2176199	н Н		1 6608048	18 6147428	7 8335375
й	3 4412015	22.0131071	12 7349173	и П		0.0110447	19 2658418	7 6822006
C	1 4680374	30 2892020	7 8575579		l	0.8193581	24 7370508	5 6352571
č	6 0466619	27 5210184	10 2622824	ч	Г	1 7121656	24.7637669	5 0131469
й	5 6276701	26 5074073	10.2022024		l	-0.4267058	25.0684366	5 0935003
11	5.02/0/01	20.2014013	10.47/1/14	C		0.720/030	20.000 1 000	5.0755005

Η	-0.5130956	25.3532971	4.0450798
С	-1.9528202	25.2455686	10.3033559
Η	-1.6026895	26.1356987	9.7795738
С	0.5864477	27.8958137	7.8441885
H	1 2518733	27 6346284	8 6803689
н	0.4639739	27 0099475	7 2098588
п П	0.4057757	27.0077475	9 2697669
П	-0.3990732	20.1302003	0.2007000
C II	0.88/5/45	18.5521180	10.5695550
Н	/.4519053	1/.6130643	10./269988
С	7.7155888	29.0751700	6.8373680
Η	6.8389684	29.1468599	7.4938382
С	0.3196702	25.3993394	14.0691683
Η	0.9927533	26.0224055	14.6739331
Н	0.2674019	24.4112176	14.5437143
Н	-0.6860135	25 8445523	14 1339258
C	0 5501852	30 7210524	8 8212707
ч	-0.3386002	30 12210324	0.0212707
D	4 4276142	20 2064050	6 92 29 402
D	4.42/0145	29.3904039	0.0520405
C	1.8669381	32.6886006	9.2601841
Н	2.006/6/8	33.6242422	9.8008433
C	1.3508276	21.9564042	13.0329905
Η	1.4786562	20.9950752	13.5561474
Η	1.1552029	21.7366968	11.9765697
Η	0.4502177	22.4346467	13.4438628
С	0.6550326	26.6739887	11.9138290
Н	-0.3764128	27.0556962	11.9564588
Н	0 9382881	26 6248591	10 8511850
н	1 3027012	27 4250504	12 3870267
C	0 7/01808	31 0031718	0 5200307
	0.7491898	22 2184256	9.5290507
П	0.0272550	32.2184530	10.2824303
C	0.2058406	29.4296172	5.8/0/812
Н	-0./535810	29.8022484	6.2577906
Н	0.0056336	28.5467356	5.2478528
Η	0.6440155	30.2119761	5.2370467
С	8.8656503	28.5142161	7.6759387
Η	8.6668589	27.4846616	8.0039363
Н	9.0102835	29.1323342	8.5723137
Н	9.8166808	28.5152221	7.1242064
С	-3 5017801	24 1945718	11 8340432
н	-4 3674344	24 2551267	12 4934684
\hat{C}	-3.0671394	25 3252958	11 1353907
с u	2 5016212	25.5252550	11.1333907
П	-3.3910312	20.2745559	11.2490036
U U	2.935/250	22.9952957	14.7090800
Н	2.1466046	23.52/2804	15.2553844
Н	3.8/35/22	23.5405086	14.8/14439
Η	3.0445869	22.0043068	15.1828357
С	3.7206015	26.5205820	13.9667958
Η	3.6788555	25.8796057	14.8585730
Η	2.8075948	27.1285163	13.9551765
Н	4.5733354	27.2058807	14.0992126
С	-2.8110131	22,9919822	11.6858912
H	-3 1330154	22 1057064	12 2330270
\hat{C}	8 0458577	30 4979471	6 3522517
ч	8 9152590	30 4872020	5 670/020
11 []	0.9133300	21 1470201	J.U/J4727 7 2061152
п п	0.203/000	20.0429799	7.2001155
H	7.2013302	30.9438/88	5.8155555
C	5.4426604	20.277/431	11.4163244
Н	4.8701409	20./167971	12.2352266
С	6.1612461	19.1008628	11.6206728
Η	6.1573919	18.6267338	12.6023996

TS1						
Ene	ergy = -7444.3	557196886				
Ge	0.2362223	-2.3680334	0.1825951			
Zn	-0.8945237	-0.1286055	-0.4306884			
Si	-2.2634628	-3.1807720	1.9712152			
Si	-3.5263733	1.4911671	-1.1857632			
N	0.4021347	-3.0873042	4.3101028			
N	1.6449818	-4.0856542	2.6605510			
N N	-1./8/9214	1.3022545	-1.2810404			
N C	-0.5290325	-2.94/5084	1.8483486			
C	2.2002092	-4.3263702	1.4294/12			
ч	0.0493080	2.9055801	-5 13203/3			
C	1 5488004	-3 6780859	4 8700032			
Н	1 7596772	-3 6105974	5 9289501			
C	-0 6789969	2 0145418	-3 3574675			
č	2.2868169	-4.2617061	3.8935322			
Ĥ	3.2173599	-4.8089620	3.9779781			
С	-1.0431373	0.6771520	-3.9815205			
Н	-2.0450462	0.4082149	-3.6187952			
С	-0.9629128	2.2170387	-1.9784133			
С	-0.1041103	-0.4255989	-3.4948680			
С	-0.4651531	-2.2700066	5.0966295			
С	0.5846751	4.1043830	-3.4504588			
С	3.3798594	-3.9150893	0.9363507			
С	1.0290682	3.3983061	0.7360262			
С	-0.3429729	3.3124605	-1.3317302			
С	-1.1071133	0.7178433	-5.4990392			
С	3.9101331	-4.3755326	-0.2753119			
Н	4.8204817	-3.9209867	-0.6670131			
С	1.1051027	-0.1491308	-2.8378537			
Н	1.3772014	0.8867229	-2.6346117			
C	-1.2215986	-2.8454441	6.1422933			
C	1.9819915	-1.1835/1/	-2.4898844			
П	2.9201312	-0.9302140	-1.98/0/85			
с u	4.0003712	-2.7802433	2 4624195			
Г	5.5088257	-2.4300722	2.4034185			
C	-1 1293007	-4 3201285	6 5038046			
н	-0.6207947	-4.8366665	5 6770016			
C	1 5603213	4 3839329	1 5724983			
Н	0.9539171	5 2495081	1 8357298			
C	-0 4212555	-1 7643669	-3 7727140			
Ĥ	-1.3532016	-1.9908406	-4.2924785			
С	3.2823739	-5.3867673	-0.9972342			
Н	3.7051264	-5.7264926	-1.9431971			
С	0.4163334	4.2277468	-2.0719191			
Н	0.9032432	5.0500476	-1.5433757			
С	-4.1423445	-0.3031657	-0.9761862			
Η	-3.4757292	-0.7121013	-0.1879587			
С	-4.1458981	2.3184498	-2.7894982			
Η	-3.5662409	1.8333799	-3.5913975			
С	-0.5266777	-0.8800997	4.8262182			
С	-2.9176984	-3.5785980	0.2490770			
Н	-2.6769081	-2.8099454	-0.4956761			
Н	-4.0125058	-3.6781543	0.2717987			
H	-2.5004863	-4.5298344	-0.1093176			
C	-4.0090504	2.5601670	0.3131040			
H	-3.3766771	3.4551058	0.1976090			
C	0.0120642	0.4305587	-0.291/484			
H	0.943/010	0.1299104	-3.8122328			
C	0.4301988	-2.7930169	-3.4230397			

Н	0.1839485	-3.8285343	-3.6463086
С	-3.1222926	-1.6510982	2.6333398
H	-2 9513130	-1 5275004	3 7104611
Н	-4 2065415	-1 6905771	2 4558838
н	-2 7363002	-0.7501238	2.1336182
C	-0.0571490	0.5189275	-7 6837364
с u	-0.03/1490	0.2025756	<pre>-/.083/304</pre>
П	0.8244309	0.2923730	-0.2039417
	-0.3923001	2.4301932	0.1778900
П	-0.882/81/	2.3144/23	0.3313390
C	-1.249/934	4.5727090	0./1191/2
C II	5.351/911	-3.2632/63	2.3634396
Н	5.1596833	-4.1016849	3.0445745
Н	5.8098775	-2.4501885	2.9435548
Н	6.0829233	-3.6021777	1.6153506
С	1.6601549	-2.5085221	-2.7857226
Н	2.3328225	-3.3135915	-2.4940081
С	0.3178197	-0.2534741	3.7277414
Η	0.1810308	-0.8768124	2.8321666
С	4.3545389	-1.5794627	0.7717268
Η	5.0856624	-1.8264481	-0.0108253
Η	4.7702348	-0.7535382	1.3649579
Η	3.4353400	-1.2263594	0.2867292
С	-1.7739217	5.5813953	-0.1031796
Η	-1.5377379	5.5883720	-1.1656376
С	-2.5070223	-4.9724508	6.7033116
Η	-3.0073642	-4.5854725	7.6017979
Η	-2.3948378	-6.0575778	6.8337605
Η	-3.1684766	-4.7971923	5.8472992
С	-0.2834468	-4.5153647	7.7763220
Η	0.7166792	-4.0757511	7.6787285
Н	-0.1667610	-5.5841793	8.0038429
Η	-0.7715526	-4.0350420	8.6364371
С	2.1078774	-5.9619079	-0.5123905
Η	1.6206908	-6.7477433	-1.0874991
С	1.8394852	2.3002745	0.4032438
Η	1.4492514	1.5357083	-0.2705079
С	-2.6165399	-4.6626021	3.0701718
Η	-2.3914998	-5.6053906	2.5538370
Н	-3.6748011	-4.6852066	3.3656625
Н	-2.0117204	-4.6266618	3.9830070
С	-3.9130772	-1.1382357	-2.2444829
Н	-4.2538371	-2.1756210	-2.1045580
Н	-2.8499484	-1.1774308	-2.5176089
Н	-4.4627192	-0.7285801	-3.1042725
С	2.8568812	4.2624272	2.0847671
Н	3.2510160	5.0409478	2.7385050
С	1.3365504	5.1383230	-4.2461516
Н	1.9169960	4.6771388	-5.0564099
Н	2.0254572	5.7088720	-3.6100813
Н	0.6457888	5.8580627	-4.7122747
С	3.1271943	2.1712171	0.9152655
Н	3.7296168	1.3028212	0.6506170
Ċ	3.6421456	3.1545603	1.7666259
Ĥ	4.6489072	3.0578805	2.1725967
Ċ	-1.5889997	4.5725572	2.0747418
Н	-1.1936611	3.7865670	2.7188255
Ċ	-0.1156850	1.1634019	3.3519198
Н	-1.1829283	1.2087437	3.1008398
Н	0.4594576	1.5032147	2.4825987
H	0.0765563	1.8805772	4.1637223
С	-1.2506435	0.8915706	-8.3059294
н	-1 3067843	0 9565261	-9 3924707

С	0.3204395	-6.2294971	1.2804125
Η	-0.2684800	-5.4420536	1.7663449
С	-5.4640041	3.0481438	0.3769979
Н	-6.1793370	2.2170149	0.4472236
Н	-5.7374489	3.6467318	-0.5010250
Н	-5.6134185	3.6844712	1.2637443
C	-1 3835027	-0.0943086	5 6040323
н	-1 4572442	0.9728752	5 4056061
R	0.4156343	-3 3283183	2 8722149
C	-2 0592110	-2 0110537	6 8954169
н	-2 6536290	-2 4407210	7 7016863
C	-3 8000/3/	3 8187256	-2 8395098
с u	4 1201427	1 2551649	2 7001217
п	-4.1291437	4.2331046	-3./99121/
п	-2.7520020	3.9992123	-2./559055
П	-4.51/1822	4.3/38109	-2.0400068
C	-3.60468/4	1.882/238	1.6254521
Н	-3.6/9/41/	2.5/82556	2.4/4928/
Н	-2.5656334	1.5228572	1.5922128
Η	-4.2426871	1.0171982	1.8506013
С	-2.1477272	-0.6499072	6.6290657
Η	-2.8103284	-0.0174892	7.2201917
С	1.8175670	-0.2577266	4.0747470
Η	2.0062441	0.3634110	4.9623263
Η	2.3930959	0.1651238	3.2391421
Η	2.1931736	-1.2673868	4.2791519
С	-0.5749317	-6.8762484	0.2213176
Н	-0.8238875	-6.1690921	-0.5818781
Н	-1.5140779	-7.2129119	0.6809461
Н	-0.1043879	-7.7583452	-0.2362675
С	-2.9640315	6.5399046	1.7770249
Н	-3.6359668	7.2943259	2.1859602
С	-2.4364807	5.5431674	2.6041732
H	-2.6955716	5.5166678	3.6628993
C	-5 6333049	2.0767358	-3 0921878
н	-6 2842720	2.4965859	-2.3135873
н	-5 8715663	1.0080935	-3 1774270
н	-5 9169815	2 5549731	-4 0436625
\hat{C}	-5 5774555	-0.4656675	-0.4592420
н	-6 3117283	-0.0477461	-1 1618441
и П	5 7250274	-0.04//401	0 5072754
п п	-5.7259574	1 5211010	0.3072734
П	-3.6233639	-1.3311910	-0.5201705
	-2.0203/04	0.3300320	0.4230933
Н	-3.035/029	7.3241966	-0.2328643
C	0./126340	-/.244/051	2.368308/
Н	1.3233484	-8.0536605	1.9422180
Н	-0.1854638	-7.6926291	2.816/220
Н	1.2877290	-6.7634453	3.1690533
С	-2.2996917	1.0871272	-6.1344324
Η	-3.1791475	1.3118326	-5.5293373
С	-2.3745693	1.1737470	-7.5250878
Η	-3.3135329	1.4587375	-8.0001625
Н	1.3773219	-1.2272308	0.8791220
Η	0.5352389	-0.4617153	0.6986711

IM1

Energy = -7444.572730059					
Ge	-2.1202202	-0.2713777	1.0434537		
Zn	0.3791723	-0.2891489	1.1652655		
Si	-2.8471612	-0.8182575	-1.9763701		
Si	2.6924557	-2.0018012	-0.1167538		
Ν	-3.8592509	2.5087112	-1.5797877		

Ν	-4.8230696	1.8016226	0.3788986
Ν	2 1077286	-0 9966780	1 1909524
N	2 9544410	0 2556500	0 5778738
	-2.9344410	1.2252116	-0.5778758
C	-5.1010/94	1.2352110	1.0500940
C	3.7824025	-1.09/00//	4.5190560
Η	3.8165063	-1.7511939	5.3909413
С	-4.8824034	3.3977081	-1.2090559
Н	-5.1127752	4.2741906	-1.8004538
С	2 9355213	-1 4245010	3 4617067
\tilde{C}	-5 1158350	2 0831362	-0.0479022
	-3.4430333	2.9651502	-0.0479022
П	-0.25/1092	3.4289109	0.5143760
C	1.9289183	-2.5582457	3.5769379
Η	1.9078750	-3.0733808	2.6054491
С	2.8980279	-0.6072623	2.2991797
С	0.5117232	-2.0264429	3.7890883
C	-2 9820127	2 8023871	-2 6676106
\tilde{c}	4 5645104	0.0663700	1 5062769
C	4.7769105	1.0662655	2 0211016
C	-4.//08195	1.9002033	2.8211810
C	2.916/9/3	2.96/5383	1.8/8048/
С	3.5979391	0.6218430	2.3300343
С	2.3040718	-3.5904461	4.6243722
С	-5.0703193	1.3953581	4.0653121
H	-4 8352114	1 9492603	4 9749571
C	0.2408383	-0.6723164	1 0468950
	1.0604652	-0.0723104	4.1107262
П	1.0694652	0.0334530	4.119/203
C	-3.4/48929	2.8141569	-3.9906957
С	-1.0712987	-0.2353782	4.2719893
Η	-1.2629682	0.8182695	4.4713367
С	-4.0995038	3.3263063	2.7580100
Н	-3 8550796	3 5287713	1 7080232
C	-5 6630790	-0.0582321	1 7342937
c	1 0388005	2 5735112	1.7542757
	-4.9388903	2.5755112	-4.3200183
Н	-5.4212905	2.1621443	-3.42280/3
C	3.6495198	4.1556295	1.8058615
Н	4.5965846	4.1699853	1.2674387
С	-0.5646082	-2.9261781	3.7558637
Н	-0.3663592	-3.9821496	3.5689318
С	-5.6312673	0.1240934	4.1607247
н	-5 8455282	-0.3076321	5 1387497
C	-5.0+55202	0.0225916	2 122 1840
	4.4102002	0.9523810	3.4234649
Н	4.9331911	1.8944658	3.4318//0
С	1.1172078	-2.8854550	-0.7293582
Н	0.3864824	-2.0536020	-0.8287225
С	4.0194420	-3.1869363	0.5675875
Н	3.6163325	-3.5300879	1.5345866
С	-1 6255369	3 1029784	-2.3877441
\tilde{C}	-2 5549505	-2 5746452	-1 3679442
	1 61 400 44	2.3740432	-1.30/9442
п	-1.0140944	-2.0883094	-0.8181499
Н	-2.5229548	-3.2582/63	-2.2291361
Н	-3.3686942	-2.9027405	-0.7071233
С	3.4188206	-0.9162311	-1.5000164
Н	4.1091753	-0.2486371	-0.9608871
С	1 8797992	-3 4772209	5 9549403
н	1 2296686	-2 6497752	6 2398241
C	1.22700000	-2.077752	2 0725945
C	-1.8/01211	-2.4909412	3.9/33843
H	-2.6929302	-3.2046432	3.932/632
C	-1.4418924	-0.3318295	-3.1199180
Η	-1.6559649	0.5905710	-3.6736973
Н	-1.2360335	-1.1312202	-3.8464908
Н	-0.5245436	-0.1609775	-2.5405136
Ċ	2 2752778	-4 4140292	6 91 191 30
й	1 9360615	-4 3099087	7 9427845
1.1	1.7.50001.7	T.JU//00/	

С	3.3813458	1.6593044	1.2438830
Η	2.5342314	1.2880194	0.6424921
С	4.5276697	1.8204328	0.2609650
С	-5.0416403	4.4388541	3.2445895
Η	-5.9749357	4.4544604	2.6666905
Н	-4.5613184	5.4221369	3.1456361
Н	-5.3076023	4.2961569	4.3019405
С	-2.1314063	-1.1412221	4.2310747
Н	-3 1529382	-0 7939947	4 3798913
С	-1 1123317	3 1818162	-0 9584969
Н	-1 4679880	2 2840434	-0 4309377
C	-2 7773797	3 3507182	3 5407482
н	_2 9327933	3 1611246	4 6123905
н	-2.3005229	4 3357108	3 4405117
ц	2.0835134	2 50/1575	3 1512821
C	5 7000066	1 25/2629	0.4629626
с u	5.0861700	0.6077677	1 2795490
П	5 1269415	0.09//0//	1.3/03409
	-3.1208413	1.3/1/248	-3.4/00881
H	-4./904529	1.9933/99	-6.42/9426
п	-0.1894428	1.5152928	-5.5808151
Н	-4.5669243	0.6463383	-5.2950435
C	-5.6430466	3.8985511	-4.6661574
Н	-5.5485119	4.6357877	-3.8592095
Н	-6.7130003	3./316421	-4.8537149
Н	-5.2034209	4.3418722	-5.5710798
С	-5.9104998	-0.5993020	3.0018683
Η	-6.3420107	-1.5958718	3.0839652
С	1.7002901	2.9748090	2.5788785
Η	1.1178447	2.0544418	2.6481133
С	-4.4954293	-0.8187918	-2.8822976
Η	-5.2370950	-1.4174747	-2.3369450
Η	-4.3842369	-1.2596646	-3.8827004
Η	-4.9027604	0.1914351	-3.0010287
С	0.5568381	-3.8588088	0.3173000
Η	-0.3556673	-4.3547420	-0.0488015
Η	0.2935511	-3.3429441	1.2494383
Η	1.2800652	-4.6510973	0.5602088
С	3.1722458	5.3252189	2.4075511
Η	3.7574996	6.2426048	2.3389978
С	5.5062863	0.3798638	5.6386677
Η	5.1046994	0.0360159	6.6011936
Η	5.6996776	1.4579022	5.7108865
Η	6.4768643	-0.1200758	5.4957480
С	1.2175011	4.1371603	3.1735970
Н	0.2635234	4.1190148	3.7005757
С	1.9548718	5.3230262	3.0885842
Н	1.5811605	6.2365181	3.5508492
С	4.2917862	2.5213986	-0.9324826
Н	3.3101712	2.9659600	-1.1000650
С	0.4125633	3.1820138	-0.8533554
Н	0.8563777	2.3271787	-1.3789123
Н	0.7086878	3.1290999	0.2007407
Н	0.8506376	4.1030685	-1.2654692
Ċ	3.0992645	-5.4824234	6.5506884
й	3 4046851	-6 2166371	7 2960445
C	-6 0419643	-0 8047554	0 4687576
н	-5 2929927	-0 5437740	-0 2871080
C	4 2401684	-1 6225226	-2 5882002
с Н	3 6122802	-2 3/788/0	-3 15720/1
н	5.0425002	-2.34/0049	-3.13/2941
н	J.1011239 4 63/0/50	-2.1393300	-2.1070207
п	4.0340439	-0.0004042	-3.30/0383
U	-0.//1/290	5.5507713	-3.4030/01

Н	0.2778654	3.5738213	-3.2769101
В	-3.7895447	1.4415067	-0.5886887
С	-2.5795143	3.0912554	-5.0331764
Η	-2.9433731	3.0967872	-6.0605796
С	5.3428895	-2.4619677	0.8663328
Η	6.0760901	-3.1588415	1.3028403
Н	5.2040992	-1.6377469	1.5766846
Η	5.7909158	-2.0420601	-0.0451036
С	2.3269157	-0.0383148	-2.1209158
Н	2.7578921	0.7551356	-2.7500290
Н	1.7153848	0.4574271	-1.3514854
Н	1.6457281	-0.6247200	-2.7530607
С	-1.2377595	3.3492433	-4.7794045
Η	-0.5523931	3.5490011	-5.6032548
С	-1.6781023	4.4082181	-0.2195904
Н	-1.3352305	5.3356574	-0.7006609
Η	-1.3214195	4.4135060	0.8197797
Н	-2.7744826	4.4145774	-0.2091550
С	-6.0162727	-2.3270219	0.6225897
Н	-5.0561223	-2.6707547	1.0317838
Н	-6.1600296	-2.8053430	-0.3559449
Н	-6.8172063	-2.6922742	1.2812964
С	6.5366387	2.0497260	-1.6992140
Н	7.3102739	2.1271343	-2.4629778
С	5.2825839	2.6344716	-1.9049213
Η	5.0747378	3.1716561	-2.8306088
С	4.2537331	-4.4346541	-0.2986793
Н	4.6112048	-4.1748782	-1.3042789
Н	3.3403908	-5.0325957	-0.4187175
Н	5.0167623	-5.0851408	0.1583657
С	1.2129382	-3.5491643	-2.1092166
Н	1.9498346	-4.3639858	-2.1159160
Н	1.5008491	-2.8370012	-2.8921515
Н	0.2425231	-3.9832193	-2.3967594
С	6.7870855	1.3648779	-0.5101404
Н	7.7597895	0.9032228	-0.3393210
С	-7.4047758	-0.3164233	-0.0512459
Н	-8.2002795	-0.5356704	0.6754271
Н	-7.6577126	-0.8144424	-0.9981144
Н	-7.3910067	0.7662552	-0.2298332
С	3.1286283	-4.6666789	4.2731603
Н	3.4653817	-4.7648268	3.2400456
С	3.5241593	-5.6069874	5.2253826
Н	4.1621461	-6.4406812	4.9313336
Н	-2.5269929	0.9550174	1.9390442
Н	-0.4810198	1.0754212	1 0436281

TS2

Energy = -7444.572712976				
Ge	-1.6638640	-0.4639075	0.8162734	
Zn	0.7319223	-0.2799273	0.1201083	
Si	-3.3720614	0.3071656	-1.7193013	
Si	2.4017032	-1.0074145	-2.4509374	
Ν	-4.0159003	2.9951540	0.4280381	
Ν	-4.3146582	1.4033336	2.0536892	
Ν	2.3338523	-0.7417997	-0.7225990	
Ν	-2.9545571	0.6372279	-0.0347572	
С	-4.1874888	0.3070475	2.9545125	
С	5.0006892	-2.1105458	1.4930429	
Н	5.2855650	-3.0722263	1.9211002	
С	-4.8075910	3.5201112	1.4635501	

Н	-5.1711525	4.5389807	1.4370781
С	3.8390311	-2.0298240	0.7271077
С	-4.9770316	2.5814401	2.4265904
Η	-5.5301387	2.6485367	3.3554231
С	2.8717623	-3.1993214	0.6334768
Η	2.5094949	-3.2384345	-0.4040914
С	3.4630819	-0.7957081	0.1298036
С	1.6295456	-2.9665604	1.4928162
С	-3.5375125	3.8268850	-0.6296681
С	5.7927420	-0.9839228	1.7553616
С	-3.4575522	0.4786510	4.1523937
С	3.5293474	2.5866330	1.3624631
С	4.1961131	0.3617082	0.4829612
С	3.5196980	-4.5386881	0.9339702
С	-3.3556020	-0.6085536	5.0285246
Η	-2.8034337	-0.4912499	5.9617250
С	1.5253722	-1.9001053	2.4014725
Η	2.3661506	-1.2152113	2.5194906
С	-4.4430751	4.3698537	-1.5673272
С	0.3823365	-1.7478917	3.1975340
Η	0.3186389	-0.9159219	3.8977148
С	-2.7648395	1.7883284	4.4949561
Η	-2.8688830	2.4569035	3.6314866
С	-4.7630039	-0.9382853	2.6183536
С	-5.9442571	4.1485833	-1.4790332
Н	-6.1216832	3.3360111	-0.7603753
С	4.2662736	3.7499576	1.6021759
Н	4.9869765	4.0909692	0.8596721
С	0.5582704	-3.8679038	1.3978143
Н	0.6321928	-4.7067095	0.7048563
С	-3.9231881	-1.8414854	4.7163356
Н	-3.8267051	-2.6792631	5.4074525
С	5.3419650	0.2472836	1.2804632
Н	5.8810733	1.1569742	1.5530364
С	0.6664007	-1.6858503	-2.8580985
Н	-0.0090450	-0.9760061	-2.3328578
С	3.8096718	-2.2348041	-2.8310124
Н	3.7242285	-3.0098871	-2.0518205
С	-2.1510040	4.1123676	-0.6994133
С	-2.9931683	-1.4975973	-2.0928907
Н	-1.9306396	-1.7441393	-1.9887773
Н	-3.2884377	-1.7253397	-3.1277221
Н	-3.5570526	-2.1645418	-1.4267639
С	2.6946820	0.6412101	-3.3535267
Н	3.5590070	1.0693578	-2.8222690
С	3.5554382	-5.0650052	2.2320406
Н	3.0697671	-4.5213200	3.0426342
С	-0.5810843	-3.7129462	2.1846022
Н	-1.4064881	-4.4181089	2.0874372
С	-2.3961700	1.3875945	-2.9023621
Н	-2.7271828	2.4331544	-2.8807792
Н	-2.4881173	1.0171222	-3.9336900
Н	-1.3306272	1.3750188	-2.6358296
С	4.1989356	-6.2764750	2.4930972
Н	4.2175025	-6.6706845	3.5093894
C	3.6900932	1.7408151	0.1022285
H	2.6743683	1.5850281	-0.2994742
C	4.4591000	2.4298919	-1.0113838
Č	-3.4309831	2.4699789	5.7005839
H	-4.5001386	2.6435412	5.5220233
Н	-2.9565672	3.4394567	5.9067474
Н	-3 3408990	1 8495735	6 6039597

С	-0.6763138	-2.6499409	3.0886248
Н	-1.5743916	-2.5133581	3.6894590
С	-1.1848996	3.6022605	0.3582777
Η	-1.3930964	2.5317855	0.5044852
С	-1.2596275	1.5991377	4.7388771
Η	-1.0640055	0.9419922	5.5981143
Н	-0.7882461	2.5701794	4.9456717
Н	-0.7757558	1.1664228	3.8534230
С	5.6855471	1.9613281	-1.4925883
Н	6.1386305	1.0825380	-1.0371715
С	-6.5602699	3.7425022	-2.8271668
Н	-6.5412649	4.5757695	-3.5431480
Н	-7.6107535	3.4505941	-2.6919397
Н	-6.0249535	2.8991573	-3.2775913
С	-6.6493429	5.4093140	-0.9454551
Н	-6.2509566	5.7210372	0.0279593
Н	-7.7281170	5.2318838	-0.8331589
Н	-6.5127431	6.2488915	-1.6420074
С	-4.6083263	-2.0044586	3.5129016
H	-5.0429126	-2.9734771	3.2716017
С	2 6074155	2 1675725	2 3349385
Н	2.0261777	1 2599154	2 1645068
C	-5 2235921	0.5397152	-1 9517078
H	-5 7772780	-0 3078955	-1 5262454
Н	-5 4736489	0.5962916	-3 0202516
Н	-5 5882244	1 4533544	-1 4693705
C	0 4308074	-3 0734145	-2 2451255
H	-0.5800196	-3 4442746	-2 4764054
Н	0.5266440	-3 0542749	-1 1521219
Н	1 1442184	-3 8136769	-2.6358793
C	4 0777117	4 4835069	2 7786797
Н	4 6608732	5 3892646	2 9469654
C	7 0674754	-1 1000945	2 5485288
H	6 9831247	-1 8631575	3 3337710
Н	7 3319178	-0 1457664	3 0218779
Н	7 9099130	-1 3922277	1 9025579
C	2 4112595	2.8971685	3 5042264
Н	1 6801092	2 5570930	4 2375880
C	3 1485846	4 0643298	3 7310080
Н	2 9980652	4 6403835	4 6438858
C	3 8852935	3 5558230	-1 6231391
н	2 9286371	3 9281777	-1 2552043
C	0 2845088	3 7160634	-0.0474305
н	0.4773830	3 2366892	-1 0154201
Н	0.9131113	3 2309390	0 7084092
Н	0.6109321	4 7646056	-0 1128896
C	4 8141282	-6 9828159	1 4570163
Н	5 3129147	-7 9305865	1 6591419
C	-5 5780204	-1 0857982	1 3468428
н	-5 1052005	-0.4459967	0 5934748
C	3 0743489	0.5716676	-4 8397547
н	2 2856634	0.1117180	-5 4511805
н	3 9956841	-0.0021340	-5 0018952
н	3 2481098	1 5844461	-5 2366739
C	-1 6942774	4 9060476	-1 7567921
й	-0 6317071	5 1237096	-1 8415848
R	-3 6805453	1 6139620	0 7545433
C	_3 9339871	5 1702720	-2 5006057
н	-4 6196505	5 5904935	_3 3353078
C	5 1973195	-1 5901307	-2 6723955
й	5 9918717	_2 3311801	-2 8540004
н	5 3/152708	_1 1860560	-1 6633706
11	J.JTJJ290	1.1000300	1.0055790

Η	5.3463815	-0.7663544	-3.3844151
С	1.5099185	1.5884159	-3.1346686
Н	1.7542926	2.6157975	-3.4440530
Η	1.2135704	1.6322911	-2.0756722
Н	0.6273085	1.2740660	-3.7090940
С	-2.5726327	5.4287887	-2.7046605
Η	-2.1923223	6.0423225	-3.5215516
С	-1.4000568	4.3057335	1.7107790
Н	-1.1861698	5.3804926	1.6204472
Н	-0.7160385	3.8857774	2.4613950
Н	-2.4274025	4.1921205	2.0769197
С	-5.5893771	-2.5096497	0.7863872
Н	-4.5690818	-2.9008188	0.6697742
Η	-6.0729062	-2.5206098	-0.2000031
Н	-6.1490465	-3.2049892	1.4282523
С	5.7279172	3.6956014	-3.1836435
Н	6.2131346	4.1774024	-4.0323363
С	4.5091843	4.1825115	-2.6993220
Η	4.0402954	5.0475331	-3.1689538
С	3.6767370	-2.9384231	-4.1909200
Н	3.7010129	-2.2255022	-5.0260650
Н	2.7413941	-3.5081689	-4.2722736
Η	4.5084527	-3.6449542	-4.3436934
С	0.2636088	-1.6578741	-4.3381816
Η	0.9086984	-2.3079518	-4.9451555
Η	0.3184198	-0.6483984	-4.7633990
Н	-0.7706368	-2.0148608	-4.4632994
С	6.3148039	2.5872271	-2.5730575
Н	7.2633262	2.1974049	-2.9429005
С	-7.0063224	-0.5572594	1.5634227
Н	-7.5299451	-1.1511463	2.3263793
Η	-7.5836963	-0.6121157	0.6295241
Η	-6.9914186	0.4894230	1.8929586
С	4.1383100	-5.2564507	-0.0974632
Н	4.1176630	-4.8559205	-1.1122434
С	4.7802684	-6.4688504	0.1580623
Н	5.2518601	-7.0151868	-0.6590336
Н	-1.6870880	0.1896247	2.2461486
Η	-0.0452556	0.9031683	0.9042537

3'

Ene	Energy = -7444.604285227				
Ge	0.8256577	0.6180449	0.0133242		
Zn	-0.0124248	-0.7948933	1.7380823		
Si	1.5801752	2.8085151	2.1089729		
Si	-1.2416926	-1.3636997	4.6345209		
Ν	-0.1174834	4.6457041	-0.3103649		
Ν	1.2154126	3.5519391	-1.8250204		
Ν	-0.9214861	-1.8667013	2.9819177		
Ν	0.9499199	2.4302883	0.5214408		
С	1.8619729	2.5416843	-2.5970143		
С	-1.0078996	-5.5142024	2.2020284		
Н	-0.3490841	-6.3785651	2.2945002		
С	-0.0532648	5.3916922	-1.4988099		
Н	-0.5735374	6.3353321	-1.6097393		
С	-0.5334027	-4.2613055	2.5844049		
С	0.7352337	4.7429697	-2.3937346		
Н	1.0223415	5.0454719	-3.3936658		
С	0.9288629	-4.0407710	2.9324803		
Н	0.9611313	-3.3371089	3.7761312		
С	-1.3778693	-3.1218452	2.5033849		

С	1.6526233	-3.3558514	1.7757238
С	-1.1496806	4.8115895	0.6591261
С	-2.2922983	-5.6846216	1.6649634
С	1.1492423	1.9041649	-3.6360959
Ċ	-3.5370467	-1.9355455	0.0090363
Ċ	-2 6391985	-3 2742115	1 8836941
\hat{C}	1 6420469	-5 3058463	3 3763695
C	1 7938002	0.8912826	-4 3580343
н	1.7582665	0.3880263	-5 1637655
$\hat{\Gamma}$	1.2502005	-3 4022760	0.4594159
ч	0 2213500	-3.9077425	0.4594159
$\hat{\Gamma}$	1 1008450	5 8780623	1 5776046
C	-1.1098439	2 8278220	0.5026211
с u	1.6944550	-2.03/0339	-0.3930211
П	0.2875122	-2.8855059	-1.0069333
	-0.28/3125	2.209/419	-3.9/3/030
Н	-0.6463450	2.9696583	-3.2103991
C	3.1818882	2.1580560	-2.2/04652
C	-0.0301008	6.9433118	1.5111253
Н	0.7568425	6.5658053	0.8428582
С	-4.7282567	-1.7847005	-0.7053016
Н	-5.6776039	-1.7673677	-0.1719347
С	2.8760923	-2.7085726	2.0103759
Η	3.2724464	-2.6732455	3.0257992
С	3.0950925	0.5046246	-4.0516618
Η	3.5779712	-0.2905468	-4.6203782
С	-3.0681930	-4.5422339	1.4705398
Η	-4.0313497	-4.6288705	0.9633117
С	0.2176949	-0.2121782	5.0561404
Η	0.2968540	0.4392231	4.1638101
С	-1.2977248	-2.9185437	5.7417324
Н	-0.4621939	-3.5429335	5.3825632
С	-2.1994922	3.8618900	0.6809594
С	2.7237107	1.4115564	2.6621968
Н	2.2206209	0.4479082	2.8152322
Н	3.1953947	1.6822420	3.6182050
Н	3.5226415	1.2498738	1.9258516
С	-2.9039134	-0.4404950	4.7269329
Н	-3.5957489	-1.1339677	4.2214709
С	2.3625484	-6.1067772	2.4817053
Н	2.4522153	-5.7989753	1.4398729
С	3.6015179	-2.1428003	0.9620309
Ĥ	4 5467993	-1 6411822	1 1681648
C	0 2059598	3 0334156	3 3652093
Ĥ	-0 3293954	3 9773093	3 2045022
Н	0 5869480	3 0219495	4 3960386
н	-0 5360555	2 2307818	3 2685670
C	2 9691952	-7 2890994	2 9129663
ч	2.9091932	-7.2890994	2.9129003
Γ	3.4633253	2 0510701	1 5312861
с u	-3.4033233	-2.0319/01	1.5512601
Γ	-2.8003139	-1.1909102	2 2568516
C	-4.7907000	-1.9130492	2.2308510
	-0.3000322	2.9801508	-3.3330383
п	0.20/1941	3.8823310	-5.5520585
H TT	-1.3998321	3.2923833	-3.3491880
H	-0.0315323	2.3251003	-0.1458919
U U	5.1171977	-2.2135147	-0.3469623
H	3.6763456	-1./631/49	-1.1660914
C	-2.5569431	2.8353163	-0.4281652
H	-1.3693368	2.6551254	-0.8717386
C	-1.2165816	1.0495518	-3.9476997
H	-0.9374205	0.3041926	-4.7059894
Н	-2.2534440	1.3534595	-4.1475832

Н	-1.1931530	0.5598878	-2.9666157
С	-5.3362171	-2.9237571	3.0565281
Н	-4.8191638	-3.8771854	3.1441171
С	0.6009867	7.2294461	2.8810839
Н	-0.1160252	7.7090176	3.5618591
Н	1.45/0883	7.9093083	2.7722901
H	0.9546835	6.3077028	3.3584388
C	-0.585613/	8.23/9938	0.8918021
H	-1.0115261	8.05/1865	-0.1036124
H	0.2062/81	8.99390/6	0./944600
П	-1.3820200	0.03/0/92	1.3222073
С U	3.7790082	1.1336433	-3.011883/
Г	4.7942125	0.8207238	-2.7723510
ч	-1.3030415	-1.9702107	-0.1715548
C	2 6/10318	4 3604176	2 0110445
н	3 6020633	4.3004170	1 5230080
н	2 8589579	4 7450456	3 0183974
н	2.0507577	5 1590190	1 4444832
C	1 5467753	-0.9695940	5 1775027
н	2 3841617	-0 2750604	5 3467258
Н	1 7734103	-1 5363250	4 2653860
Н	1 5361949	-1 6803625	6.0159219
С	-4.7114088	-1.6448703	-2.0979341
H	-5.6516809	-1.5232802	-2.6363500
С	-2.7987508	-7.0512843	1.2864991
Н	-3.2191077	-7.5729209	2.1602654
Н	-1.9921571	-7.6829042	0.8908669
Н	-3.5905757	-6.9884368	0.5290334
С	-2.3076374	-1.8318396	-2.0929271
Η	-1.3559459	-1.8530597	-2.6230630
С	-3.5046215	-1.6610539	-2.7968627
Н	-3.4928632	-1.54589/3	-3.8802947
U U	-5.4658589	-0.6834629	2.1900061
П	-3.0438/10	0.11/034/	0.0400617
ч	-2.8852578	1.4813443	0.8277064
Н	-2.2472223	0 7707437	-0 7944824
Н	-3 9077423	1 5516930	0.4358886
C	2 8666654	-7 6855509	4 2477224
H	3.3430235	-8.6058141	4.5855236
С	3.9235572	2.8603102	-1.1485607
Н	3.1841801	3.0524289	-0.3617536
С	-3.4805655	-0.1900641	6.1286425
Н	-2.8367237	0.4650833	6.7314242
Н	-3.6229463	-1.1223116	6.6893925
Η	-4.4653580	0.2977343	6.0530149
С	-3.1599658	3.9607634	1.6923400
Н	-3.9637746	3.2270554	1.7416271
B	0.7010635	3.4492822	-0.4651916
С	-2.1125281	5.9539830	2.5545511
H	-2.0941469	6.7689270	3.2782349
U U	-2.5849069	-3./40/4/3	5.55/3622
п u	-2.3002380	-4.0420329	0.1903000
н	-2.7180310	-4.0073782	5 8409313
C	-2 8832192	0.8575067	3 9121077
Н	-3.9011058	1.2490587	3.7637695
H	-2.4449698	0.7176884	2.9128518
Н	-2.3024852	1.6440051	4.4131499
С	-3.1156905	4.9920385	2.6294330
Н	-3.8713900	5.0498449	3.4128919

С	-3.2471553	3.4161430	-1.5419928
Н	-4.2550126	3.6336648	-1.1598134
Н	-3.3407561	2.6990984	-2.3693556
Н	-2.8225051	4.3476413	-1.9379691
С	5.0357452	2.0156176	-0.5226475
Н	4.6609874	1.0276406	-0.2204926
Н	5.4299507	2.5188002	0.3709252
Н	5.8811667	1.8658179	-1.2095943
С	-7.1754680	-1.4833856	3.7014282
Н	-8.0919488	-1.3153184	4.2667633
С	-6.6435972	-0.4670552	2.9015319
Н	-7.1432554	0.5000560	2.8404563
С	-1.0468404	-2.6308799	7.2313297
Н	-1.8208012	-1.9788021	7.6580401
Н	-0.0772726	-2.1464821	7.4061438
Н	-1.0572723	-3.5676400	7.8114709
С	0.0009176	0.7162538	6.2584475
Н	-0.1417333	0.1498570	7.1890079
Н	-0.8748144	1.3632352	6.1264864
Η	0.8751814	1.3701486	6.4058620
С	-6.5171398	-2.7107333	3.7740435
Н	-6.9159792	-3.5088904	4.4004490
С	4.4576680	4.2226839	-1.6218548
Η	5.1938141	4.0917929	-2.4280574
Н	4.9468072	4.7554481	-0.7938853
Η	3.6437658	4.8548527	-1.9984006
С	1.5483783	-5.7115272	4.7144415
Η	0.9889291	-5.0947713	5.4196920
С	2.1541134	-6.8901416	5.1496957
Н	2.0730231	-7.1871068	6.1955297
Н	2.2181215	0.1901088	-0.4956152
Η	-0.1300585	0.6017351	-1.2040217

2M

Energy = -4126.255976129				
Ge	3.4756984	26.8279839	6.9170582	
Zn	3.0058252	25.3980715	8.8796615	
Ν	2.6228471	24.2568442	10.2921132	
Ν	4.1835565	28.2761174	7.8417567	
С	4.6309342	29.4326823	7.0684210	
С	4.3863317	28.4810528	9.2689636	
Н	5.4542961	28.6474364	9.4970140	
Н	3.8310907	29.3675940	9.6239555	
Н	4.0425361	27.6071444	9.8331684	
Н	5.7048910	29.6272647	7.2347918	
Н	4.4690593	29.2583462	5.9981063	
Н	4.0793581	30.3422468	7.3641448	
С	2.9056956	24.5714657	11.6749150	
С	2.0100242	22.9561724	10.1326892	
Н	3.3706185	25.5642582	11.7664002	
Н	1.9872587	24.5768757	12.2978424	
Н	3.5985482	23.8375146	12.1362829	
Н	2.6579219	22.1410345	10.5163231	
Н	1.0466915	22.8804154	10.6782442	
Н	1.8060526	22.7438359	9.0731352	

3M

Energ	gy = -4127.46065	53252	
Ge	3.090810000	27.110809000	7.348815000
Zn	2.657179000	25.529716000	9.056556000

Ν	2.345779000	24.324103000	10.394841000
Ν	4.172786000	28.466129000	8.072376000
С	4.430565000	29.587045000	7.176765000
С	5.386264000	28.012672000	8.736573000
Н	6.173698000	27.654130000	8.039531000
Н	5.821434000	28.838760000	9.324019000
Н	5.155808000	27.193467000	9.434210000
Н	5.142283000	29.347623000	6.357989000
Н	3.492972000	29.932852000	6.721365000
Н	4.858237000	30.428623000	7.748001000
С	1.488823000	24.591841000	11.532128000
С	2.936368000	23.001818000	10.438038000
Н	1.057127000	25.600997000	11.475015000
Н	0.646985000	23.872892000	11.592022000
Н	2.041830000	24.520894000	12.490421000
Н	3.556998000	22.856938000	11.345314000
Н	2.164737000	22.205793000	10.445439000
Н	3.581956000	22.826453000	9.565852000
Н	3.777836000	26.476281000	6.088378000
Н	1.839380000	27.858096000	6.817567000

Me₂NGe

Energy = -2211.902580591				
Ge	3.5371138	26.7591316	7.0536191	
Ν	4.2067570	28.3016205	7.8170328	
С	4.6450825	29.4583252	7.0453084	
С	4.3516707	28.4912635	9.2550769	
Н	5.4058626	28.6789847	9.5256082	
Н	3.7608781	29.3576007	9.6018122	
Н	4.0072400	27.5965668	9.7876903	
Н	5.7095215	29.6813372	7.2368521	
Н	4.5144507	29.2645958	5.9738359	
Η	4.0633642	30.3573672	7.3152237	

ZnNMe₂

Energy = -1914.270290759				
Zn	3.4762882	25.1374354	8.8785090	
Ν	2.3728767	24.3750054	10.3357634	
С	2.8920522	24.5676089	11.6817165	
С	1.9299568	23.0032362	10.1347860	
Н	3.2746678	25.5902182	11.8074250	
Η	2.0698878	24.4265940	12.4098248	
Н	3.6939672	23.8579248	11.9681325	
Н	2.6968673	22.2368692	10.3657126	
Н	1.0691989	22.8001427	10.8009270	
Н	1.5915120	22.8523825	9.1000780	

Me₂NGeH₂

-					
Ene	Energy = -2213.095377271				
Ge	2.7837567	27.3964125	7.5957668		
Ν	4.4059354	28.3340026	7.5773481		
С	4.4382606	29.7402204	7.2222977		
С	5.5016954	27.9226450	8.4344350		
Н	6.4642811	28.0950283	7.9222409		
Н	5.5294739	28.4858034	9.3863437		
Н	5.4249356	26.8530711	8.6655051		
Н	5.3696613	29.9680715	6.6753179		
Н	3.5908815	29.9893927	6.5718168		
Н	4.4063539	30.4019563	8.1084316		

Н	3.2713718	25.9078829	7.4878228
Н	2.1554509	27.8119046	6.2182369

TBoNGe

Ene	rgy = -3689.	004165996	
Ge	4.5904138	26.8041461	7.3916348
Si	5.0551960	29.0698139	9.6105248
Ν	3.7157620	30.7320608	6.7502422
N	5 2589284	29 4968795	5 5923646
N	4 6972591	28 5983764	7 9433244
C	5 9972580	28 3848834	5 0929539
č	3 9399467	31 3187323	5 4921931
н	3 4213437	32 2189294	5 1866329
\hat{C}	4 8550960	30 5840186	4 8069361
ч	5 2666381	30 7566340	3 8108038
C	2 6017000	31 0772561	7 5601114
C	5 4216651	27 5580236	1 1006848
C	6 1715535	27.5580250	2 6278272
с u	5 7483562	20.4751002	2 8584067
II C	2.6069214	23.8290313	2.8384007
C	2.0008314	32.262/303	0.5012055 2.5692260
	4.0194272	27.8020873	5.3082300
п	7 2720052	20.3040930	4.1000427
C	7.2739052	28.1008014	5.050/9/0
C II	3./682913	33.2372233	8.2230553
П	4.0003371	32./330232	1.1309233
U U	7.4293491	20.1800300	4.1522507
Н	1.5009270	25.32/1155	3./8410/6
C	1.5098270	30.1818674	/.032810/
C	5.9633251	2/.66513/5	10.4660227
H	5.3432037	26.7638972	10.5591833
H	6.25//2/1	27.9815061	11.4/81483
Н	6.8742954	27.3867854	9.9189078
C	3.4772871	29.4339277	10.5617970
Н	2.9368685	30.3006164	10.1620416
Н	3.7088408	29.6323139	11.6186983
Н	2.7977871	28.5710441	10.5241371
С	4.0577905	28.3124482	2.1187792
Н	4.6517690	29.2317102	2.0325885
Н	3.0421611	28.5257171	1.7575357
Н	4.5051208	27.5622750	1.4509429
С	1.4480503	28.9207945	6.7881505
Η	2.4446272	28.7447682	6.3609319
С	3.1377535	26.5506449	3.6883416
Η	3.5029360	25.7307514	3.0541118
Η	2.1096855	26.7804469	3.3752996
Н	3.1151987	26.1971180	4.7283723
С	4.2429560	33.7094239	9.6119213
Η	3.4887138	34.3332131	10.1114773
Η	5.1599862	34.3081654	9.5249602
Η	4.4540966	32.8511254	10.2610108
С	3.4037755	34.4753778	7.3566120
Η	3.0965006	34.1751294	6.3467335
Η	4.2607831	35.1571640	7.2651157
Η	2.5700006	35.0341415	7.8056609
С	7.9674939	26.9893373	5.1567667
Н	8.9469784	26.7491286	5.5675973
С	6.1702770	30.5881172	9.5889049
Н	7.1982567	30.3183770	9.3127033
Н	6.2057125	31.0592441	10.5813140
Н	5.8166720	31.3404819	8.8724163
С	1.0903364	27.6761680	7.6092758

Н	1.7761901	27.5569769	8.4594005
Н	1.1575896	26.7764515	6.9821460
Н	0.0677508	27.7265232	8.0095389
С	7.8735137	29.0313643	6.6782229
Н	7.0431061	29.3820858	7.3029117
С	0.4332579	30.5107286	8.4643792
Н	-0.4159639	29.8302982	8.5319354
В	4.5484189	29.5500308	6.8604769
С	1.4999026	32.5739203	9.1083037
Н	1.4871568	33.4989142	9.6848671
С	0.4238441	31.6944336	9.1984288
Н	-0.4237249	31.9321841	9.8413334
С	0.4840134	29.1126325	5.6060662
Н	-0.5420679	29.2937404	5.9572916
Н	0.4748977	28.2170641	4.9690729
Н	0.7873734	29.9694812	4.9901421
С	8.8794980	28.3445503	7.6038749
Н	8.4523319	27.4390609	8.0560504
Н	9.1694748	29.0262749	8.4151101
Η	9.8011430	28.0598346	7.0764397
С	8.4894181	30.2697374	6.0037573
Η	9.3212164	29.9801779	5.3457214
Н	8.8760619	30.9678404	6.7596290
Н	7.7429479	30.8011084	5.3999544

ZnL*

Energy = -3754.282033045				
Zn	-7.4843137 -7.2028544	4.7913745		
Si	-8.5992334 -8.1300164	7.6015308		
Ν	-8.4186687 -8.4966795	5.9015750		
С	-8.4430461 -11.9707602	4.5676110		
Н	-7.7490390 -12.8061710	4.4667842		
С	-7.9824928 -10.7727413	5.1068984		
С	-6.5072043 -10.5551163	5.3937269		
Н	-6.4437003 -10.0013435	6.3429411		
С	-8.8699815 -9.6703571	5.2800274		
С	-5.8810264 -9.6425407	4.3424310		
С	-9.7647804 -12.1202935	4.1233072		
С	-11.3957663 -8.2632583	3.2341022		
С	-10.1801569 -9.7920856	4.7482215		
С	-5.7310121 -11.8459894	5.5754544		
С	-6.5102955 -9.3645706	3.1178256		
Н	-7.4737790 -9.8229872	2.8955119		
С	-5.9069184 -8.5161499	2.1795581		
Н	-6.4149590 -8.3127801	1.2371068		
С	-12.5872433 -8.6488335	2.6089606		
Н	-13.3654664 -9.1369116	3.1961227		
С	-4.6349057 -9.0495731	4.6005664		
Н	-4.1294640 -9.2671125	5.5421146		
С	-10.5982624 -11.0030044	4.1864433		
Н	-11.6053427 -11.0663979	3.7695494		
С	-7.1639691 -6.9264972	7.9774007		
Н	-7.2189461 -6.1908098	7.1449107		
С	-8.4516377 -9.7645818	8.5794648		
Н	-7.5992174 -10.2855894	8.1099229		
С	-10.2766006 -7.2901822	7.9222776		
Н	-10.9911468 -7.9612441	7.4200533		
С	-5.0286884 -12.4464958	4.5235698		
Н	-5.0019014 -11.9574995	3.5496599		
С	-4.0358204 -8.2019971	3.6689198		
Н	-3.0709789 -7.7477004	3.8941176		

С	-4.3623427 -13.6598988	4.7129650
Η	-3.8203352 -14.1139497	3.8830986
С	-11.0961645 -8.5830754	4.6927079
Н	-10.4958980 -7.7466100	5.0825674
С	-12.3380334 -8.6564528	5.5661227
С	-4.6698160 -7.9324417	2.4520000
н	-4 2045470 -7 2658685	1 7266331
\hat{C}	-12 6644588 -0 7738088	6 3/12102
с u	12.0044388 -9.7738088	6 2062959
П	-12.0333380 - 10.0392/90	0.2902030
	-10.4103349 -7.0103408	2.40/81/4
Н	-9.48298/4 -7.3042331	2.94/951/
C	-5./91/8/0 -7.6089290	7.8856830
Η	-4.9758533 -6.8815000	8.0207602
Η	-5.6425512 -8.0895967	6.9098025
Η	-5.6727902 -8.3816040	8.6589620
С	-12.7898215 -8.4013725	1.2487865
Η	-13.7237310 -8.7089057	0.7775172
С	-10.2554059 -13.4348572	3.5780167
Н	-10 5697683 -14 1076752	4 3911542
Н	-9 4684388 -13 9549773	3 0156239
н	-11 1188693 -13 2953600	2 9149455
C	10 6145605 7 3633878	1 1116211
с u	-10.0143093 -7.3033878	0.5262222
П	-9.0420140 -0.0313///	0.3302222
U U	-11.8032244 -7.7397462	0.4946832
Н	-11.9660237 -7.5630905	-0.5652226
C	-13.1609667 -7.5212213	5.6509900
Η	-12.9178241 -6.6441366	5.0498693
С	-4.3878074 -14.2884143	5.9593900
Η	-3.8651135 -15.2330754	6.1086695
С	-10.7373625 -7.1838635	9.3836477
Η	-10.0608461 -6.5688072	9.9928574
Н	-10.8103142 -8.1690732	9.8619952
Н	-11.7364878 -6.7229548	9.4363192
С	-9.6874969 -10.6622725	8.4043134
Ĥ	-9 5572579 -11 6120434	8 9475151
н	-9.8698382 -10.9048901	7 3504149
н	-10 5951907 -10 1821685	8 706/27/
C	-10.3586032 -5.0283680	7 2171875
с u	-10.5580952 -5.9285089	7.21/10/5
п	-11.3919124 -3.3480004	1.2142390
H	-10.0250334 -5.9814435	6.1694288
Н	-9./329//1 -5.1/514/4	/./1/9056
C	-14.5777287 -8.6184628	7.2762042
Н	-15.4393196 -8.6013002	7.9434796
С	-14.2670718 -7.4987000	6.4971131
Η	-14.8869424 -6.6036428	6.5544858
С	-8.1125084 -9.5813668	10.0672904
Η	-8.8939499 -9.0228142	10.5997483
Н	-7.1659829 -9.0451138	10.2151870
Н	-8.0178501 -10.5603131	10.5643252
С	-7 2951615 -6 1292861	9 2829949
Ĥ	-7 2958456 -6 7888196	10 1617887
Н	-8 2183858 -5 5379045	9 3156905
н	-6 4502232 -5 4324425	0 3000662
C	-0.+302232 $-3.432443312 77/2/20 0 7551692$	7 1017670
	-13.7743437 -7.7331082	1.171/028
П	-14.00438/3 -10.6338459	1.194/856
U	-5./495911 -12.4848967	0.8226251
H	-6.2992682 -12.0263597	/.6464836
С	-5.0842684 -13.6952019	7.0165385
Η	-5.1064142 -14.1755992	7.9949201

Ene	ergy = -3690.	193720390	
Ge	0.6240612	0.5641372	-0.0563009
Si	1.4945736	2.6543064	2.1048313
Ν	-0.2013920	4.5695890	-0.3243978
Ν	1.1297292	3.5082306	-1.8616469
Ν	0.9452151	2.3485007	0.4568168
С	1.8684029	2.5658705	-2.6399925
Č	-0.1480041	5.3293360	-1.4997032
Ĥ	-0 6917146	6 2602299	-1 6009726
C	0.6446626	4 6999172	-2 4077812
н	0.9194056	5 0175696	-3 4059583
C	-1 1679096	4 8180983	0 6947700
C	1 2302401	1 0137158	-3 7177687
C	1.2302401	1.0028082	-4 4743240
с u	1.5775205	0.4017778	5 2125182
Γ	1.3033270	5.0402640	-5.5155162
C	-1.0362313	3.9402049 2.1624211	1.5570570
U U	-0.2296763	2.1034211	-4.0020300
П	-0.0734309	2.7304110	-3.2309273
C	5.2109115	2.2893382	-2.3000129
C II	0.1055865	6.9298494	1.3886027
Н	0.8499635	6.4/26388	0.7235344
C	3.3034985	0./214180	-4.15/3998
Н	3.8660222	0.0004679	-4.7509317
C	-2.2525820	3.9186565	0.8250824
C	2.5110446	1.1714879	2.6624977
Н	1.9101221	0.2546329	2.7419328
Н	2.9340834	1.3720619	3.6576412
Н	3.3440022	0.9726272	1.9749563
С	0.0703736	2.8719652	3.3089157
Η	-0.4964595	3.7931532	3.1291808
Н	0.4457468	2.8962003	4.3426890
Н	-0.6285947	2.0280540	3.2244353
С	-0.3597500	3.0031922	-5.3448412
Н	0.1755706	3.9573354	-5.2608152
Н	-1.4152167	3.2211102	-5.5599218
Н	0.0584621	2.4624395	-6.2060139
С	-2.4513822	2.7759089	-0.1564968
Η	-1.4612578	2.4629370	-0.5102135
С	-1.0296402	0.8589602	-4.2000521
Н	-0.6885776	0.2604350	-5.0561160
Н	-2.0937188	1.0839492	-4.3577078
Η	-0.9394743	0.2408322	-3.2975019
С	0.7840806	7.2405641	2.7302132
Н	0.1190258	7.8085401	3.3953527
Н	1.6850314	7.8480096	2.5686381
Η	1.0785576	6.3223836	3.2519493
С	-0.3821876	8.2302976	0.7242515
Η	-0.8439732	8.0392447	-0.2527757
Н	0.4548485	8.9269169	0.5766882
Н	-1.1331914	8.7282884	1.3541586
С	3.9084536	1.3544365	-3.0725505
Н	4.9426098	1.1198567	-2.8249439
С	2.6040748	4.1732925	2.0914515
Н	3.5858380	3.9362698	1.6609385
Н	2.7682054	4.5428998	3.1131980
Н	2.1687867	4.9905745	1.5032518
С	-3.1114511	1.5395093	0.4591373
Н	-2.5706458	1.2046037	1.3542837
Н	-3.1067258	0.7155400	-0.2669248
Н	-4.1589020	1.7233288	0.7376921
С	3.8771734	3.0225904	-1.1513427
Η	3.1107920	3.1536066	-0.3787958

С	-3.1857549	4.1534193	1.8395315
Н	-4.0230008	3.4683563	1.9657386
В	0.6301231	3.3850254	-0.4970373
С	-2.0088588	6.1412009	2.5285390
Н	-1.9238685	7.0013454	3.1926714
С	-3.0681990	5.2536152	2.6876632
Н	-3.8059827	5.4182401	3.4730328
С	-3.2253587	3.2700101	-1.3917373
Н	-4.2320131	3.6106436	-1.1096300
Н	-3.3295471	2.4607882	-2.1284396
Η	-2.7034511	4.1067108	-1.8741474
С	5.0297968	2.2459911	-0.5107603

Η	4.7176371	1.2320436	-0.2263295
Η	5.3725640	2.7643548	0.3954291
Η	5.8970027	2.1614089	-1.1812369
С	4.3285946	4.4249258	-1.5946420
Η	5.0909702	4.3557351	-2.3839063
Η	4.7605916	4.9770169	-0.7477664
Η	3.4840389	5.0073196	-1.9845546
Η	2.0004806	-0.1848730	-0.1512242
Η	-0.0076637	0.6751918	-1.4782987

4. References

- T. J. Hadlington, J. A. B. Abdella, R. Tirfoin, S. Aldridge, C. Jones, *Chem. Commun.*, 2016, 52, 1717.
- J. Hicks, E. J. Underhill, C. E. Kefalidis, L. Maron, C. Jones, *Angew. Chem. Int. Ed.*, 2015, 54, 10000.
- 3 T. M. McPhillips, S. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Rad., 2002, 9, 401.
- 4 W. J. Kabsch, *Appl. Cryst.*, 1993, **26**, 795.
- 5 G. M. Sheldrick, *SHELX-97*, University of Göttingen, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision D.01s; Gaussian, Inc., Wallingford CT, 2009.
- 7. Turbomole, 6.6, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, available from <u>www.turbomole.com</u>.
- (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev.B*, 1986, **33**, 8822.

- 9. (a) F. Weigend, M. Haser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.*, 1998, 294, 143; (b) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.
- (a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456; (b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.*, 1995, 242, 652.
- 12. (a) C. T. Lee, W. T. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785. (b) A. D. J. Becke, *Chem. Phys.*, 1993, **98**, 5648.
- 13. Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- 14. A. V. Marenich, C. J. Cramer, D. G. J. Truhlar, *Phys. Chem. B*, 2009, **113**, 6378.
- 15. A. Klamt, G. Schürmann, J. Chem. Soc. Perkin Trans., 1993 2(5), 799.
- 16. M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962-975.
- 17. T. Ziegler, A. Rauk, Theor. Chim. Acta 1977, 46, 1-10.
- 18. M. Mitoraj, A. Michalak, Organometallics 2007, 26, 6576-6580.
- 19. M. Mitoraj, A. Michalak, J. Mol. Model. 2008, 14, 681-687.
- F. M. Bickelhaupt, E. J. Baerends, in *Reviews in Computational Chemistry*, John Wiley & Sons, Inc., 2007, pp. 1-86.
- 21. M. v. Hopffgarten, G. Frenking, *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2012**, *2*, 43-62.
- G. Frenking, F. Matthias Bickelhaupt, in *The Chemical Bond*, Wiley-VCH Verlag GmbH & Co. KGaA, **2014**, pp. 121-157.
- G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.
- 24. Computer code ADF 2013.2001: see http://www.scm.com.
- R. F.W. Bader, *Atoms in Molecules. A Quantum Theory*, Oxford University Press, Oxford, 1990.
- 26. http://nbo6.chem.wisc.edu/