Electronic Supporting Information

Oxidative Cross Coupling Reaction of 4-Hydroxydithiocoumarin and Amines/Thiols Using a Combination of I₂ and TBHP: Access to Lead Molecules for Bio-medical Applications

Karuna Mahato,^{*a*} Neha Arora,^{*b*} Prasanta Ray Bagdi,^{*a*} Radhakrishna Gattu,^{*a*} Siddhartha Sankar Ghosh^{*b*} and Abu T. Khan^{**a*}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India Tel.: +91 361 2582305; Fax: +91 361 2582349

E-mail: atk@iitg.ernet.in (A.T. Khan)

^bDepartment of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India

Tel.: +91 0361-258-2206; Fax: +91 0361-258-2249

E-mail: sghosh@iitg.ernet.in

Content

1. General Information and Methods	S2
2. Previously Reported Methods	S 3
2. Optimization of the reaction conditions	S4
3. Proposed Mechanism	S5
3. General Experimental Procedure	S6-S7
4. X-ray Structure of Compounds 3c, 4q and 5a	S8
5. Crystal Data and Structure Refinement for Compounds 3c, 4q and 5a	S9-S10
6. Characterization of products	S11-S21
7. Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra of all Compounds	S22-S135

I. General Information and Methods

¹H and ¹³C NMR spectra were recorded on 300 MHz, 400 MHz, 600 MHz and 75 MHz, 100 MHz, 150 MHz spectrometer TMS as internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR Spectra are reported in the order: multiplicity, coupling constant (Jvalue) in hertz (Hz) and no of protons; signals were characterized as s (singlet), d (doublet), t (triplet) and m (multiplet). IR spectra were recorded in KBr. HRMS spectra were recorded using ESI and APCI (TOF) mode. The X-ray crystal structures were determined with a diffractometer. Complete crystallographic data of 4q (CCDC no. 1572814), 5a (CCDC no. 1583530) and 7a (CCDC no. 1583531) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, Copies of this information may be obtained free of charge from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge deposit@ccdc.cam.ac.uk CB2 1EZ, UK, (fax: +44-1223-336033, e-mail: or via: www.ccdc.cam.ac.uk).

Scheme 1. Various examples for the synthesis of sulfenamides, sulfanes and disulfides through new S-N, S-C and S-S bonds formation

OH		0
+ S 1	2a NH ₂	Catalyst Solvent

Table S1. Optimization of the reaction conditions^{a,b}

Entry	I ₂ (equiv.)	aq. TBHP (equiv.)	Solvent	Time/min	Yield (%) ^b
01	-	-	DMF	24 h	NR
02	0.3	1	DMF	2 h	NR
03	0.5	1	DMF	30	50
04	1	1	DMF	5	95
05	1.5	1	DMF	15	90
06	2	2	DMF	20	85
07	1	1	DMSO	40	81
08	1	1	CH ₃ CN	50	70
09	1	1	EtOH	50	68
10	1	1	MeOH	60	65
11	1	1	DCE	40	72
12	1	1	H ₂ O	8 h	20
13	1	1	THF	6 h	40
14	1	-	DMF	24 h	NR
15	-	1	DMF	24 h	NR

^{*a*}All the reactions were carried out using 4-hydroxydithiocoumarin 1 (1 mmol), benzylamine 2 (1 mmol) in 1ml of solvent at room temperature. ^{*b*}Isolated yield.

Scheme 2. Proposed mechanism for the formation of sulfenamide, sulfanes and disulfide

3. General Experimental Procedure

3. I. General procedure for the synthesis of compounds (1)

The key starting material 4-hydroxydithiocoumarin (1) was prepared by following the previous reported procedure mentioned in the paper J. E. Andersonmckay and A. J. Liepa, *Aust. J. Chem.*, 1987, **40**, 1179.

3. II. General Procedure for the Synthesis of 2-((benzylamino)thio)-4H-thiochromen-4-one (4), 2-((2-aminophenyl)thio)-4H-thiochromen-4-one derivatives (5) and 2(phenyldisulfanyl)-4H-thiochromen-4-one derivatives (6)

To a stirred solution of 4-hydroxydithiocoumarin (1 equiv, 1) and amine/thiol (1 equiv, 2/3) in DMF (1 mL) at room temperature was added 1 equiv. of I₂ along with 1 equiv. of aq. TBHP. The reaction mixture was stirred at room temperature, and the progress of the reaction was monitored by TLC analysis. The completion of the reaction (marked by the disappearance of starting material and formation of new spot) was observed by TLC of ethyl acetate and hexane (1:4 for 4, 2:3 for 5, 1:49 for 6). After completion of the reaction, I₂ was quenched with a saturated aqueous solution of Na₂S₂O_{3.6}H₂O and followed by the extraction with ethyl acetate. The organic phase was separated, dried over anhydrous Na₂SO₄, and evaporated to give a crude residue. It was purified by the silica gel column chromatography using hexane and ethyl acetate as eluent to give the desired product 4/5/6.

3. III. General Procedure for the Synthesis of N-benzyl-4-oxo-4H-thiochromene-2-sulfonamide (7a)

This reaction was conducted maintaining the procedure mentioned in the following paper, A. A. Dar, N. Enjamuri, M. Shadab, N. Ali, A. T. Khan, *ACS Comb. Sci.* 2015, **17**, 671.

Materials

Dulbecco's Modified Eagle's medium (DMEM) from Sigma-Aldrich, Fetal Bovine Serum (FBS) from Gibco ThermoFisher Scientific, (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) (MTT) from Himedia, Tissue culture dishes from Eppendorf, MCF7 cell line was procured from National Centre for Cell Science (NCCS), Pune, India.

Method

Cell Viability Assay

Breast cancer cell line MCF7 seeded in 96 well plates at a density of 7000 cells per well in DMEM media supplemented with 10% FBS was allowed to attach overnight in CO₂ incubator maintained at 37°C supplied with 5% CO₂. Following attachment, media was discarded and fresh serum media containing varying concentrations of the compounds were added to the seeded cells. After 48 h incubation, serum media containing 5 µl of 5 mg/ml MTT solution was added to each well and the plates were incubated in the CO₂ incubator. MTT is converted to purple formazan crystals by dehydrogenase enzyme in the mitochondria of the viable cells. Subsequently, the media was discarded and DMSO was added to dissolve the formazan crystals formed by enzymatic conversion by the live cells. The product was measured by absorbance at 570 nm along with background measurement at 690 nm using multiplate reader (Tecan, Infinite M200PRO). The experiment was also performed with DMSO as control to eliminate any possibility of its effect in cell viability. Cell viability (%) relative to the control untreated cells was calculated using the following formula:

Cell viability (%) =
$$\frac{(Abs\ 570 - Abs\ 690)\ Sample}{(Abs\ 570 - Abs\ 690)\ Control}X\ 100$$

Where, Abs570 is the absorbance of formazan at 570 nm and Abs690 is the background absorbance which is subtracted from all treated and untreated sample

4. X-ray Structure of Compounds 4q, 5a and 7a

Figure 1. 40% probability of ORTEP ellipsoids of compounds 4q (I) (CCDC 1572814), 5a (II) (CCDC 1583530) and 7a (III) (CCDC 1583531)

5. Crystal Data and Structure Refinement for Compound 4q, 5a and 7a

Entry	Identification	Compound 4q	Compound 5a	Compound 7a
	code			
01	Empirical formula	$C_{15}H_{11}NOS_2$	C23 H17 N O2 S2	C16 H13 N O3 S2
02	Formula weight	285.37	403.50	331.39
03	Temperature	296(2) K	296(2) K	293(2) K
04	Wavelength	0.71073	0.71073	0.71073
05	Radiation type	Mo K\a	Mo K\a	Mo K\a
06	Radiation source	Fine-focus sealed	Fine-focus sealed	Fine-focus sealed
		tube	tube	tube
07	Crystal system	Monoclinic	Monoclinic	Monoclinic
08	Space group	P21/c	P2 ₁ /c	P2 ₁
09	Cell length	a 10.837(4)	a 16.5683(9)	a 10.3912(7)
		b 10.802(4)	b 13.2261(7)	b 5.6999(3)
		c 11.707(5)	c 8.5713(4)	c 12.8081(9)
10	Cell Angle	α 90	α 90	α 90.00
		β 93.41(3)	β 95.047(3)	β 102.459(7)
		δ 90	δ 90	δ 90.00
11	Cell Volume	1367.9(9)	1870.98(17)	740.75(8)
12	Density	1.386	1.432	1.486
13	Completeness to	24.99°/ 99.80%	25.05°/ 99.60 %	24.99°/ 99.60 %
	theta			
14	Absorption correction	multi-scan	multi-scan	multi-scan

Table S2 Data collection and refinement statistics for the compounds 4q, 5a and 7a

15	Refinement	Full-matrix least-	Full-matrix least-	Full-matrix least-
	method	squares on F2	squares on F2	squares on F2
16	Index ranges	-12<=h<=12,	-19<=h<=16,	-12<=h<=10,
		-8<=k<=12,	-12<=k<=15,	-6<=k<=6,
		-13<=l<=13	-8<=l<=10	15<=l<=10
17	Reflection	10953	9261	2197
	number			
18	Theta range	2.568-24.998	2.84-28.73	3.26-24.99
19	Cell formula units	4	4	2
	Z			
20	CCDC no	1572814	1583530	1583531

6. Characterization of products

2-((benzylamino)thio)-4H-thiochromen-4-one (4a): Yellow semi-solid, ¹H NMR (600 MHz,

CDCl₃): δ 3.32-3.34 (m, 1H), 4.19 (d, J = 6.0 Hz, 2H), 6.87 (s, О 1H), 7.30-7.34 (m, 1H), 7.37-7.39 (m, 4H), 7.49-7.51 (m, 1H), 7.54-7.58 (m, 2H), 8.46 (d, J = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): 8 57.0, 116.4, 126.4, 127.8, 128.2, 128.5, 128.6, 128.9, 129.1, 131.2, 131.3, 137.6, 138.4, 162.8, 178.7; IR (KBr)_{vmax} 1120, 1145, 1267, 1320, 1325, 1450, 1459, 1514, 1579, 2856, 2928, 2969, 3012, 3069, 3321 cm⁻¹; HRMS (ESI) Calcd For C₁₆H₁₄NOS₂ 300.0512 (M + H⁺); Found 300.0509.

2-(((4-methylbenzyl)amino)thio)-4H-thiochromen-4-one (4b): Yellow solid, Mp 80-81°C, ¹H

NMR (600 MHz, CDCl₃): δ 2.30 (s, 3H), 3.37 (t, J = 6.0 Hz, 1H), C

Ο

7.20-7.22 (m, 2H), 7.43-7.46 (m, 1H), 7.50-7.52 (m, 2H), 8.41 (d, J = 6.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 21.3, 56.7, 116.3, 126.3, 127.8, 128.4, 128.8, 129.6, 131.1, 131.3, 135.4, 137.6, 137.9, 162.9, 178.6; IR (KBr)_{ymax} 1131, 1166, 1237, 1317, 1338, 1436, 1458, 1514, 1586, 2853, 2923, 2967, 3012, 3050, 3356 cm⁻¹; HRMS (ESI) Calcd For $C_{17}H_{16}NOS_2$ 314.0668 (M + H⁺); Found 314.0675.

2-(((4-chlorobenzyl)amino)thio)-4H-thiochromen-4-one (4c): Yellow solid, Mp 70-71°C, ¹H

NMR (600 MHz, CDCl₃): δ 3.37-3.38 (m, 1H), 4.16 (d, J = 6.0Hz, 2H), 6.86 (s, 1H), 7.29-7.30 (m, 2H), 7.32-7.34 (m, 2H), 7.49-7.52 (m, 1H), 7.56-7.57 (m, 2H), 8.45 (d, J = 6.0 Hz, 1H);

4.10 (d, J = 6.0 Hz, 2H), 6.81 (s, 1H), 7.12 (d, J = 6.0 Hz, 2H),

¹³C NMR (150 MHz, CDCl₃): δ 56.1, 116.6, 126.4, 127.9, 128.9, 129.1, 129.9, 131.1, 131.4, 136.8, 137.5, 162.2, 178.7; IR (KBr)_{ymax} 1110, 1125, 1245, 1370, 1460, 1489, 1524, 1589, 2865, 2930, 2974, 3198 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{13}CINOS_2$ 334.0122 (M + H⁺); Found 334.0129.

2-(((2-chlorobenzyl)amino)thio)-4H-thiochromen-4-one (4d): Yellow semi-solid, ¹H NMR

(400 MHz, CDCl₃): δ 3.59 (t, J = 4.0 Hz, 1H), 4.28 (d, J = 4.0 Hz, 2H), 6.85 (s, 1H), 7.24-7.25 (m, 2H), 7.36-7.40 (m, 2H), 7.46-7.51 (m, 1H), 7.53-7.54 (m, 2H), 8.44 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 54.8, 116.2, 126.4, 127.2, 127.8, 128.8, 129.7, 129.9, 130.8, 131.3, 135.9, 163.1, 178.7; IR (KBr)_{vmax} 1121, 1141, 1281, 1356, 1385, 1447, 1488, 1567, 1589, 1604, 2858, 2933, 2967, 3248 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{13}CINOS_2$ 334.0122 (M + H⁺); Found 334.0121.

2-(((4-methoxybenzyl)amino)thio)-4H-thiochromen-4-one (4e): Yellow semi-solid, ¹H NMR

(600 MHz, CDCl₃): δ 3.26 (s, 1H), 3.80 (s, 3H), 4.11 (d, J =

6.0 Hz, 2H), 6.86 (s, 1H), 6.88 (s, 1H), 6.89 (s, 1H), 7.28 (d,

OMe S S S M

J = 6.0 Hz, 2H), 7.48-7.51 (m, 1H), 7.54-7.57 (m, 2H), 8.46 (d, J = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 55.5, 56.4, 114.3, 116.3, 126.4, 127.8, 128.8, 129.9, 130.5, 131.2, 131.3, 137.6, 159.6, 162.9, 178.7; IR (KBr)_{vmax} 1101, 1176, 1249, 1323, 1339, 1383, 1436, 1460, 1512, 1587, 1609, 2854, 2925, 2959, 3050, 3212 cm⁻¹; HRMS (ESI) Calcd For C₁₇H₁₆NO₂S₂ 330.0617 (M + H⁺); Found 330.0615

2-((phenethylamino)thio)-4H-thiochromen-4-one (4f): Yellow semi-solid, ¹H NMR (600 MHz, CDCl₃): δ 2.91 (t, J = 6.0 Hz, 2H), 2.95 (t, J = 6.0 Hz, 1H), 3.31-3.34 (m, 2H), 6.82 (s, 1H), 7.21-7.22 (m, 2H), 7.23-7.25 (m, 1H), 7.30-7.34 (m, 2H), 7.48-7.57 (m, 3H), 8.44-8.45 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 36.9, 54.1, 116.0, 124.3, 126.4, 127.6, 127.8, 128.6, 128.9, 129.1, 131.3, 132.5,

137.6, 138.5, 163.3, 178.6; IR (KBr)_{vmax} 1165, 1333, 1403, 1455, 1503, 1610, 2870, 2930, 2955, 3246 cm⁻¹; HRMS (ESI) Calcd For C₁₇H₁₆NOS₂ 314.0668 (M + H⁺); Found 314.0670.

2-((benzylamino)thio)-7-chloro-4H-thiochromen-4-one (4g): Yellow semi-solid, ¹H NMR

CI S S N 7.44-7.46 (m, 1H), 7.58 (s, 1H), 8.39 (d, J = 6.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 57.1, 114.3, 116.4, 125.8, 128.4, 128.5, 129.0, 129.6, 130.5, 138.0, 138.3, 138.9, 139.5, 162.9, 177.8; IR (KBr)_{vmax} 1120, 1167, 1398, 1325, 1459, 1586, 1598, 2856, 2928, 2969, 3221 cm⁻¹; HRMS (ESI) Calcd For C₁₆H₁₃ClNOS₂ 334.0122 (M + H⁺); Found

334.0119.

7-chloro-2-(((2-chlorobenzyl)amino)thio)-4H-thiochromen-4-one (4h): Yellow solid, Mp

104-105°C, ¹H NMR (600 MHz, CDCl₃): δ 3.54 (t, J = 6.0 Hz, 1H), 4.26 (d, J = 6.0 Hz, 2H), 6.79 (s, 1H), 7.24-7.25 (m, 2H), 7.35-7.38 (m, 2H), 7.40-7.42 (m, 1H), 7.51 (s, 1H), 8.34 (d, J = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 54.9,

116.2, 125.7, 127.3, 128.4, 129.5, 129.8, 130.0, 130.4, 130.9, 134.1, 135.9, 137.9, 138.9, 162.9, 177.8; IR (KBr)_{vmax} 1145, 1232, 1251, 1435, 1460, 1589, 1610, 2852, 2920, 2952, 3175 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{12}C_{12}NOS_2$ 367.9732 (M + H⁺); Found 367.9732.

7-chloro-2-(((4-fluorobenzyl)amino)thio)-4H-thiochromen-4-one (4i): White solid, Mp 133-

7-chloro-2-(((2,4-dimethoxybenzyl)amino)thio)-4H-thiochromen-4-one (4j): White solid, Mp

142-143°C, ¹H NMR (400 MHz, CDCl₃): δ 3.48-3.51 (m, 1H), 3.17 (s, 3H), 3.18 (s, 3H), 4.08 (d, *J* = 4.0 Hz, 2H), 6.44-6.47 (m, 2H), 6.87 (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 1H), 8.38 (d,

J = 8.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 52.8, 55.5, 55.6, 98.8, 104.0, 116.0, 119.3, 125.7, 128.3, 129.6, 130.4, 131.2, 137.8, 139.3, 158.8, 161.3, 163.8, 177.8; IR (KBr)_{vmax} 1158, 1210, 1263, 1286, 1320, 1383, 1419, 1452, 1507, 1582, 1607, 2922, 3232 cm⁻¹; HRMS (ESI) Calcd For C₁₈H₁₇ClNO₃S₂ 394.0333 (M + H⁺); Found 394.0356.

7-chloro-2-((cyclohexylamino)thio)-4H-thiochromen-4-one (4k): Yellow semi-solid, ¹H NMR

(600 MHz, CDCl₃): δ 1.13-1.31 (m, 7H), 1.60-1.63 (m, 1H), 1.75-1.78 (m, 2H), 2.04-2.06 (m, 2H), 2.79-2.83 (m, 1H), 2.88-2.89 (m, 1H), 6.83 (s, 1H), 7.42-7.44 (m, 1H), 7.56 (s, 1H), 8.37 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 25.0, 25.8,

33.7, 60.4, 115.6, 125.8, 128.3, 129.6, 130.4, 137.8, 139.1, 164.8, 177.8; IR (KBr)_{vmax} 1153,

1348, 1475, 1589, 1609, 2845, 2952, 2974 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{19}CINOS_2$ 340.0535 (M + H⁺); Found 340.0525.

7-chloro-2-(((1-phenylethyl)amino)thio)-4H-thiochromen-4-one (4l): Yellow semi-solid, ¹H

NMR (600 MHz, CDCl₃): δ 1.54 (d, J = 6.0 Hz, 3H), 3.47 (d, J = 6.0 Hz, 1H), 4.14-4.18 (m, 1H), 6.80 (s, 1H), 7.28-7.31 (m, 1H), 7.33-7.38 (m, 4H), 7.40-7.42 (m, 1H), 7.54 (s, 1H), 8.35 (d, J = 6.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 22.5,

61.0, 116.1, 125.7, 126.7, 126.8, 128.1, 128.3, 128.9, 129.4, 130.3, 137.8, 138.9, 143.4, 163.5, 177.7; IR (KBr)_{vmax} 1108, 1231, 1282, 1347, 1354, 1487, 1530, 1571, 1589, 2873, 2954, 2965, 3235 cm⁻¹; HRMS (ESI) Calcd For C₁₇H₁₅ClNOS₂ 348.0278 (M + H⁺); Found 348.0279.

5-chloro-2-(((4-chlorobenzyl)amino)thio)-4H-thiochromen-4-one (4m): Yellow solid, Mp 116-117°C, ¹H NMR (600 MHz, CDCl₃): δ 3.34-3.35 (m, 116) 117°C, ¹H NMR (600 MHz, CDCl₃): δ 3.34-3.35 (m, 2H), 7.32-7.33 (m, 2H), 7.37-7.40 (m, 1H), 7.28-7.29 (m, 2H), 7.32-7.33 (m, 2H), 7.37-7.40 (m, 1H), 7.45-7.48 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 56.2, 118.2, 125.6, 127.8, 129.1, 129.9, 130.8, 131.8, 134.1, 136.3, 136.7, 140.5, 158.8, 178.2; IR (KBr)_{vmax} 1178, 1269, 1384, 1439, 1470, 1529, 1578, 1597, 2859, 2910, 2952, 3272 cm⁻¹; HRMS (ESI) Calcd For C₁₆H₁₂Cl₂NOS₂ 368.9732 (M + H⁺); Found 367.9738.

2-((benzylamino)thio)-6-(trifluoromethyl)-4H-thiochromen-4-one (4n): Yellow solid, Mp

F₃C S S · N

138-139°C, ¹H NMR (400 MHz, CDCl₃): δ 3.30 (t, *J* = 8.0 Hz, 1H), 4.21 (d, *J* = 4.0 Hz, 2H), 6.89 (s, 1H), 7.33-7.41 (m, 5H), 7.68-7.71 (m, 1H), 7.76-7.78 (m, 1H), 8.74 (s, 1H); ¹³C

NMR (150 MHz, CDCl₃): δ 57.2, 116.2, 121.0 (¹*J*_{C-F} = 270 Hz), 122.8, 124.6, 126.2 (²*J*_{C-F} = 3 Hz), 126.3 (3), 126.4, 127.3 (2), 127.4 (2) (³*J*_{C-F} = 3 Hz), 128.4, 128.5, 129.0, 129.9 (⁴*J*_{C-F} = 33 Hz), 130.1, 130.3, 130.5, 131.3, 138.2, 141.2, 163.8, 177.5; IR (KBr)_{vmax} 1129, 1169, 132, 1269, 1305, 1339, 1384, 1418, 1454, 1515, 1587, 1622, 2854, 2924, 3034, 3280 cm⁻¹; HRMS (ESI) Calcd For C₁₇H₁₃F₃NOS₂ 368.0385 (M + H⁺); Found 368.0386.

2-(((4-methoxybenzyl)amino)thio)-6-(trifluoromethyl)-4H-thiochromen-4-one (4o): Yellow solid, Mp 108-109°C, ¹H NMR (400 MHz, CDCl₃): δ 3.23-3.26 (m, 1H), 3.81 (s, 3H), 4.14 (d, *J* = 8.0 Hz,

2H), 6.89-6.91(m, 3H), 7.29 (d, J = 6.0 Hz, 2H), 7.68-7.71 (m, 1H), 7.75-7.78 (m, 1H), 8.74 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 55.5, 56.5, 114.4, 116.2, 121.0 (¹ $J_{C-F} = 271.5$ Hz), 122.8, 124.6, 125.4, 126.2 (² $J_{C-F} = 3$ Hz), 126.3 (4), 126.5, 127.3 (2) (³ $J_{C-F} = 3$ Hz), 127.4 (2), 129.8, 129.9, 130.1(2), 130.3(2) (⁴ $J_{C-F} = 33$ Hz), 130.5, 130.7, 130.9, 131.3, 141.2, 159.7, 163.9, 177.5; IR (KBr)_{vmax} 1132, 1179, 1132, 1269, 1310, 1345, 1389, 1419, 1460, 1520, 1586, 1601, 2834, 2920, 3024, 3268 cm⁻¹; HRMS (ESI) Calcd For C₁₈H₁₅F₃NO₂S₂ 398.0491 (M + H⁺); Found 398.0464.

2-(((2,4-dimethoxybenzyl)amino)thio)-7-fluoro-4H-thiochromen-4-one (4p): White solid, Mp

133-134°C, ¹H NMR (600 MHz, CDCl₃): δ 3.52 (t, J = 6.0 Hz, 1H), 3.80 (s, 3H), 3.86 (s, 3H), 4.08 (d, J = 6.0 Hz, 2H), 6.43-6.46 (m, 2H), 6.85 (s, 1H), 7.14 (d, J = 6.0 Hz, 1H), 7.18-7.20 (m, 1H), 7.23-7.25 (m, 1H),

8.45-8.47 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 52.8, 55.5, 55.6, 98.3, 103.9, 112.2, 112.4, 115.9, 116.0, 116.2, 119.3, 127.7, 127.8, 131.2, 131.7, 131.8, 138.9, 158.8, 161.2, 162.9, 163.6, 164.6, 177.7; IR (KBr)_{vmax} cm⁻¹; HRMS (ESI) Calcd For C₁₈H₁₇FNO₃S₂ 378.0629 (M + H⁺); Found 378.0630.

2-((phenylamino)thio)-4H-thiochromen-4-one (4q): Yellow solid, Mp 190-191°C, ¹H NMR

 (600 MHz, CDCl₃): δ 5.37 (s, 1H), 6.93 (s,1H), 6.96-6.99 (m, 1H), 7.08 (d, J = 12.0 Hz, 1H), 7.27-7.30 (m, 2H), 7.47-7.55 (m, 4H), 8.46 (d, J = 8.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 115.3,

116.6, 122.1, 126.4, 128.0, 128.9, 129.7, 131.1, 131.5, 137.2, 145.2, 161.6, 178.7; IR (KBr)_{vmax} 1103, 1132, 1174, 1225, 1284, 1336, 1384, 1419, 1437, 1494, 1518, 1557, 1583, 1597, 2853, 2922, 2959, 3184 cm⁻¹; HRMS (ESI) Calcd For $C_{15}H_{12}NOS_2$ 286.0355 (M + H⁺); Found 286.0361.

2-(((4-ethylphenyl)amino)thio)-4H-thiochromen-4-one (4r): Brown semi-solid, ¹H NMR (600

 $MHz, CDCl_3): \delta 1.20 (t, J = 12.0 Hz, 3H), 2.57-2.61 (m, 2H), 5.20 (s, 1H), 6.92 (s, 1H), 7.00 (d, J = 12.0 Hz, 2H), 7.11 (d, J = 12.0 Hz, 2H), 7.48-7.51 (m, 2H), 7.52-7.55 (m, 1H), 8.45-8.47 (m, 1H); {}^{13}C NMR (150 MHz, CDCl_3): \delta 15.9, 28.2, 114.3, 115.3, 116.4, 126.4, 127.9, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 131.1, 131.4, 137.3, 138.1, 142.9, 162.2, 178.7; IR (KBr)_{vmax} 1101, 1128, 1229, 128.8, 128.9, 128.8, 128.9, 128.9, 128.8, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9, 128$

1331, 1377, 1438, 1462, 1509, 1525, 1561, 1586, 1607, 2955, 2924, 2955, 3191 cm⁻¹; HRMS (ESI) Calcd For C₁₇H₁₆NOS₂ 314.0668 (M + H⁺); Found 314.0668.

2-(((4-chlorophenyl)amino)thio)-4H-thiochromen-4-one (4s): Brown solid, Mp 70-71°C, ¹H NMR (600 MHz, CDCl₃): δ 5.59 (s, 1H), 6.90 (s, 1H), 7.00-7.02 (d, J = 12.0 Hz, 2H), 7.22 (d, J = 6.0 Hz, 2H), 7.47-7.51 (m, 2H), 7.53-7.56 (m, 1H), 8.45 (d, J = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 116.5, 116.8, 126.4, 128.1, 128.9, 131.1, 129.6, 131.6, 137.0, 143.9, 160.7, 178.6; IR (KBr)_{vmax} 1131, 1171, 1231, 1281, 1326, 1382, 1437, 1466, 1488, 1527, 1559, 1584, 1604, 2853, 2923, 2957, 3054, 3198 cm⁻¹; HRMS (ESI) Calcd For C₁₅H₁₁ClNOS₂ 319.9965 (M + H⁺); Found 319.9964.

2-(((4-bromophenyl)amino)thio)-4H-thiochromen-4-one (4t): Yellow solid, Mp 105-106°C,

¹H NMR (600 MHz, CDCl₃): δ 5.71 (s, 1H), 6.90 (s, 1H), 6.96 (d, J = 12.0 Hz, 2H), 7.34 (d, J = 12.0 Hz, 2H), 7.46-7.54 (m, 3H), 8.45-8.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 114.3, 116.8, 116.9, 126.4, 128.1, 128.9, 131.1, 131.6, 132.5, 137.0, 144.4, 160.8, 178.7; IR (KBr)_{vmax} 1129, 1221, 12832, 1334, 1384, 1437, 1466, 1520, 1557, 1587, 2853, 2924, 2955, 3066, 3199 cm⁻¹; HRMS (ESI) Calcd For C₁₅H₁₁BrNOS₂ 363.9460 (M + H⁺); Found 363.9452.

2-(((4-fluorophenyl)amino)thio)-4H-thiochromen-4-one (4u): Yellow solid, Mp 154-155°C, ¹H NMR (600 MHz, CDCl₃): δ 5.6 (s, 1H), 6.91 (s, 1H), 6.95-6.98 (m, 2H), 7.00-7.03 (m, 2H), 7.47-7.51 (m, 2H), 7.52-7.55 (m, 1H), 8.45-8.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 116.2, 116.4, 116.5, 116.6, 126.4, 128.1, 128.9, 131.1, 131.6,

137.1, 157.6, 159.2, 161.4, 178.7; IR (KBr)_{vmax} 1153, 1221, 1278, 1345, 1398, 1458, 1478, 1565, 1587, 2865, 2928, 2945, 3051, 3231 cm⁻¹; HRMS (ESI) Calcd For C₁₅H₁₁FNOS₂ 304.0261 (M + H⁺); 304.0261.

2-(((3-chlorophenyl)amino)thio)-4H-thiochromen-4-one (4v): Yellow solid, Mp 158-159°C,

¹H NMR (600 MHz, CDCl₃): δ 5.78 (s, 1H), 6.91 (s, 1H), 6.93-6.96 (m, 1H), 7.08 (s, 1H), 7.17 (t, *J* = 6.0 Hz, 1H), 7.47-7.55 (m, 3H), 8.45-8.47 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 113.5, 115.3, 116.7, 122.2, 126.4, 128.1, 128.9, 130.7, 131.1, 131.6, 135.5, 137.0, 146.6, 160.8, 178.7; IR (KBr)_{vmax} 1129, 1221, 12832, 1334, 1384, 1437, 1466, 1520, 1557, 1587, 2853, 2924, 2955, 3066, 3199 cm⁻¹; HRMS (ESI) Calcd For $C_{15}H_{11}CINOS_2$ 319.9965 (M + H⁺); Found 319.9959.

2-((2-aminoanthracen-1-yl)thio)-4H-thiochromen-4-one (5a): Yellow solid, Mp 118-119°C,

¹H NMR (600 MHz, CDCl₃): δ 4.97 (s, 2H), 6.99 (s, 1H), 7.07 (d, J = 12.0 Hz, 1H), 7.29-7.31 (m, 1H), 7.38-7.46 (m, 4H), 7.94 (t, J = 6.0 Hz, 2H), 8.01 (d, J = 12.0 Hz, 1H), 8.33 (s, 1H), 8.40-8.42 (m, 1H), 8.64 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 119.1, 121.1, 121.7, 124.9, 125.9, 126.5, 127.8, 128.0, 128.2, 128.3, 128.9, 131.3, 134.5, 137.8, 149.8,

149.9, 155.4, 178.9; IR (KBr)_{vmax} 1101, 1134, 1169, 1237, 1277, 1325, 1342, 1384, 1436, 1462, 1478, 1505, 1544, 1568, 1579, 1630, 2853, 2924, 3049, 3302, 3461 cm⁻¹; HRMS (ESI) Calcd For C₂₃H₁₆NOS₂ 386.0668 (M + H⁺); Found 386.0667.

2-((6-aminoquinolin-5-yl)thio)-4H-thiochromen-4-one (5b): Brown solid, Mp 142-143°C, ¹H

NMR (600 MHz, CDCl₃): δ 5.11 (s, 2H), 6.84 (s, 1H), 7.28 (s, 1H), 7.34-7.39 (m, 2H), 8.06 (d, J = 6.0 Hz, 1H), 8.29 (d, J = 6.0 Hz, 1H), 8.42 (d, J = 6.0 Hz, 1H), 8.68 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): 121.2, 121.8, 123.2, 125.9, 128.0, 128.9, 130.7, 131.6, 131.5, 132.3,

135.2, 137.7, 147.1, 150.2, 154.6, 178.9; IR (KBr)_{vmax} 1245, 1370, 1520, 1590, 2845, 2930, 3025, 3325, 3482 cm⁻¹; HRMS (ESI) Calcd For $C_{18}H_{12}ClN_2OS_2$ 337.0464 (M + H⁺); Found 337.0461.

2-((2-aminonaphthalen-1-yl)thio)-4H-thiochromen-4-one (5c): Off-white solid, Mp 145-

146°C, ¹H NMR (400 MHz, CDCl₃): δ 4.83 (s, 2H), 6.86-6.87 (m, 1H), 7.01-7.03 (m, 1H), 7.24-7.30 (m, 2H), 7.41-7.47 (m, 3H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 12.0 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.37-8.40 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 99.1, 117.8,

121.3, 123.2, 123.4, 125.8, 127.8, 128.4, 128.6, 128.7, 128.8, 130.8, 131.3, 133.9, 136.6, 137.9, 149.9, 155.7, 178.9; IR (KBr)_{vmax} 1102, 1127, 1210, 1328, 1384, 1403, 1428, 1469, 1512, 1554, 1581, 1605, 2855, 2923, 2954, 3054, 3374, 3468 cm⁻¹; HRMS (ESI) Calcd For C₁₉H₁₄NOS₂ 336.0512 (M + H⁺); Found 336.0516.

3-amino-4-((4-oxo-4H-thiochromen-2-yl)thio)-2H-chromen-2-one (5d): White solid, Mp 186-

187°C, ¹H NMR (400 MHz, CDCl₃): δ 5.42 (s, 2H), 6.99 (s, 1H),
7.27-7.31 (m, 1H), 7.33-7.36 (m, 2H), 7.39-7.41 (m, 1H), 7.477.56 (m, 2H), 7.73-7.74 (m, 1H), 8.43 (d, J = 8.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 103.9, 116.8, 121.3, 123.4, 123.9,

125.7, 125.9, 127.6, 128.3, 129.0, 131.9, 137.4, 138.7, 147.8, 150.6, 157.2, 178.9; IR (KBr)_{vmax} 1102, 1127, 1210, 1328, 1384, 1403, 1428, 1469, 1512, 1554, 1581, 1610, 2964, 3024, 3364, 3468 cm⁻¹; HRMS (ESI) Calcd For $C_{18}H_{12}NO_3S_2$ 354.0253 (M + H⁺); Found 354.0254.

2-((4-aminonaphthalen-1-yl)thio)-4H-thiochromen-4-one (5e): Brown solid, Mp ¹H NMR

 $(400 \text{ MHz, CDCl}_3): \delta 6.78-6.80 \text{ (m, 2H), 7.30-7.32 (m, 1H), 7.40-} \\ (400 \text{ MHz, CDCl}_3): \delta 7.47 \text{ (m, 2H), 7.49-7.57 (m, 2H), 7.74 (d,$ *J*= 8.0 Hz, 1H), 7.86 (d,*J*= 8.0 Hz, 1H), 8.32 (d,*J* $= 8.0 Hz, 1H), 8.38-8.40 (m, 1H); ¹³C NMR (100 MHz, CDCl_3): \delta 111.3, 120.8, 121.7, 124.2, 125.8, 125.9, 126.2, 127.7, 128.2, 128.7, 130.7, 131.3, 135.8, 137.9, 138.7, 146.7, 158.8, 178.9; IR (KBr)_{vmax} 1154, 1210, 1328, 1384,$

1403, 1428, 1469, 1512, 1554, 1581, 1605, 2855, 2923, 2954, 3054, 3360, 3450 cm⁻¹: HRMS

(ESI) Calcd For C₁₉H₁₄NOS₂ 336.0512 (M + H⁺); Found 336.0517.

2-(propyldisulfanyl)-4H-thiochromen-4-one (6a): Yellow semi-solid, ¹H NMR (400 MHz, CDCl₃): δ 1.01 (t, J = 8.0 Hz, 3H), 1.70-1.79 (m, 2H), 2.38 (t, J = 8.0 Hz, 2H), 7.16 (s, 1H), 7.47-7.52 (m, 1H), 7.54-7.57 (m, 2H), 8.0 Hz, 2H), 7.16 (s, 1H), 7.47-7.52 (m, 1H), 7.54-7.57 (m, 2H), 8.44 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 13.2, 22.3, 41.9, 113.3, 122.3, 126.2, 127.9, 128.9, 131.6, 137.7, 178.9; IR (KBr)_{vmax} 1123, 1225, 1261, 1324, 1379, 1423, 1451, 1464, 1551, 1574, 1590, 1618, 2853, 2923, 2957 cm⁻¹; HRMS (ESI) Calcd For C₁₂H₁₃OS₃ 269.0123 (M + H⁺); Found 269.0125.

2-(phenyldisulfanyl)-4H-thiochromen-4-one (6b): Yellow semi-solid, ¹H NMR (400 MHz,

CDCl₃): δ 7.08 (s, 1H), 7.20-7.33 (m, 3H), 7.38-7.48 (m, 5H), 8.36 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.7, 123.3, 126.2, 128.1, 128.8, 128.9, 129.4, 129.6, 130.8, 131.7, 178.8; IR (KBr)_{vmax} 1136, 1189, 1268, 1289, 1369, 1384, 1400, 1468, 1510,

1538, 1572, 1610, 2850, 2967 cm⁻¹; HRMS (ESI) Calcd For $C_{15}H_{11}OS_3$ 302.9967 (M + H⁺); Found 302.9969.

2-((4-chlorophenyl)disulfanyl)-4H-thiochromen-4-one (6c): Yellow semi-solid, ¹H NMR (600

MHz, CDCl₃): δ 7.16 (s, 1H), 7.24-7.40 (m, 2H), 7.49-7.60 (m, 5H), 8.44-8.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 123.4, 126.3, 128.3, 129.0, 129.5, 129.9, 130.6, 130.8, 131.9, 133.8, 135.2, 137.6, 154.2, 178.9; IR (KBr)_{vmax} 1101, 1161, 1245, 1256,

1371, 1391, 1456, 1478, 1521, 1540, 1561, 1610, 2825, 2934 cm⁻¹; HRMS (APCI) Calcd For $C_{15}H_9ClOS_3$ 336.9577 (M + H⁺); Found 336.9578.

6-chloro-2-(p-tolyldisulfanyl)-4H-thiochromen-4-one (6d): Yellow solid, Mp 120-121°C, ¹H

NMR (600 MHz, CDCl₃): δ 2.34 (s, 3H), 7.15-7.17 (m, 3H), 7.46-7.47 (m, 2H), 7.50-7.51 (m, 1H), 7.53-7.55 (m, 1H), 8.42 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 123.0, 127.7, 128.6, 130.4, 130.5, 132.1, 134.7, 135.9, 139.7, 177.7; IR (KBr)_{ymax} 1104, 1142,

1181, 1260, 1281, 1312, 1384, 1397, 1451, 1490, 1507, 1527, 1582, 1610, 2853, 2923, 2955, 3024, 3086 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{12}ClOS_3$ 350.9734 (M + H⁺); Found 350.9733.

2-((4-bromophenyl)disulfanyl)-6-chloro-4H-thiochromen-4-one (6e): Yellow solid, Mp 141-

142°C, ¹H NMR (600 MHz, CDCl₃): δ 7.13 (s, 1H), 7.40-7.41 (m, 2H), 7.45-7.47 (m, 3H), 7.51-7.53 (m, 1H), 8.38 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 122.8, 123.2, 127.7, 128.5, 130.8, 131.6, 132.2, 132.7, 134.1,

134.7, 135.5, 154.6, 177.5; IR (KBr)_{vmax} 1105, 1142, 1175, 1260, 1282, 1312, 1284, 1397, 1451, 1470, 1508, 1583, 1610, 1682, 1900, 2853, 2923, 2897, 3024, 3080 cm⁻¹; HRMS (ESI) Calcd For C₁₅H₉BrClOS₃ 414.8682 (M + H⁺); Found 414.8684.

6-chloro-2-(naphthalen-2-yldisulfanyl)-4H-thiochromen-4-one (6f): Yellow semi-solid, ¹H

NMR (400 MHz, CDCl₃): δ 7.21 (s, 1H), 7.40-7.53 (m, 4H), 7.60-7.66 (m, 1H), 7.78-7.84 (m, 3H), 8.03-8.04 (m, 1H), 8.41 (d, J = 4.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 114.3, 122.8, 126.3, 127.2, 127.3, 127.7, 127.9, 128.1, 128.6,

128.7, 129.8, 132.1, 133.5, 134.7, 135.8, 139.4, 155.5, 177.7; IR (KBr)_{vmax} 1108, 1235, 1260, 1320, 1380, 1445, 1532, 1575, 1610, 2843, 2935, 2965 cm⁻¹; HRMS (ESI) Calcd For $C_{19}H_{12}ClOS_3$ 386.9734 (M + H⁺); Found 386.9733.

7-chloro-2-((2-chlorophenyl)disulfanyl)-4H-thiochromen-4-one (6g): Yellow semi-solid, ¹H

NMR (400 MHz, CDCl₃): δ 7.08-7.11 (m, 1H), 7.17-7.24 (m, 2H), 7.36-7.44 (m, 2H), 7.50 (s,1H), 7.60 (d, J = 8.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 123.6, 125.7, 128.0, 128.9, 129.0, 129.5, 130.4, 130.5, 133.3, 133.5,

138.7, 138.9, 153.8, 178.1; IR (KBr)_{vmax} 1146, 1263, 1286, 1314, 1377, 1401, 1463, 1522, 1583, 1618, 2853, 2924, 2955 cm⁻¹; HRMS (ESI) Calcd For $C_{15}H_9Cl_2OS_3$ 370.9187 (M + H⁺); Found 370.9191.

7-chloro-2-((2-chlorobenzyl)disulfanyl)-4H-thiochromen-4-one (6h): Yellow semi-solid, ¹H

NMR (600 MHz, CDCl₃): δ 4.09 (s, 2H), 6.93 (s, 1H), 7.07-7.08 (m, 2H), 7.21-7.25 (m, 2H), 7.35-7.37 (m, 1H), 7.42 (s, 1H), 8.26 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 41.9, 122.6, 125.4, 126.9, 128.6, 128.8, 129.8, 129.9, 130.3,

131.9, 133.2, 134.7, 138.4, 138.9, 155.4, 177.8; IR (KBr)_{vmax} 1104, 1142, 1181, 1260, 1281, 1312, 1384, 1397, 1451, 1490, 1507, 1527, 1582, 1610, 2853, 2923, 2955, 3024, 3086 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{11}Cl_2OS_3$ 384.9344 (M + H⁺); Found 384.9328.

2-((2-bromophenyl)disulfanyl)-6-(trifluoromethyl)-4H-thiochromen-4-one (6i): Yellow

semi-solid, ¹H NMR (400 MHz, CDCl₃): δ 7.14-7.17 (m, 1H), 7.21-7.22 (m, 1H), 7.32-7.35 (m, 1H), 7.56-7.58 (m, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.76-7.77 (m, 1H), 8.70 (s,1H); ¹³C NMR (150 MHz, CDCl₃): δ 120.8 (¹*J*_{C-F} = 271.5 Hz),

122.5, 122.6, 123.5, 124.4, 126.0, 126.2, 126.3 (${}^{2}J_{C-F} = 3$ Hz), 126.4 (3), 127.3, 127.8 (${}^{3}J_{C-F} = 3$ Hz), 127.9 (3), 128.4, 128.7, 129.5, 130.2 (${}^{4}J_{C-F} = 33$ Hz), 130.4, 130.6, 130.7, 130.9, 133.6, 135.3, 141.0, 154.5, 177.7; IR (KBr)_{vmax} 1110, 1139, 1171, 1252, 1284, 1332, 1389, 1397, 1461, 1496, 1510, 1522, 1598, 1602, 2843, 2930, 2965, 3029, 3091 cm⁻¹; HRMS (ESI) Calcd For C₁₆H₉BrF₃OS₃ 448.8946 (M + H⁺); Found 448.8937.

2-((2-bromophenyl)disulfanyl)-7-fluoro-4H-thiochromen-4-one (6j): Yellow semi-solid, ¹H NMR (600 MHz, CDCl₃): δ 7.11-7.21 (m, 4H), 7.31-7.35 (m, 1H), 7.55-7.64 (m, 2H), 8.42-8.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 112.3, 112.4, 116.6, 116.8, 122.3, 123.5, 127.2, 128.3, 128.6, 129.3, 131.9 (2), 133.5, 135.4, 139.6, 139.7, 153.4, 163.3, 164.9, 177.8, 177.9; IR (KBr)_{ymax} 1156, 1229, 12865, 1323,

1389, 1401, 1476, 1519, 1587, 1616, 2859, 2930, 2965 cm⁻¹; HRMS (ESI) Calcd For $C_{15}H_9BrFOS_3$ 398.8978 (M + H⁺); Found 398.8984.

N-benzyl-4-oxo-4H-thiochromene-2-sulfonamide (7a): White solid, Mp 175-176°C, ¹H NMR

(600 MHz, CDCl₃): δ 4.05 (d, J = 6.0 Hz, 2H), 6.96-6.98 (m, 1H), 7.03 (d, J = 6.0 Hz, 2H), 7.09-7.11 (m, 2H), 7.23-7.24 (m, 1H), 7.40 (t, J = 6.0 Hz, 1H), 7.47-7.52 (m, 2H), 8.24 (d, J = 12.0 Hz, 1H), 8.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 47.3, 125.6, 127.1,

127.6, 127.8, 128.2, 128.3, 128.4, 132.3, 136.2, 153.6, 180.0; IR (KBr)_{vmax} 1002, 1025, 1128, 1320, 1340, 1435, 1455, 1587, 1630, 1636, 2921, 3265 cm⁻¹; HRMS (ESI) Calcd For $C_{16}H_{14}NO_{3}S_{2}$ 332.0410 (M + H⁺); Found 332.0419.

7. Copies of ¹H NMR, ¹³C NMR and HRMS spectra of all Compounds

¹HNMR spectra of compound: 4a

¹³CNMR spectra of compound: 4a

HRMS spectra of compound: 4a

¹HNMR spectra of compound: 4b

¹³CNMR spectra of compound: 4b

HRMS spectra of compound: 4b

¹HNMR spectra of compound: 4c

¹³CNMR spectra of compound: 4c

HRMS spectra of compound: 4c

¹HNMR spectra of compound: 4d

¹³CNMR spectra of compound: 4d

HRMS spectra of compound: 4d

¹HNMR spectra of compound: 4e

¹³CNMR spectra of compound: 4e

HRMS spectra of compound: 4e

¹HNMR spectra of compound: 4f

¹³CNMR spectra of compound: 4f

HRMS spectra of compound: 4f

¹HNMR spectra of compound: 4g

¹³CNMR spectra of compound: 4g

HRMS spectra of compound: 4g

¹HNMR spectra of compound: 4h

¹³CNMR spectra of compound: 4h

HRMS spectra of compound: 4h

¹³CNMR spectra of compound: 4i

HRMS spectra of compound: 4i

¹HNMR spectra of compound: 4j

¹³CNMR spectra of compound: 4j

HRMS spectra of compound: 4j

¹HNMR spectra of compound: 4k

¹HNMR spectra of compound: 41

¹³CNMR spectra of compound: 41

HRMS spectra of compound: 41

¹HNMR spectra of compound: 4m

¹³CNMR spectra of compound: 4m

HRMS spectra of compound: 4m

¹HNMR spectra of compound: 4n

km-cf3-ba $\begin{array}{c} 141.16\\ 138.19\\ 131.34\\ 131.34\\ 130.54\\ 130.32\\ 130.32\\ 130.09\\ 130.09\\ 129.87\\ 129.05\\ 129.05\\ 128.51\end{array}$ -177.50 126.35 126.32 126.29 124.65 122.84 121.04 128.42 127.34 127.32 126.45 126.37 127.39 77.23 127.3 -57.16 131.34 130.54 130.54 130.09 129.87 129.05 128.51 128.51 128.51 128.51 128.51 128.51 128.53 127.33 126.35 12 -122.84 -121.040 F₃C H N S* 4n 127 126 f1 (ppm) 125 132 131 130 129 128 124 123 122 121 100 f1 (ppm) 200 190 180 170 160 150 140 130 120 110 90 80 70 60 50 40 30 20 10 0

¹³CNMR spectra of compound: 4n

HRMS spectra of compound: 4n

¹HNMR spectra of compound: 40

¹³CNMR spectra of compound: 40

HRMS spectra of compound: 40

¹HNMR spectra of compound: 4p

KM-TF-24DIOME-1H KM-TF-24DIOME-1H

¹³C NMR spectra of compound: 4p

HRMS spectra of compound: 4p

¹HNMR spectra of compound: 4q

¹³C NMR spectra of compound: 4q

HRMS spectra of compound: 4q

¹³CNMR spectra of compound: 4n

HRMS spectra of compound: 4n

¹HNMR spectra of compound: 4s

¹³CNMR spectra of compound: 4s

HRMS spectra of compound: 40

¹HNMR spectra of compound: 4t

¹³CNMR spectra of compound: 4p

HRMS spectra of compound: 4p

¹HNMR spectra of compound: 4u

¹³CNMR spectra of compound: 4u

¹HNMR spectra of compound: 4v

-146.62 /137.04 /135.55 /131.65 KM-T-AN-3-CL-13C 115.33 -178.72-160.78 128.98 128.15 126.38 122.19 130.71 116.72 131.07 KM-T-AN-3-Q-13C 77.02 77.44 77.23 0 Ш Cl S 4V Forefolder geföldlice ander etter pystere stare stare der forefolgeter sinder etter atter atter betret atter som atte i ya ji pekula (kalen ja Marine Malan na Kapen na katala kalen jara wi ji pi da Andrika na perenda katala ji p UNNIMI 110 100 f1 (ppm) 210 70 50 40 30 10 0 200 190 180 170 160 150 140 130 120 90 80 60 20

¹³CNMR spectra of compound: 4r

HRMS spectra of compound: 4r

¹HNMR spectra of compound: 5a

¹³CNMR spectra of compound: 5a

HRMS spectra of compound: 5a

Instrument Name

SampleType

Comment

Unavailable

Unavailable

unavailable

Sample information is

User Name

Acquired Time

IRM Calibration Status

Unavailable

Unavailable

Some Ions Missed

Sample Name

Data Filename

Inj Vol

Unavailable

Unavailable

KM-T-ANT.d

Position

InjPosition

ACQ Method

Unavailable

Unavailable

¹HNMR spectra of compound: 5b

¹³CNMR spectra of compound: 5b

HRMS spectra of compound: 5b

¹HNMR spectra of compound: 5c

¹³CNMR spectra of compound: 5c

HRMS spectra of compound: 5c

¹HNMR spectra of compound: 5d

km-t-ac-1h km-t-ac-1h

¹³CNMR spectra of compound: 5d

HRMS spectra of compound: 5d

¹HNMR spectra of compound: 5e

¹³CNMR spectra of compound: 5e

HRMS spectra of compound: 5e

¹HNMR spectra of compound: 6a

HRMS spectra of compound: 6a

¹HNMR spectra of compound: 6b

¹³CNMR spectra of compound: 6b

HRMS spectra of compound: 6b
¹HNMR spectra of compound: 6c

KM-T-4CL-SH-1H KM-T-4CL-SH-1H

¹³CNMR spectra of compound: 6c

HRMS spectra of compound: 6c

¹HNMR spectra of compound: 6d

¹³CNMR spectra of compound: 6c

HRMS spectra of compound: 6c

¹HNMR spectra of compound: 6e

¹³CNMR spectra of compound: 6e

¹HNMR spectra of compound: 6f

¹³CNMR spectra of compound: 6f

HRMS spectra of compound: 6f

¹HNMR spectra of compound: 6g

KM-4T-2Q-SH-1H KM-4T-2Q-SH-1H

¹³CNMR spectra of compound: 6g

HRMS spectra of compound: 6g

¹HNMR spectra of compound: 6h

¹³CNMR spectra of compound: 6h

HRMS spectra of compound: 6h

¹HNMR spectra of compound: 6i

¹³CNMR spectra of compound: 6i

HRMS spectra of compound: 6i

¹HNMR spectra of compound: 6j

KM-TF-2BR-SH-1H KM-TF-2BR-SH-1H

¹³CNMR spectra of compound: 6j

HRMS spectra of compound: 6j

¹HNMR spectra of compound: 7a

¹³CNMR spectra of compound: 7a

HRMS spectra of compound: 7a

