Supporting Information

A temperature-responsive C_2 wagging vibration in $Sc_2C_2@C_s$ -

 C_{82}

Bo Wu,^a Taishan Wang,^a Zhuxia Zhang,^b Li Jiang,^a and Chunru Wang^{*a}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

^b Research Center of Advanced Materials Science and Technology, Taiyuan university of Technology, Taiyuan 030024 (P. R. China)

Contents

Figure S1. The first stage HPLC profile of toluene extract of the soot containing scandium endohedral metallofullerenes (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S2. Chromatogram of the isolated $Sc_2C_2@C_s-C_{82}$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S3. Chromatogram of the isolated $Sc_2C_2@D_{2d}$ - C_{84} (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S4. UV/Vis-NIR spectrum of purified $Sc_2C_2@C_s-C_{82}$ in toluene.

Figure S5. UV/Vis-NIR spectrum of purified $Sc_2C_2@D_{2d}$ -C₈₄ in toluene.

Figure S6. MALDI-TOF mass spectra of purified $Sc_2C_2@C_s-C_{82}$ and $Sc_2C_2@D_{2d}-C_{84}$.

Figure S7. The temperature-dependent Raman spectra of $Sc_2C_2@D_{2d}-C_{84}$.

Figure S8. The temperature-dependent Raman spectra of $Sc_2C_2@C_s-C_{82}$ from 80 K to 293 K.

Figure S9. The calculated and experimental Raman spectrum of $Sc_2C_2@D_{2d}-C_{84}$ at B3LYP/DZP level.

Figure S10. The calculated Raman spectrum of C_{82} - $C_s(6)$ at B3LYP/DZP level.

Figure S11. The calculated Raman spectrum of $Sc_2C_2@C_s-C_{82}$ at B3LYP/DZP level.

Experimental Section:

1. The synthesis and purification of Sc₂C₂@C_s-C₈₂ and Sc₂C₂@D_{2d}-C₈₄

Graphite rods were core-drilled and subsequently packed with a mixture of Sc/Ni₂ alloy and graphite powder in a weight ratio of 2:1. These rods were then vaporized in a Krätschmer-Huffman generator at 200 Torr He. The resulting soot was Soxlet-extracted with toluene for 12 h. $Sc_2C_2@C_s-C_{82}$ and $Sc_2C_2@D_{2d}-C_{84}$ were isolated from various empty fullerenes and other scandium metallofullerenes by HPLC.

2. HPLC data of purified Sc₂C₂@C_s-C₈₂ and Sc₂C₂@D_{2d}-C₈₄

Several separations stage were repeated several times to obtain purified $Sc_2C_2@C_s-C_{82}$ and $Sc_2C_2@D_{2d}-C_{84}$. Figure S2 and Figure S3 are showing the HPLC data of purified $Sc_2C_2@C_s-C_{82}$ and $Sc_2C_2@D_{2d}-C_{84}$ with Buckyprep-M columns.

Figure S1. The first stage HPLC profile of toluene extract of the soot containing scandium endohedral metallofullerenes (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S2. Chromatogram of the isolated $Sc_2C_2@C_s-C_{82}$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S3. Chromatogram of the isolated $Sc_2C_2@D_{2d}-C_{84}$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

3. UV/Vis-NIR spectra of purified Sc₂C₂@C_s-C₈₂ and Sc₂C₂@D_{2d}-C₈₄

Figure S4. UV/Vis-NIR spectrum of purified $Sc_2C_2@C_s-C_{82}$ in toluene.

Figure S5. UV/Vis-NIR spectrum of purified $Sc_2C_2@D_{2d}$ -C₈₄ in toluene.

4. MALDI-TOF mass spectra of purified Sc₂C₂@C_s-C₈₂ and Sc₂C₂@D_{2d}-C₈₄

Figure S6. MALDI-TOF mass spectra of the (a) $Sc_2C_2@C_s-C_{82}$ and (b) $Sc_2C_2@D_{2d}-C_{84}$.

5. The temperature-dependent Raman spectra of Sc₂C₂@D_{2d}-C₈₄

Raman spectra were studied with 633 nm excitation from laser. About 15 μ g Sc₂C₂@ D_{2d} -C₈₄ were dissolved in carbon disulfide (CS₂, 99.999%, Sigma-Aldrich). The signals were detected on an N₂-cooled camera through a single pass monochromator. The instrument model is Renishaw invia plus, and a resolution of 1 cm⁻¹ is used for all Raman measurements and 30 min accumulation time. Measurements were performed at selected temperatures from 80 K to 393 K.

Figure S7. The experimental Raman spectra of $Sc_2C_2@D_{2d}$ -C₈₄ from 80 K to 393 K.

6. The temperature-dependent Raman spectra of Sc₂C₂@C_s-C₈₂ from 80 K to 293 K

Figure S8. The experimental Raman spectra of $Sc_2C_2@C_s-C_{82}$ from 80 K to 293 K.

7. The calculated and experimental Raman spectrum of Sc₂C₂@D_{2d}-C₈₄ at B3LYP/DZP level

Figure S9. The calculated and experimental Raman spectrum of $Sc_2C_2@D_{2d}-C_{84}$ at B3LYP/DZP level.

8. The calculated Raman spectrum of C₈₂-C_s(6) and Sc₂C₂@C_s-C₈₂ at B3LYP/DZP level

Figure S10. The calculated Raman spectrum of C_{82} - $C_s(6)$ at B3LYP/DZP level.

Figure S11. The calculated Raman spectrum of $Sc_2C_2@C_s-C_{82}$ at B3LYP/DZP level.