Electronic Supplementary Information

Cation-responsive turn-on fluorescence and absence of heavy atom effect of pyridyl-substituted triarylmethyl radicals

Yohei Hattori, Shun Kimura, Tetsuro Kusamoto,* Hiroaki Maeda, and Hiroshi Nishihara*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Contents

Materials and methods	S3
Table S1 Crystallographic data	S7
Table S2 Photophysical properties of oPyPyBTM' and tpyPyBTM' in dichloromethane	S 8
Table S3 Photophysical properties of Rhodamine 6G	S 8
Table S4 Photophysical properties of oPyPyBTM' and tpyPyBTM' in ethyl iodide	S 8
Fig. S1 ESR spectra	S9
Fig. S2 Absorption and emission spectra	S9
Fig. S3 Titration of tpyPyBTM' with Ni ²⁺ and Fe ²⁺	S9
Fig. S4 Calculated spin densities	S10
Fig. S5 Calculated molecular orbitals of tpyPyBTM' and tpyPyBTM'·Zn(OAc) ₂	S10
Fig. S6. Enlarged Fig. 2	S11
Fig. S7. Enlarged Fig. 3	S12
Fig. S8. Enlarged Fig. 4	S13
Cartesian coordinates of all the optimized geometries by DFT calculations	S14
Abstracted results of TD-DFT calculations	S20

Synthesis of (2,6-dichloro-3-pyridyl)bis(2,4,6-trichlorophenyl)methane (aH-iPyBTM)

2,6-Dichloro-3-pyridine carboxaldehyde (0.352 g, 2.0 mmol, 1 eq.), 1,3,5-trichlorobenzene (3.63 g, 20 mmol, 10 eq.), and trifluoromethanesulfonic acid (3.0 g, 20 mmol, 10 eq.) were heated to 185 °C for 2 h by microwave irradiation. The reaction mixture was cooled to r.t. and all components were dissolved in CH₂Cl₂ or water. The water layer was neutralized to pH 7 using NaHCO₃ aq, separated from organic layer, and extracted with CH₂Cl₂ (3 × 25 mL). The combined organic phases were washed with NaHCO₃ aq, and dried by Na₂SO₄. The organic layer was purified by SiO₂ column chromatography (CH₂Cl₂ : hexane = 1:2), and dried in vacuo to afford iPyBTMH (0.722 g, 1.39 mmol, 69%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (s, 4H), 7.18 (d, J = 8.1 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 6.55 (s, 1H). Elem. Anal. Calcd for C₁₈H₇NCl₈: C 41.51, H 1.35, N 2.69. Found, C 41.34, H 1.63, N 2.78.

Synthesis of [2-chloro-6-(2-pyridyl)-3-pyridyl]bis(2,4,6-trichlorophenyl)methane (aH-oPyPyBTM')

Under a nitrogen atmosphere, α H-iPyBTM (416 mg, 0.80 mmol), tributyl(2-pyridyl)tin (0.3 mL, 0.94 mmol), and tetrakis(triphenylphosphine)palladium(0) (49 mg, 0.042 mmol) in toluene (~5 mL) were stirred at 110 °C for 15 h. Reaction mixture was purified by SiO₂ column chromatography (CH₂Cl₂ : hexane = 1:1) and dried in vacuo to afford α H*o*PyPyBTM' (366 mg, 0.65 mmol, 81% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.66 (d, J = 5.5 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.7 Hz, 1.8 Hz, 1H), 7.36 (s, 4H), 7.33-7.29 (m, 2H), 6.65 (s, 1H). HRMS (FAB-MS) m/z: [M+H]⁺ Calcd for C₂₃H₁₂Cl₇N₂ 560.8820; Found 560.8840.

Synthesis of [2-chloro-6-(2-pyridyl)-3-pyridyl]bis(2,4,6-trichlorophenyl)methyl radical (oPyPyBTM')

Under a nitrogen atmosphere, α H-*o*PyPyBTM' (169 mg, 0.30 mmol) was dissolved in dry THF (12 mL). ^tBuOK in THF (1 M solution, 0.4 mL) was added dropwise, and the reaction mixture was stirred overnight in the dark. I₂ (178 mg, 0.70 mmol) in dry Et₂O (17 mL) was added dropwise and stirred for 1 h. Under ambient conditions, remaining I₂ was reduced by washing with Na₂S₂O₃ aq 3 times, water layer was extracted with Et₂O, and combined organic layer was dried with Na₂SO₄. The red solution was filtered, evaporated, purified by Al₂O₃ column chromatography (Et₂O : hexane = 1:1) and dried in vacuo to afford *o*PyPyBTM' (105 mg, 0.19 mmol, 62%) as a brown solid. **HRMS** (FAB-MS) m/z: [M+H]⁺ Calcd for C₂₃H₁₁Cl₇N₂ 559.8742; Found 559.8737. **ESR** Spin concentration of *o*PyPyBTM' in toluene (9.7×10⁻⁵ M) was estimated by comparing the value of twice-integration of the signal intensity with that of the reference sample (4-hydroxy-

TEMPO in toluene; 1.00×10^{-4} M). The existence of S = 1/2 spin on one *o*PyPyBTM' molecule was confirmed.

Synthesis of [2-chloro-6-(4'-2,2':6',2''-terpyridyl)-3-pyridyl]bis(2,4,6-trichlorophenyl)methane (aH-tpyPyBTM')

Under a nitrogen atmosphere, iPyBTMH (159 mg, 0.305 mmol), 4'-(tributylstannyl)-2,2':6',2"-terpyridine (159 mg, 0.304 mmol), and tetrakis(triphenylphosphine)palladium(0) (34.8 mg, 0.030 mmol) in toluene (~3 mL) were stirred at 110°C for 17 h. Reaction mixture was purified by Al₂O₃ column chromatography (CH₂Cl₂ : hexane = 1:2) and dried in vacuo to afford α H-tpyPyBTM' (110 mg, 0.153 mmol, 50% yield). ¹H NMR (500 MHz, CDCl₃): δ 9.05 (s, 2H), 8.74 (d, J = 3.9 Hz 2H), 8.65 (d, J = 7.9 Hz, 2H), 7.89-7.86 (m, 3H), 7.37-7.31 (m, 7H), 6.67 (s, 1H). HRMS (FAB-MS) m/z: [M+H]⁺ Calcd for C₃₃H₁₈Cl₇N₄ 714.9351; Found 714.9372.

Synthesis of [2-chloro-6-(4'-2,2':6',2''-terpyridyl)-3-pyridyl]bis(2,4,6-trichlorophenyl)methyl radical (tpyPyBTM')

Under a nitrogen atmosphere, α H-tpyPyBTM' (106 mg, 0.148 mmol) was dissolved in dry THF (6 mL). 'BuOK in THF (1 M solution, 0.2 mL) was added dropwise, and the reaction mixture was stirred overnight in the dark. I₂ (95 mg, 0.374 mmol) in dry Et₂O (10 mL) was added dropwise and stirred for 1 h. Under ambient conditions, remaining I₂ was reduced by washing with Na₂S₂O₃ aq 3 times, water layer was extracted with Et₂O, and combined organic layer was dried with Na₂SO₄. The red solution was filtered, evaporated, purified by Al₂O₃ column chromatography (CH₂Cl₂ : hexane = 1:2) and dried in vacuo to afford tpyPyBTM' (75 mg, 0.104 mmol, 69%) as a brown solid. **HRMS** (FAB-MS) m/z: [M+H]⁺ Calcd for C₃₃H₁₇Cl₇N₄ 713.9273; Found 713.9258. **ESR** Spin concentration of tpyPyBTM' in toluene (9.0×10⁻⁵ M) was estimated by comparing the value of twice-integration of the signal intensity with that of the reference sample (4-hydroxy-TEMPO in toluene; 1.09×10⁻⁴ M). The existence of *S* = 1/2 spin on one tpyPyBTM' molecule was confirmed.

X-ray structural analysis of [Nd(tpyPyBTM')(NO₃)₃(H₂O)](CH₃CN)₂

Neodymium nitrate hexahydrate (4.4 mg, 0.010 mmol) in CH₃CN was added dropwise to a stirred solution of tpyPyBTM' (7.2 mg, 0.010 mmol) in CH₂Cl₂. Green flat crystals suitable for structure analysis formed after standing overnight (5.8 mg, 0.0051 mmol, 51%).^[1] Diffraction data for X-ray analysis were collected with an AFC10 diffractometer coupled with a Rigaku Saturn CCD system equipped with a rotating-anode X-ray generator producing graphite-monochromated MoK α radiation ($\lambda = 0.7107$ Å). Lorentz polarization and numerical absorption corrections were performed with the program *Crystal Clear 1.3.6*. Structures were solved by the direct method using SIR 92 software^[2] and refined against *F*² using SHELXL-97.^[3] *Crystal Structure 4.0* software was used to prepare the material for publication.

The crystallographic data are listed in Table S1. CCDC 1535850 contains the supplementary crystallographic data of this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Instruments

Microwave synthesis was conducted using Biotage Initiator+. NMR spectra in CDCl₃ were measured with a Bruker US-500 spectrometer. The reported chemical shift of the solvent residual peak (δ 7.26) was used for calibration of the ¹H NMR spectra. ESR spectra were recorded with a JEOL JES-FA200 spectrometer with X-band microwave. Sample solutions were charged in a 5mm ϕ sample tube. Magnetic field was calibrated with the Mn²⁺/MgO standard. FAB-MS was performed with a JEOL MStation JMS-700 spectrometer. ESI–TOF mass spectra were recorded using an LCT Micromass spectrometer. UV-vis absorption spectra were recorded with a JASCO V-570 spectrometer. Steady-state emission spectra were measured with a JASCO FP-8600 spectrometer. Absolute photoluminescence quantum yields were measured with a Hamamatsu Photonics C9920-02G. Fluorescence lifetime measurements were performed using a Hamamatsu Photonics Quantaurus-Tau C11367-02.

Titration experiments

Fig. 3 (a) Absorption: To *o*PyPyBTM' in dichloromethane (2×10^{-5} M, 2 mL), TfOH in methanol (1×10^{-3} M, 8, 16, 24, 32, 40 µL) was added. Emission ($\lambda_{ex} = 441$ nm): To *o*PyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), TfOH in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 12 µL) was added.

Fig. 3 (b) Absorption: To tpyPyBTM' in dichloromethane (2×10⁻⁵ M, 2 mL), TfOH in methanol (1×10⁻³ M, 8, 16, 24, 32, 40, 48 μ L) was added. Emission (λ_{ex} = 438 nm): To tpyPyBTM' in dichloromethane (5×10⁻⁶ M, 2 mL), TfOH in methanol (1×10⁻³ M, 2, 4, 6, 8, 10 μ L) was added.

Fig. 3 (c) Absorption: To tpyPyBTM' in dichloromethane (2×10^{-5} M, 2 mL), zinc acetate in methanol (1×10^{-3} M, 8, 16, 24, 32, 40, 48 µL) was added. Emission ($\lambda_{ex} = 429$ nm): To tpyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), zinc acetate in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 12 µL) was added.

Fig. 3 (d) Absorption: To tpyPyBTM' in dichloromethane (2×10^{-5} M, 2 mL), copper(II) acetate monohydrate in methanol (1×10^{-3} M, 8, 16, 24, 32, 40, 48 µL) was added. Emission ($\lambda_{ex} = 438$ nm): To tpyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), copper(II) acetate monohydrate in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 12 µL) was added.

Fig. 3 (e) Absorption: To tpyPyBTM' in dichloromethane $(2 \times 10^{-5} \text{ M}, 2 \text{ mL})$, cobalt(II) acetate tetrahydrate in methanol $(1 \times 10^{-3} \text{ M}, 8, 16, 24, 32, 40, 48 \text{ }\mu\text{L})$ was added. Emission ($\lambda_{ex} = 431 \text{ nm}$): To tpyPyBTM' in dichloromethane ($5 \times 10^{-6} \text{ M}$, 2 mL), cobalt(II) acetate tetrahydrate in methanol ($1 \times 10^{-3} \text{ M}, 2, 4, 6, 8, 10, 12 \text{ }\mu\text{L}$) was added.

Fig. 3 (f) Absorption: To tpyPyBTM' in dichloromethane (2×10^{-5} M, 2 mL), manganese(II) acetate tetrahydrate in methanol (1×10^{-3} M, 8, 16, 24, 32, 40, 48 µL) was added. Emission ($\lambda_{ex} = 426$ nm): To tpyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), manganese(II) acetate tetrahydrate in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 20 µL) was added.

Fig. S5 (a) Absorption: To tpyPyBTM' in dichloromethane (2×10⁻⁵ M, 2 mL), nickel(II) acetate tetrahydrate in methanol (1×10⁻³ M, 8, 16, 24, 32, 40, 48 μ L) was added. Emission (λ_{ex} = 426 nm): To tpyPyBTM' in dichloromethane (5×10⁻⁶ M, 2 mL), nickel(II) acetate tetrahydrate in methanol (1×10⁻³ M, 2, 4, 6, 8, 10, 30 μ L) was added.

Fig. S5 (b) Absorption: To tpyPyBTM' in dichloromethane $(2 \times 10^{-5} \text{ M}, 2 \text{ mL})$, iron(II) sulfate heptahydrate in methanol $(1 \times 10^{-3} \text{ M}, 8, 16, 24, 32, 40, 48 \text{ }\mu\text{L})$ was added. Emission ($\lambda_{ex} = 426 \text{ }nm$): To tpyPyBTM' in dichloromethane ($5 \times 10^{-6} \text{ M}$, 2 mL), iron(II) sulfate heptahydrate in methanol ($1 \times 10^{-3} \text{ M}, 2, 4, 6, 8, 10, 14 \text{ }\mu\text{L}$) was added.

Fig. 5 (a) Absorption: To tpyPyBTM' in dichloromethane (2×10^{-5} M, 2 mL), lanthanum(III) trifluoromethanesulfonate in methanol (1×10^{-3} M, 8, 16, 24, 32, 40 µL) was added. Emission ($\lambda_{ex} = 433$ nm): To tpyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), lanthanum(III) trifluoromethanesulfonate in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 20 µL) was added.

Fig. 5 (b) Absorption: To tpyPyBTM' in dichloromethane (2×10⁻⁵ M, 2 mL), europium(III) trifluoromethanesulfonate

in methanol (1×10^{-3} M, 8, 16, 24, 32, 40 µL) was added. Emission ($\lambda_{ex} = 435$ nm): To tpyPyBTM' in dichloromethane (5×10^{-6} M, 2 mL), europium(III) trifluoromethanesulfonate in methanol (1×10^{-3} M, 2, 4, 6, 8, 10, 12 µL) was added.

Fig. 5 (c) Absorption: To tpyPyBTM' in dichloromethane $(2 \times 10^{-5} \text{ M}, 2 \text{ mL})$, neodymium(III) nitrate hexahydrate in methanol $(1 \times 10^{-3} \text{ M}, 8, 16, 24, 32, 40 \text{ }\mu\text{L})$ was added. Emission ($\lambda_{ex} = 432 \text{ }nm$): To tpyPyBTM' in dichloromethane ($5 \times 10^{-6} \text{ M}, 2 \text{ }m\text{L}$), neodymium(III) nitrate hexahydrate in methanol ($1 \times 10^{-3} \text{ M}, 2, 4, 6, 8, 10, 12 \text{ }\mu\text{L}$) was added.

Fig. 5 (d) Absorption: To tpyPyBTM' in ethyl iodide $(2 \times 10^{-5} \text{ M}, 2 \text{ mL})$, zinc acetate in methanol $(1 \times 10^{-3} \text{ M}, 80 \text{ }\mu\text{L})$ was added. Emission ($\lambda_{ex} = 437 \text{ nm}$): To tpyPyBTM' in ethyl iodide $(5 \times 10^{-6} \text{ M}, 2 \text{ mL})$, zinc acetate in methanol $(1 \times 10^{-3} \text{ M}, 80 \text{ }\mu\text{L})$ was added.

Fig. 5 (e) Absorption: To *o*PyPyBTM' in ethyl iodide (2×10⁻⁵ M, 2 mL), TfOH in methanol (1×10⁻² M, 8 μ L) was added. Emission (λ_{ex} = 438 nm): To *o*PyPyBTM' in ethyl iodide (5×10⁻⁶ M, 2 mL), TfOH in methanol (1×10⁻² M, 2 μ L) was added.

Computational details

DFT calculations were executed using the Gaussian09 program package.^[4] Calculations were performed using the unrestricted Becke three-parameter hybrid functional with Lee–Yang–Parr correlation functional (B3LYP)^[5] or unrestricted M06 functional^[6] with the 6-31G(d) basis set. Cartesian coordinates of all the optimized geometries are listed in the supporting information. Frequency calculations were carried out to ensure that the optimized geometries were minima on the potential energy surface, in which no imaginary frequencies were observed in any of the compounds. TD-DFT calculations were performed using UB3LYP to calculate the first 15 doublet transitions. The solvent effect (dichloromethane) was considered using the PCM model.^[7] The calculations were conducted with grid = ultrafine option without symmetry constraints.

References

1. M. G. B. Drew, P. B. Iveson, M. J. Hudson, J. O. Liljezin, L. Spjuth, P.-Y. Cordier, Å. Enarsson, C. Hill and C. Madic, *J. Chem. Soc., Dalton Trans.*, 2000, 821-830.

2. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.* 1994, **27**, 435.

3. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, U. S. A. 2009.

5. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

6. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

7. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.

	[Nd(tpyPyBTM')(NO ₃) ₃ (H ₂ O)](CH ₃ CN) ₂
Empirical formula	C ₃₇ H ₂₄ Cl ₇ N ₉ Nd O ₁₀
<i>Fw</i> / g mol⁻¹	1147.06
Crystal system	triclinic
Space group	<i>P</i> -1
Crystal size / mm	0.5×0.2×0.15
Temperature / K	113
<i>a</i> / Å	12.5288(7)
b/Å	13.8891(10)
c/Å	14.9538(11)
α / °	86.929(3)
βl°	67.150(3)
γl°	68.829(3)
V / Å ³	2224.7(3)
Ζ	2
$ ho_{ m calcd}$ / g cm ⁻³	1.712
λ/Å	0.7107
μ / mm ⁻¹	1.652
Reflections collected	16291
Independent reflections	8891
Parameters	562
R _{int}	0.0133
^a <i>R</i> 1	0.0375
^b wR2	0.1031
°GoF	1.070
CCDC No.	1535850

Table S1. Crystallographic data of [Nd(tpyPyBTM')(NO₃)₃(H₂O)](CH₃CN)₂

 ${}^{a}R_{1} = \Sigma ||F^{o}| - |F^{c}|| / \Sigma |F^{o}| \ (I \ge 2\sigma(I)). \ {}^{b}wR_{2} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma w(F^{o2})^{2}]^{1/2} \ (I \ge 2\sigma(I)). \ {}^{c}\text{GOF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2}].$

Table S2.	Photophysica	properties of oP	vPvBTM' and	l tpvPvBTM' ii	n dichloromethane
			/- /		

	ϕ	au / ns	$k_{\rm f} / 10^7 \ { m s}^{-1}$	$k_{\rm nr} / 10^7 \ {\rm s}^{-1}$
oPyPyBTM'	0.0035 (2)	4.7	0.08	21
oPyPyBTM' + H ⁺	0.037(1)	4.9	0.75	20
tpyPyBTM'	0.009(1)	7.8	0.12	13
tpyPyBTM' + Zn^{2+}	0.030(1)	7.5	0.41	13
tpyPyBTM' + La ³⁺	0.0413 (6)	8.1	0.51	12

 ϕ : absolute photoluminescence quantum yield

 τ . fluorescence lifetime

 $k_{\rm f}$: rate of fluorescence (ϕ/τ)

 $k_{\rm nr}$: rate of non-radiative decay $(1/\tau - k_{\rm f})$

Table S3. Photophysical properties of Rhodamine 6G

Solvent	ϕ	au / ns	$k_{ m f}$ / 10 ⁷ s ⁻¹	$k_{\rm nr}$ / 10 ⁷ s ⁻¹
Ethanol	0.913 (1)	4.0	23	2.2
Ethyl iodide	0.217(1)	1.7	13	46
Dichloromethane	0.830 (2)	3.6	23	4.7

 ϕ : absolute photoluminescence quantum yield

 τ . fluorescence lifetime

 $k_{\rm f}$: rate of fluorescence (ϕ/τ)

 $k_{\rm nr}$: rate of non-radiative decay $(1/\tau - k_{\rm f})$

Table S4. Photophy	vsical prop	perties of oPyl	PyBTM' and	tpyPyBTM'	in ethyl iodide
--------------------	-------------	-----------------	------------	-----------	-----------------

	ϕ	au / ns	$k_{ m f} / 10^{7} \ { m s}^{-1}$	$k_{\rm nr} / 10^7 \ {\rm s}^{-1}$
oPyPyBTM'	0.0050 (5)	5.0	0.10	20
oPyPyBTM' + H ⁺	0.0202 (3)	4.9	0.42	20
tpyPyBTM'	0.0054 (2)	7.9	0.07	13
tpyPyBTM' + Zn^{2+}	0.017 (2)	7.4	0.23	13

 ϕ : absolute photoluminescence quantum yield

 τ . fluorescence lifetime

 $k_{\rm f}$: rate of fluorescence (ϕ/τ)

 $k_{\rm nr}$: rate of non-radiative decay $(1/\tau - k_{\rm f})$

Fig. S1 ESR spectrum of (a) *o*PyPyBTM' and (b) tpyPyBTM' in toluene at room temperature.

Fig. S2 Absorption and emission spectra of PyBTM (orange line), *o*PyPyBTM' (blue line), and tpyPyBTM' (green line) in dichloromethane.

Fig. S3 Changes in the absorption and emission spectra of (a) tpyPyBTM' during titration with $Ni^{II}(AcO)_2$, and (b) tpyPyBTM' during titration with Fe^{II}SO₄ in dichloromethane. (navy: original spectra.; blue: 0.2 eq.; green: 0.4 eq.; yellow green: 0.6 eq.; yellow: 0.8 eq.; orange: 1.0 eq.; red: final spectra). In all emission spectra, excitation light was irradiated at the longest wavelength isosbestic point.

Fig. S4 Calculated spin density distributions of (a) *o*PyPyBTM' (b) *o*PyPyBTM' TfOH, (c) tpyPyBTM', and (d) tpyPyBTM'·Zn(OAc)₂ using UB3LYP/6-31G. They are mainly on the central methyl group similar to those of the other PyBTM derivatives.

Fig. S5 Molecular orbitals of tpyPyBTM' (left), and tpyPyBTM' \cdot Zn(OAc)₂ (right) in dichloromethane calculated using DFT (UB3LYP/6-31G(d)). The solvent effect was treated with the PCM.

Fig. S6 (Enlarged **Fig. 2**) Changes in the absorption and emission spectra of (a) *o*PyPyBTM' during titration with TfOH, (b) tpyPyBTM' during titration with TfOH, (c) tpyPyBTM' during titration with Zn(OAc)₂, (d) tpyPyBTM' during titration with Cu^{II}(OAc)₂, (e) tpyPyBTM' during titration with Co^{II}(OAc)₂, and (f) tpyPyBTM' during titration with Mn^{II}(OAc)₂ in dichloromethane (navy: original spectra.; blue: 0.2 eq.; green: 0.4 eq.; yellow-green: 0.6 eq.; yellow: 0.8 eq.; orange: 1.0 eq.; red: final spectra). In all emission spectra, excitation light was irradiated at the longest wavelength isosbestic point. Details of the experiments are provided in the ESI[†].

Fig. S7 (Enlarged **Fig. 3**) Molecular orbitals of *o*PyPyBTM' (left), and *o*PyPyBTM' TfOH (right) in dichloromethane calculated using DFT (UB3LYP/6-31G(d)). The solvent (dichloromethane) effect was treated with the PCM.

Fig. S8 (Enlarged **Fig. 4**) Changes in the absorption and emission spectra of (a) tpyPyBTM' during titration with $La^{III}(TfO)_3$, (b) tpyPyBTM' during titration with $Eu^{III}(TfO)_3$, (c) tpyPyBTM' during titration with $Nd^{III}(NO_3)_3$ in dichloromethane, and change of absorption and emission spectra of (d) tpyPyBTM' during titration with Zn(OAc)₂, and (e) *o*PyPyBTM' during titration with TfOH in ethyl iodide. (navy: original spectra.; blue: 0.2 eq.; green: 0.4 eq.; yellow-green: 0.6 eq.; yellow: 0.8 eq.; orange: 1.0 eq.; red: final spectra). In all emission spectra, excitation light was irradiated at the longest wavelength isosbestic point. In ethyl iodide, absorption below 370 nm was not measured because of the solvent absorption. Details of the experiments are provided in the ESI[†]. (f) Molecular structure of $[Nd(tpyPyBTM')(NO_3)_3(H_2O)]$ in crystalline $[Nd(tpyPyBTM')(NO_3)_3(H_2O)](CH_3CN)_2$ with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Cartesian coordinates of all the optimized geometries by DFT calculation

*o*PyPyBTM' in dichloromethane UB3LYP / 6-31G(d)

	Standard of	orientation:			20	6	0	-3.161083	-2.616661	0.908562
			-		21	1	0	-3.964418	-2.752828	1.621627
Atomic	Atomic	Coor	dinates (Angst	roms)	22	6	0	-2.963700	2.839029	-1.226069
Number	Туре	Х	Y	Z	23	1	0	-3.667234	2.999799	-2.033306
			-		24	6	0	-1.350036	-1.194029	0.006859
17	0	-0.045831	2.221734	2.185442	25	6	0	-1.329863	1.360562	-0.105743
17	0	-2.853887	-0.260154	2.129084	26	6	0	1.735417	-0.758338	0.675285
17	0	-2.584545	0.465842	-2.399214	27	6	0	-2.713425	3.832588	-0.286383
17	0	-3.567704	5.357057	-0.396609	28	6	0	-0.598004	0.075586	-0.005264
17	0	1.093510	-1.972446	1.796058	29	6	0	1.523691	1.125574	-0.754244
17	0	0.176979	-2.110520	-2.114384	30	1	0	0.934538	1.840627	-1.318416
17	0	-3.737676	-5.116234	0.004411	31	6	0	5.144114	0.190324	-0.164511
6	0	-1.793545	3.637150	0.739693	32	6	0	5.884193	1.356449	-0.416683
1	0	-1.611823	4.407663	1.478442	33	6	0	7.066793	-1.056991	0.014736
6	0	-2.273704	1.633467	-1.125293	34	6	0	7.274852	1.280273	-0.451855
6	0	-1.069202	-2.260824	-0.885854	35	1	0	5.387464	2.310133	-0.558295
6	0	2.904874	1.179943	-0.815524	36	6	0	3.657307	0.219818	-0.121922
1	0	3.387302	1.933870	-1.426702	37	7	0	3.043430	-0.723324	0.620882
6	0	0.853969	0.122256	-0.014777	38	1	0	7.867524	2.171145	-0.637829
6	0	-1.781597	-3.454787	-0.896730	39	1	0	7.507747	-2.036851	0.190711
1	0	-1.533110	-4.231966	-1.608467	40	7	0	5.733086	-1.001106	0.053699
6	0	-2.827382	-3.620290	0.006039	41	6	0	7.886164	0.047214	-0.235013
6	0	-1.124300	2.420293	0.815068	42	1	0	8.965853	-0.061712	-0.252595
6	0	-2.426169	-1.435039	0.896522					-	
	Atomic Number 17 17 17 17 17 17 17 17 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 6 7 17 17 17 17 17 17 17 17 17 17 17 17 1	Atomic Atomic Number Type 17 0 10 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 6 0 6 0	Atomic Atomic Coor Number Type X 17 0 -0.045831 17 0 -2.853887 17 0 -2.853887 17 0 -2.584545 17 0 -2.584545 17 0 -3.567704 17 0 0.176979 17 0 0.176979 17 0 -3.737676 6 0 -1.793545 1 0 -1.611823 6 0 -2.273704 6 0 -2.904874 1 0 3.387302 6 0 -1.781597 1 0 -1.533110 6 0 -1.533110 6 0 -1.24300 6 0 -1.124300	Standard orientation:AtomicAtomicCoordinates (AngslNumberTypeXY170-0.0458312.221734170-2.853887-0.260154170-2.5845450.465842170-2.5845450.465842170-3.5677045.3570571701.093510-1.9724461700.176979-2.110520170-3.737676-5.11623460-1.7935453.63715010-1.6118234.40766360-2.2737041.633467602.9048741.179943103.3873021.93387060-1.781597-3.45478710-1.533110-4.23196660-2.827382-3.62029060-1.1243002.42029360-2.426169-1.435039	Standard orientation:AtomicCoordinates (Angstroms)NumberTypeXYZ170-0.0458312.2217342.185442170-2.853887-0.2601542.129084170-2.853887-0.2601542.129084170-2.5845450.465842-2.399214170-3.5677045.357057-0.3966091701.093510-1.9724461.7960581700.176979-2.110520-2.114384170-3.737676-5.1162340.00441160-1.7935453.6371500.73969310-1.6118234.4076631.47844260-2.2737041.633467-1.125293602.9048741.179943-0.815524103.3873021.933870-1.42670260-1.781597-3.454787-0.89673010-1.533110-4.231966-1.60846760-2.827382-3.620200.00603960-2.827382-3.6202900.00603960-2.827382-3.6202900.00603960-2.827382-3.6202900.086522	Standard orientation:20AtomicAtomicCoordinates (Angstroms)22NumberTypeXYZ23	Standard orientation: 20 6 Atomic Atomic Coordinates (Angstroms) 22 6 Number Type X Y Z 23 1	Standard orientation: 20 6 0 Atomic Atomic Coordinates (Angstroms) 22 6 0 Number Type X Y Z 23 1 0 17 0 -0.045831 2.221734 2.185442 25 6 0 17 0 -2.853887 -0.260154 2.129084 26 6 0 17 0 -2.853887 -0.260154 2.129084 26 6 0 17 0 -2.854545 0.465842 -2.399214 27 6 0 17 0 -3.567704 5.357057 -0.396609 28 6 0 17 0 1.093510 -1.972446 1.796058 29 6 0 17 0 0.176979 -2.110520 -2.114384 30 1 0 17 0 -1.611823 4.407663 1.478442 33 6 0 10 -1.611823 4.407663 1.478442 33 6 0 0	Standard orientation:2060-3.161083AtomicAtomicCoordinates (Angstroms)2110-3.964418AtomicAtomicCoordinates (Angstroms)2260-2.963700NumberTypeXYZ2310-3.667234	Standard orientation: 20 6 0 -3.161083 -2.616661 Atomic Atomic Coordinates (Angstroms) 22 6 0 -2.963700 2.839029 Number Type X Y Z 23 1 0 -3.667234 2.999799

*o*PyPyBTM' in dichloromethane UM06 / 6-31G(d)

		Standard of	prientation:			20	6	0	-3.109903	-2.622353	0.907992
				-		21	1	0	-3.907743	-2.768545	1.630655
Center	Atomic	Atomic	Coor	dinates (Angst	roms)	22	6	0	-2.980212	2.796498	-1.226816
Number	Number	Туре	Х	Y	Z	23	1	0	-3.686689	2.956329	-2.036575
				-		24	6	0	-1.330224	-1.192151	-0.009155
1	17	0	-0.067229	2.174184	2.166715	25	6	0	-1.331197	1.346749	-0.120798
2	17	0	-2.794430	-0.264688	2.114379	26	6	0	1.719411	-0.709278	0.695123
3	17	0	-2.529239	0.442629	-2.410359	27	6	0	-2.749928	3.777754	-0.274641
4	17	0	-3.629186	5.277372	-0.365701	28	6	0	-0.594871	0.076525	-0.024698
5	17	0	1.044553	-1.851416	1.857948	29	6	0	1.511630	1.094466	-0.822537
6	17	0	0.191894	-2.071649	-2.122048	30	1	0	0.915521	1.778927	-1.425036
7	17	0	-3.659663	-5.116507	0.014304	31	6	0	5.113696	0.202843	-0.165431
8	6	0	-1.831056	3.591028	0.748875	32	6	0	5.839016	1.364023	-0.447661
9	1	0	-1.666357	4.359371	1.499128	33	6	0	7.036092	-1.014608	0.068271
10	6	0	-2.269165	1.607934	-1.137097	34	6	0	7.225929	1.300312	-0.468968
11	6	0	-1.041662	-2.248669	-0.898659	35	1	0	5.331185	2.310191	-0.620540
12	6	0	2.889986	1.144770	-0.879235	36	6	0	3.633135	0.224080	-0.134334
13	1	0	3.380934	1.865708	-1.527689	37	7	0	3.023080	-0.681011	0.648613
14	6	0	0.851052	0.132649	-0.038164	38	1	0	7.813207	2.192038	-0.677787
15	6	0	-1.737450	-3.447086	-0.903189	39	1	0	7.488625	-1.985066	0.279818
16	1	0	-1.485666	-4.226345	-1.617074	40	7	0	5.706954	-0.970766	0.095503
17	6	0	-2.771295	-3.619326	0.005951	41	6	0	7.844679	0.084985	-0.209611
18	6	0	-1.141722	2.390310	0.808995	42	1	0	8.927252	-0.013841	-0.215003
19	6	0	-2.390008	-1.437297	0.886163	 					

tpyPyBTM' in dichloromethane UB3LYP / 6-31G(d)

		Standard of	prientation:			29	6	0	-0.435699	1.295430	-0.384545
				-		30	1	0	-1.013683	2.142587	-0.737700
Center	Atomic	Atomic	Coor	dinates (Angst	roms)	31	6	0	3.169741	0.190245	-0.006894
Number	Number	Туре	Х	Y	Z	32	6	0	3.831100	-1.002744	0.310803
				-		33	6	0	3.955622	1.301915	-0.335630
1	17	0	-2.063037	1.586363	2.705220	34	6	0	5.230631	-1.040030	0.302335
2	17	0	-4.866854	-0.775765	1.949367	35	1	0	3.245264	-1.881250	0.546862
3	17	0	-4.505566	1.114206	-2.229609	36	6	0	5.351440	1.176309	-0.358808
4	17	0	-5.535389	5.307177	0.973413	37	1	0	3.502998	2.261947	-0.548094
5	17	0	-0.909889	-2.371562	1.230861	38	7	0	5.971504	0.029231	-0.037402
6	17	0	-1.757916	-1.465356	-2.575653	39	6	0	1.687171	0.243688	0.011169
7	17	0	-5.721156	-4.892907	-1.395247	40	7	0	1.053852	-0.856895	0.467935
8	6	0	-3.783711	3.340773	1.650944	41	6	0	6.229155	2.320216	-0.719774
9	1	0	-3.618095	3.888240	2.570339	42	6	0	7.552387	2.382936	-0.259014
10	6	0	-4.223292	1.903028	-0.686976	43	6	0	5.789017	3.369160	-1.542585
11	6	0	-3.029398	-1.924120	-1.454056	44	6	0	8.345314	3.469815	-0.611545
12	6	0	0.946326	1.357459	-0.410904	45	1	0	7.935390	1.585518	0.368693
13	1	0	1.430548	2.254067	-0.777828	46	7	0	6.539452	4.421246	-1.890119
14	6	0	-1.121228	0.134973	0.046412	47	1	0	4.785480	3.351091	-1.963271
15	6	0	-3.744426	-3.067466	-1.792249	48	6	0	7.794589	4.464833	-1.421118
16	1	0	-3.484496	-3.631426	-2.679229	49	1	0	9.370563	3.550689	-0.263962
17	6	0	-4.807700	-3.457360	-0.983632	50	1	0	8.385975	5.331891	-1.709510
18	6	0	-3.114761	2.144396	1.415792	51	6	0	5.980189	-2.276288	0.647227
19	6	0	-4.418683	-1.586975	0.458795	52	6	0	7.287667	-2.476904	0.181005
20	6	0	-5.155911	-2.724895	0.145746	53	6	0	5.430208	-3.281240	1.459189
21	1	0	-5.972897	-3.038519	0.783324	54	6	0	7.959445	-3.646893	0.519041
22	6	0	-4.911605	3.095794	-0.479799	55	1	0	7.753058	-1.718894	-0.439741
23	1	0	-5.597818	3.467636	-1.230312	56	7	0	6.064051	-4.411507	1.793366
24	6	0	-3.325488	-1.128079	-0.317136	57	1	0	4.434088	-3.161296	1.880110
25	6	0	-3.301197	1.366778	0.243947	58	6	0	7.306439	-4.584961	1.320323
26	6	0	-0.254368	-0.904512	0.491326	59	1	0	8.969094	-3.834300	0.166818
27	6	0	-4.682157	3.804407	0.694236	60	1	0	7.801444	-5.513736	1.598093
28	6	0	-2.572188	0.096075	0.017542						

*o*PyPyBTM'·HSO₃CF₃ in dichloromethane UB3LYP / 6-31G(d)

		Standard c	orientation:			25	6	0	3.373915	-0.828506	0.151162
						26	6	0	-0.409122	-0.397828	0.045782
Center	Atomic	Atomic	Coord	dinates (Angst	roms)	27	6	0	5.742115	-2.294749	0.684329
Number	Number	Туре	Х	Y	Z	28	6	0	2.131292	-0.066165	-0.117268
						29	6	0	0.959456	-2.102324	-0.910774
1	17	0	2.155692	-1.939649	2.368642	30	1	0	1.922454	-2.503786	-1.205683
2	17	0	3.448233	1.574280	2.192302	31	6	0	-2.710851	-2.952175	-1.047200
3	17	0	4.543341	0.296036	-2.084785	32	6	0	-2.869622	-4.160659	-1.727546
4	17	0	7.203682	-3.197782	1.014774	33	6	0	-5.070902	-2.833768	-0.726292
5	17	0	-0.666973	1.082426	0.957086	34	6	0	-4.143201	-4.699022	-1.900302
6	17	0	0.916262	1.196865	-2.712682	35	1	0	-2.005765	-4.676586	-2.125342
7	17	0	2.452880	5.954688	-0.753685	36	6	0	-1.421212	-2.280821	-0.804806
8	6	0	4.634247	-2.461763	1.510555	37	7	0	-1.498829	-1.084648	-0.193077
9	1	0	4.670812	-3.128997	2.362490	38	1	0	-4.259325	-5.638264	-2.430901
10	6	0	4.535418	-0.714351	-0.650289	39	1	0	-5.867443	-2.229406	-0.298784
11	6	0	1.653811	2.080592	-1.386346	40	6	0	-5.261318	-4.032045	-1.396013
12	6	0	-0.186944	-2.836361	-1.161856	41	1	0	-6.262389	-4.427305	-1.517001
13	1	0	-0.109333	-3.809439	-1.631020	42	7	0	-3.828119	-2.341164	-0.575902
14	6	0	0.907372	-0.818451	-0.318393	43	8	0	-4.489624	-0.089036	0.914572
15	6	0	1.724654	3.459155	-1.548247	44	1	0	-3.748927	-1.440951	-0.060568
16	1	0	1.310761	3.927047	-2.432561	45	16	0	-5.905117	0.280175	1.212868
17	6	0	2.352409	4.218505	-0.565183	46	8	0	-6.176054	0.577785	2.631909
18	6	0	3.480022	-1.736513	1.236117	47	8	0	-6.904955	-0.582570	0.534085
19	6	0	2.813022	2.237310	0.697822	48	6	0	-6.092086	1.919777	0.357799
20	6	0	2.900857	3.619370	0.563603	49	9	0	-5.228120	2.816712	0.856280
21	1	0	3.373214	4.213512	1.335708	50	9	0	-5.857163	1.794675	-0.958621
22	6	0	5.706417	-1.425041	-0.400119	51	9	0	-7.336554	2.395902	0.519228
23	1	0	6.563949	-1.310510	-1.051177						
24	6	0	2.190437	1.400975	-0.261998						

*o*PyPyBTM'·HSO₃CF₃ in dichloromethane UM06 / 6-31G(d)

		Standard c	prientation:			25	6	0	3.273020	-0.882520	0.192089
						26	6	0	-0.451039	-0.377908	-0.065580
Center	Atomic	Atomic	Coord	dinates (Angst	roms)	27	6	0	5.565930	-2.344303	0.924341
Number	Number	Туре	Х	Y	Z	28	6	0	2.076637	-0.104691	-0.166058
						29	6	0	0.888686	-2.093693	-1.022993
1	17	0	1.901942	-1.846345	2.359737	30	1	0	1.854370	-2.511454	-1.303112
2	17	0	3.313023	1.540509	2.139006	31	6	0	-2.785785	-2.838832	-1.235652
3	17	0	4.551034	0.126201	-2.008645	32	6	0	-2.975497	-3.994903	-1.981314
4	17	0	6.983468	-3.243328	1.380595	33	6	0	-5.129533	-2.680256	-0.880467
5	17	0	-0.659581	1.091965	0.859314	34	6	0	-4.261354	-4.487065	-2.169787
6	17	0	0.990344	1.089069	-2.817318	35	1	0	-2.125519	-4.505819	-2.421938
7	17	0	2.572071	5.849441	-0.952011	36	6	0	-1.488239	-2.207063	-0.965337
8	6	0	4.413401	-2.461054	1.689557	37	7	0	-1.550937	-1.025836	-0.334331
9	1	0	4.391386	-3.090787	2.574523	38	1	0	-4.407974	-5.390924	-2.755429
10	6	0	4.470535	-0.818442	-0.544243	39	1	0	-5.906547	-2.077974	-0.405468
11	6	0	1.701390	1.998633	-1.506577	40	6	0	-5.354821	-3.826900	-1.617741
12	6	0	-0.269985	-2.789573	-1.311055	41	1	0	-6.367462	-4.191384	-1.753551
13	1	0	-0.213242	-3.759714	-1.796161	42	7	0	-3.876953	-2.232004	-0.717226
14	6	0	0.849345	-0.828605	-0.411428	43	8	0	-4.385824	-0.177141	1.040622
15	6	0	1.812808	3.365080	-1.704244	44	1	0	-3.761309	-1.371834	-0.138488
16	1	0	1.443325	3.820390	-2.618681	45	16	0	-5.768980	0.285831	1.297180
17	6	0	2.420909	4.132403	-0.720706	46	8	0	-6.106520	0.449165	2.711856
18	6	0	3.293584	-1.736666	1.314115	47	8	0	-6.784810	-0.382689	0.466095
19	6	0	2.778161	2.186387	0.609813	48	6	0	-5.746024	1.999809	0.644187
20	6	0	2.907292	3.556760	0.443283	49	9	0	-4.837928	2.728683	1.283515
21	1	0	3.362911	4.164390	1.220040	50	9	0	-5.449747	1.997851	-0.652218
22	6	0	5.610607	-1.529118	-0.196754	51	9	0	-6.936307	2.569282	0.803729
23	1	0	6.510174	-1.457667	-0.801685						
24	6	0	2.177102	1.345794	-0.349006						

tpyPyBTM'·Zn(OCOCH₃)₂ in dichloromethane UB3LYP / 6-31G(d)

		Standard o	prientation:			37	6	0	5.751103	3.236910	-1.786062
Contor	A tomio	Atomia	Coor	- dinatas (Anast	roms)	38	6	0	7.030306	-2.776430	-0.014274
Number	Number	Type	X	uniates (Angst Y	Z.	40	6	0	-1 245621	0.230185	0.009079
					2	41	6	0	5.062558	2.062767	-1 501294
1	17	0	4.004144	1.465909	-2.767533	42	6	0	5.604407	-3.016247	1.929010
2	17	0	2.803983	-2.401910	-1.156848	43	6	0	4,907641	-1.878374	1.538725
3	17	0	6.428823	1.168714	2.189136	44	6	0	6.665871	-3.455196	1.143350
4	17	0	6.778422	-0.901159	-1.900054	45	1	0	-1.526420	2.002042	1.216715
5	17	0	3.637875	-1.353607	2.632904	46	1	0	-7.535618	2.238660	1.812282
6	17	0	7.533405	5.201516	-1.189129	47	1	0	-1.345364	-1.567540	-1.153725
7	17	0	7.555982	-4.884461	1.620394	48	1	0	2.951505	2.183378	0.631618
8	7	0	-5.614394	1.769024	1.274854	49	1	0	-7.335287	-2.335240	-1.777773
9	7	0	-4.024384	0.108291	0.013710	50	1	0	0.503942	2.324657	0.649611
10	7	0	-5.464314	-1.694281	-1.238723	51	1	0	-4.451197	4.980417	3.083088
11	7	0	0.854496	-0.849020	-0.438913	52	1	0	-6.888021	4.367362	2.996222
12	6	0	-3.316663	-0.839601	-0.621276	53	1	0	-6.498438	-4.396742	-2.960085
13	6	0	5.234945	1.333505	-0.296675	54	1	0	-4.015961	-4.785610	-3.051952
14	6	0	-2.008072	1.201257	0.672126	55	1	0	7.561721	3.458737	1.091789
15	6	0	3.037457	0.139294	-0.054269	56	1	0	-2.797637	3.485203	2.000869
16	6	0	-6.505115	2.573792	1.865919	57	1	0	-2.502893	-3.142509	-1.973456
17	6	0	-1.922836	-0.809934	-0.642036	58	1	0	5.596235	3.746704	-2.728712
18	6	0	2.364810	1.324390	0.324988	59	1	0	7.845786	-3.128758	-0.633289
19	6	0	-3.401343	1.110218	0.651670	60	1	0	5.332207	-3.538184	2.837769
20	6	0	-6.278831	-2.576242	-1.830037	61	30	0	-6.167105	0.008130	0.017712
21	6	0	6.311850	-1.642145	-0.379382	62	8	0	-6.889849	-1.179192	1.375548
22	6	0	2.162353	-0.908966	-0.464721	63	8	0	-6.998863	1.139292	-1.322303
23	6	0	0.982678	1.399707	0.351414	64	6	0	-7.953165	-0.831695	2.035159
24	6	0	6.163329	1.894372	0.613315	65	6	0	-8.012606	0.704207	-2.007758
25	6	0	-4.782429	4.077650	2.579209	66	8	0	-8.537678	-0.411017	-1.883374
26	6	0	-4.304664	2.081741	1.327291	67	8	0	-8.585232	0.221669	1.872695
27	6	0	-4.131561	-1.887543	-1.293524	68	6	0	-8.404403	-1.856896	3.071571
28	6	0	-6.133296	3.742649	2.530874	69	1	0	-9.289797	-1.507009	3.606383
29	6	0	0.235977	0.271445	-0.013779	70	1	0	-8.629196	-2.809562	2.579269
30	6	0	5.221619	-1.135666	0.370923	71	1	0	-7.596695	-2.047764	3.786912
31	6	0	-5.802777	-3.706360	-2.495440	72	6	0	-8.550002	1.705502	-3.026430
32	6	0	-4.427029	-3.917236	-2.546450	73	1	0	-7.763797	1.969049	-3.742893
33	6	0	4.487898	0.083925	-0.018737	74	1	0	-9.407125	1.293382	-3.563067
34	6	0	6.870856	3.065915	0.356431	75	1	0	-8.846531	2.630640	-2.520186
35	6	0	-3.851567	3.235893	1.972174						
36	6	0	-3.575601	-2.994271	-1.941016						

Extracted results of TD-DFT calculation.

*o*PyPyBTM' in dichloromethane UB3LYP / 6-31G(d)

Excitation energies and oscillator strengths:	137B ->141B -0.32338	Excited State 8: 2.248-A 3.2576 eV 380.60
	139B ->141B 0.59831	nm f=0.1906 <\$**2>=1.013
Excited State 1: 2.227-A 2.4483 eV 506.41	140B ->141B 0.26691	140A ->143A -0.10276
nm f=0.0397 <s**2>=0.990</s**2>		141A ->143A 0.79622
141A ->142A -0.39989	Excited State 5: 2.195-A 2.9990 eV 413.42	135B ->141B -0.20333
140B ->141B 0.86316	nm f=0.2035 <\$**2>=0.955	136B ->141B 0.20462
This state for optimization and/or second-order	140A ->142A -0.10632	137B ->141B -0.39583
correction.	141A ->142A -0.45149	
Total Energy, E(TD-HF/TD-KS) = -4213.21682106	141A ->143A 0.14102	Excited State 9: 2.146-A 3.3796 eV 366.86
Copying the excited state density for this state as the 1-	135B ->141B 0.51025	nm f=0.0576 <s**2>=0.902</s**2>
particle RhoCI density.	136B ->141B -0.20523	141A ->142A 0.11224
	138B ->141B 0.52631	141A ->144A -0.39918
Excited State 2: 2.268-A 2.7715 eV 447.35	139B ->141B 0.21883	141A ->145A 0.16181
nm f=0.0219 <\$**2>=1.036	140B ->141B -0.20845	141A ->146A -0.17462
140A ->143A -0.10287		133B ->141B -0.43411
141A ->142A 0.14463	Excited State 6: 2.118-A 3.0268 eV 409.62	134B ->141B 0.69184
141A ->143A 0.35310	nm f=0.0038 <s**2>=0.871</s**2>	140B ->141B 0.10076
135B ->143B -0.10058	141A ->144A -0.13966	
136B ->141B -0.18574	135B ->141B 0.16824	Excited State 10: 2.233-A 3.4397 eV 360.46
137B ->141B 0.78620	136B ->141B 0.89113	nm f=0.0627 <s**2>=0.996</s**2>
138B ->141B -0.14012	137B ->141B 0.18863	141A ->144A 0.61228
139B ->141B 0.25035	138B ->141B 0.11037	141A ->145A -0.16153
	139B ->141B 0.24380	141A ->146A 0.15046
Excited State 3: 2.141-A 2.8982 eV 427.80		132B ->141B -0.19115
nm f=0.0643 <\$**2>=0.896	Excited State 7: 2.305-A 3.1055 eV 399.24	133B ->141B 0.24432
141A ->142A 0.44447	nm f=0.0360 <s**2>=1.078</s**2>	134B ->141B 0.58279
135B ->141B -0.10095	137A ->143A 0.11833	140B ->141B -0.13265
137B ->141B 0.14739	141A ->142A 0.20364	
138B ->141B 0.75599	141A ->143A 0.13029	Excited State 11: 2.474-A 3.5253 eV 351.70
139B ->141B -0.29640	141A ->148A -0.13631	nm f=0.0188 <s**2>=1.280</s**2>
140B ->141B 0.22870	133B ->141B 0.15183	135A ->142A 0.12773
	134B ->141B -0.12832	140A ->142A 0.18708
Excited State 4: 2.182-A 2.9925 eV 414.32	135B ->141B 0.58612	141A ->144A -0.54242
nm f=0.1601 <s**2>=0.940</s**2>	138B ->141B -0.25551	141A ->145A -0.14842
141A ->142A 0.50578	139B ->141B -0.55355	132B ->141B -0.11936
133B ->141B 0.15414	139B ->142B -0.14652	133B ->141B 0.62261
135B ->141B 0.21545	140B ->141B 0.12974	134B ->141B 0.13354
136B ->141B -0.18299		140B ->142B -0.20136

*o*PyPyBTM' in dichloromethane UM06 / 6-31G(d)

Excitation energies and oscillator strengths:	136B ->144B 0.12520	138B ->141B -0.27015
	137B ->141B 0.14741	139B ->141B -0.15422
Excited State 1: 2.387-A 2.5404 eV 488.06	138B ->141B 0.34338	
nm f=0.0176 <s**2>=1.174</s**2>	139B ->141B -0.20146	Excited State 7: 2.283-A 3.3441 eV 370.76
140A ->142A -0.12840	139B ->143B 0.10531	nm f=0.1990 <s**2>=1.053</s**2>
141A ->142A -0.45517	140B ->141B -0.23893	140A ->143A -0.10650
131B ->141B -0.10418	140B ->142B 0.18131	141A ->143A 0.63660
134B ->141B 0.12607		135B ->141B -0.15638
140B ->141B 0.79075	Excited State 4: 2.386-A 3.0715 eV 403.66	136B ->141B 0.27811
140B ->142B 0.13920	nm f=0.2241 <s**2>=1.173</s**2>	137B ->141B -0.28753
This state for optimization and/or second-order	138A ->143A -0.10008	138B ->141B 0.33699
correction.	139A ->143A -0.14783	139B ->141B 0.36964
Total Energy, E(TD-HF/TD-KS) = -4212.29979082	141A ->142A 0.60562	
Copying the excited state density for this state as the 1-	141A ->148A -0.15776	Excited State 8: 2.339-A 3.4143 eV 363.13
particle RhoCI density.	134B ->141B 0.18415	nm f=0.0222 <s**2>=1.118</s**2>
	135B ->141B 0.34263	141A ->143A 0.17154
Excited State 2: 2.511-A 2.8193 eV 439.77	136B ->144B 0.10818	133B ->141B 0.16839
nm f=0.0088 <s**2>=1.327</s**2>	137B ->141B 0.19837	135B ->141B -0.19501
140A ->143A 0.14199	139B ->141B 0.18431	136B ->141B 0.16980
141A ->142A -0.11919	139B ->143B 0.13286	137B ->141B 0.83662
141A ->143A -0.41839	140B ->141B 0.41878	137B ->142B 0.26735
135B ->143B 0.15402		138B ->141B 0.12013
136B ->141B 0.13996	Excited State 5: 2.155-A 3.1620 eV 392.11	
138B ->141B 0.43341	nm f=0.1258 <s**2>=0.910</s**2>	Excited State 9: 2.334-A 3.5230 eV 351.92
139B ->141B 0.59582	141A ->142A 0.29855	nm f=0.0947 <s**2>=1.112</s**2>
139B ->142B -0.12510	141A ->143A -0.15241	141A ->143A -0.12794
	141A ->145A -0.14598	141A ->144A 0.68508
Excited State 3: 2.537-A 3.0249 eV 409.88	135B ->141B -0.21228	141A ->145A -0.27150
nm f=0.0969 <s**2>=1.359</s**2>	138B ->141B 0.61864	141A ->146A 0.29672
136A ->144A -0.10820	139B ->141B -0.57720	141A ->147A 0.11218
138A ->143A -0.11558	140B ->141B 0.15896	133B ->141B -0.23028
139A ->143A -0.13213		134B ->141B 0.26256
140A ->142A -0.20090	Excited State 6: 2.174-A 3.2404 eV 382.62	135B ->141B 0.14703
141A ->142A -0.38187	nm f=0.0063 <s**2>=0.931</s**2>	136B ->141B 0.16482
141A ->143A 0.15161	141A ->143A -0.12343	140B ->141B -0.16034
141A ->148A -0.12330	141A ->144A -0.23613	
135B ->141B 0.52670	136B ->141B 0.86979	

*o*PyPyBTM'·HSO₃CF₃ in dichloromethane UB3LYP / 6-31G(d)

Excitation energies and oscillator strengths:	177B ->178B -0.12076	178A ->181A 0.71559
		178A ->182A -0.27270
Excited State 1: 2.237-A 2.2568 eV 549.38	Excited State 5: 2.156-A 2.7825 eV 445.59	172B ->181B -0.10812
nm f=0.0491 <s**2>=1.001</s**2>	nm f=0.0010 <s**2>=0.912</s**2>	173B ->178B -0.20878
178A ->179A 0.80699	174B ->178B -0.10357	175B ->178B 0.18521
178A ->180A 0.13187	177B ->178B 0.98520	175B ->179B -0.10245
172B ->178B 0.19300		176B ->178B 0.11279
173B ->178B 0.16053	Excited State 6: 2.086-A 2.7861 eV 445.02	176B ->181B 0.12795
174B ->178B -0.13271	nm f=0.0068 <s**2>=0.838</s**2>	
176B ->178B 0.42524	173B ->178B 0.46824	Excited State 10: 2.599-A 3.4041 eV 364.22
This state for optimization and/or second-order	174B ->178B 0.85369	nm f=0.0018 <s**2>=1.439</s**2>
correction.	174B ->179B 0.10455	173A ->179A -0.15353
Total Energy, E(TD-HF/TD-KS) = -5175.27634660		176A ->179A -0.26961
Copying the excited state density for this state as the 1-	Excited State 7: 2.365-A 2.9749 eV 416.76	178A ->179A 0.13526
particle RhoCI density.	nm f=0.0320 <s**2>=1.148</s**2>	178A ->180A -0.32854
	173A ->179A 0.10806	178A ->181A 0.20704
Excited State 2: 2.102-A 2.5434 eV 487.47	176A ->179A 0.15736	178A ->182A 0.49473
nm f=0.2265 <s**2>=0.855</s**2>	178A ->179A -0.22243	178A ->183A 0.14604
178A ->179A -0.41277	178A ->180A 0.13200	167B ->178B -0.15823
173B ->178B -0.14558	178A ->182A 0.10308	168B ->178B -0.39197
175B ->178B 0.30439	178A ->185A -0.15452	172B ->178B 0.20719
176B ->178B 0.79919	178A ->188A -0.11166	172B ->179B 0.10299
176B ->179B 0.11350	172B ->178B 0.83291	176B ->179B 0.19461
	176B ->179B -0.11211	
Excited State 3: 2.122-A 2.6318 eV 471.09		Excited State 11: 2.622-A 3.4920 eV 355.05
nm f=0.0603 <s**2>=0.876</s**2>	Excited State 8: 2.419-A 3.2433 eV 382.27	nm f=0.0299 <s**2>=1.469</s**2>
178A ->179A 0.17106	nm f=0.1239 <s**2>=1.213</s**2>	167A ->179A 0.10591
178A ->181A -0.15186	173A ->179A -0.11307	173A ->179A 0.17414
173B ->178B -0.31497	176A ->179A -0.15933	176A ->179A 0.26195
174B ->178B 0.11395	178A ->180A 0.82407	178A ->181A 0.16485
175B ->178B 0.81767	178A ->181A 0.23305	178A ->182A 0.40061
175B ->179B 0.13292	178A ->182A 0.16447	165B ->178B -0.17346
176B ->178B -0.32349	178A ->185A 0.12843	166B ->178B -0.10918
	173B ->178B -0.14291	167B ->178B 0.33964
Excited State 4: 2.126-A 2.7386 eV 452.73	174B ->178B 0.10413	168B ->178B -0.33923
nm f=0.1570 <s**2>=0.880</s**2>	176B ->179B 0.12718	169B ->178B 0.24717
178A ->179A -0.22273		171B ->178B 0.15165
178A ->181A 0.11936	Excited State 9: 2.616-A 3.2932 eV 376.49	172B ->178B -0.30036
173B ->178B 0.71827	nm f=0.1180 <s**2>=1.461</s**2>	172B ->179B -0.12511
174B ->178B -0.42007	174A ->184A 0.11410	173B ->179B -0.16122
175B ->178B 0.39304	175A ->183A 0.10167	174B ->179B 0.10517
176B ->178B -0.10865	178A ->180A -0.16859	176B ->179B -0.25778

*o*PyPyBTM'·HSO₃CF₃ in dichloromethane UM06 / 6-31G(d)

Excitation energies and oscillator strengths:		173A ->184A -0.12494
	Excited State 4: 2.160-A 2.9446 eV 421.06	174A ->183A -0.12949
Excited State 1: 2.386-A 2.3530 eV 526.91	nm f=0.0591 <s**2>=0.917</s**2>	174A ->184A 0.11882
nm f=0.0359 <s**2>=1.173</s**2>	178A ->179A -0.12868	176A ->183A 0.10226
177A ->179A 0.13542	178A ->181A 0.10699	177A ->182A 0.10843
178A ->179A 0.75332	173B ->178B -0.46437	178A ->180A 0.10978
178A ->180A 0.16106	174B ->178B -0.51704	178A ->181A 0.61752
172B ->178B 0.21236	175B ->178B -0.10529	178A ->182A -0.19656
173B ->178B -0.10428	176B ->178B 0.57978	172B ->181B -0.10800
174B ->178B -0.19525	176B ->179B 0.10797	173B ->178B 0.31170
177B ->178B -0.44174	177B ->178B 0.20621	173B ->184B -0.12710
This state for optimization and/or second-order		174B ->178B 0.20152
correction.	Excited State 5: 2.660-A 2.9957 eV 413.87	176B ->178B 0.28274
Total Energy, E(TD-HF/TD-KS) = -5174.14794121	nm f=0.0630 <s**2>=1.519</s**2>	177B ->178B -0.13461
Copying the excited state density for this state as the 1-	173A ->181A -0.10573	177B ->182B 0.10459
particle RhoCI density.	174A ->179A -0.10331	
	176A ->181A -0.13295	Excited State 8: 2.569-A 3.3643 eV 368.53
Excited State 2: 2.242-A 2.6738 eV 463.71	177A ->179A 0.18544	nm f=0.0624 <s**2>=1.400</s**2>
nm f=0.1509 <s**2>=1.006</s**2>	178A ->179A -0.25942	177A ->179A -0.19184
178A ->179A 0.34625	178A ->185A 0.19261	177A ->181A 0.10102
178A ->181A 0.17009	178A ->188A -0.11440	178A ->180A 0.64304
178A ->182A -0.12980	172B ->178B 0.70344	178A ->181A 0.10675
173B ->178B -0.18556	173B ->178B 0.11755	178A ->182A 0.38055
176B ->178B -0.43829	176B ->181B 0.10951	178A ->183A 0.16545
176B ->179B -0.12648	177B ->179B 0.17203	178A ->185A -0.13251
177B ->178B 0.66336		172B ->178B 0.21603
177B ->179B 0.15874	Excited State 6: 2.143-A 3.0283 eV 409.41	172B ->179B 0.10079
	nm f=0.0049 <s**2>=0.898</s**2>	174B ->178B 0.13978
Excited State 3: 2.238-A 2.7768 eV 446.50	172B ->178B -0.10697	177B ->178B 0.16797
nm f=0.2066 <s**2>=1.003</s**2>	173B ->178B 0.67485	177B ->179B -0.15385
178A ->179A 0.37595	173B ->179B 0.12067	
178A ->181A -0.21849	174B ->178B -0.65333	Excited State 9: 2.235-A 3.3793 eV 366.89
173B ->178B 0.30083	174B ->179B -0.13220	nm f=0.0004 <s**2>=0.998</s**2>
174B ->178B 0.31869	177B ->178B 0.10988	175B ->178B 0.97969
176B ->178B 0.55230		175B ->179B -0.13265
176B ->179B 0.13609	Excited State 7: 2.680-A 3.2983 eV 375.90	
177B ->178B 0.43901	nm f=0.1479 <s**2>=1.545</s**2>	

tpyPyBTM' in dichloromethane UB3LYP / 6-31G(d)

Excitation energies and oscillator strengths:	181A ->182A 0.36331	180B ->183B -0.43025
	181A ->184A -0.11290	
Excited State 1: 2.312-A 2.4190 eV 512.54	181A ->187A 0.10138	Excited State 9: 2.364-A 3.2520 eV 381.26
nm f=0.0057 <s**2>=1.087</s**2>	171B ->181B -0.17328	nm f=0.0287 <s**2>=1.148</s**2>
179A ->182A 0.11645	173B ->181B 0.25852	172A ->182A -0.11054
181A ->182A 0.52424	174B ->181B 0.56768	181A ->183A 0.13528
181A ->186A 0.11564	176B ->181B 0.46603	181A ->184A -0.30923
174B ->181B -0.12768	177B ->181B -0.31603	172B ->181B 0.54581
179B ->181B 0.74721	178B ->181B 0.10079	172B ->182B 0.20116
This state for optimization and/or second-order	179B ->181B -0.18202	175B ->181B 0.37258
correction.		176B ->181B 0.13763
Total Energy, E(TD-HF/TD-KS) = -4707.41737881	Excited State 6: 2.102-A 2.9621 eV 418.56	178B ->181B -0.50867
Copying the excited state density for this state as the 1-	nm f=0.0081 <s**2>=0.854</s**2>	179B ->181B 0.12422
particle RhoCI density.	181A ->185A -0.12147	180B ->183B 0.10068
	173B ->181B 0.85540	
Excited State 2: 2.214-A 2.4711 eV 501.74	174B ->181B -0.42652	Excited State 10: 2.311-A 3.2656 eV 379.67
nm f=0.0047 <s**2>=0.975</s**2>	176B ->181B 0.11314	nm f=0.0144 <s**2>=1.085</s**2>
180A ->182A -0.11204		181A ->183A -0.15303
180B ->181B 0.97199	Excited State 7: 2.698-A 3.0132 eV 411.47	181A ->184A 0.20370
180B ->182B 0.14475	nm f=0.0950 <s**2>=1.569</s**2>	168B ->181B -0.12660
	179A ->182A -0.17127	171B ->181B -0.23533
Excited State 3: 2.248-A 2.7285 eV 454.40	180A ->183A -0.30022	172B ->181B 0.45921
nm f=0.0820 <s**2>=1.013</s**2>	181A ->182A 0.37162	172B ->182B 0.17582
181A ->182A 0.31236	181A ->186A 0.17229	175B ->181B 0.32208
181A ->184A 0.26899	181A ->193A 0.13301	176B ->181B -0.15069
173B ->181B -0.27767	171B ->181B 0.51906	177B ->181B -0.20086
174B ->181B -0.43123	172B ->181B 0.10936	178B ->181B 0.55980
176B ->181B 0.54824	174B ->181B -0.18378	179B ->181B -0.16841
177B ->181B 0.20904	177B ->181B -0.20840	
178B ->181B -0.15490	178B ->181B 0.16048	Excited State 11: 2.279-A 3.2689 eV 379.29
179B ->181B -0.25988	179B ->181B -0.16161	nm f=0.1355 <s**2>=1.048</s**2>
	179B ->182B -0.14662	181A ->183A -0.17190
Excited State 4: 2.156-A 2.8078 eV 441.58	180B ->183B 0.28147	181A ->184A 0.66179
nm f=0.2027 <s**2>=0.912</s**2>		173B ->181B 0.21890
181A ->182A -0.48957	Excited State 8: 2.947-A 3.1175 eV 397.71	174B ->181B 0.25059
181A ->184A 0.12336	nm f=0.0002 <s**2>=1.920</s**2>	176B ->181B -0.19340
171B ->181B 0.16721	177A ->182A -0.10533	177B ->181B -0.18915
176B ->181B 0.56347	180A ->183A 0.40949	178B ->181B -0.45759
177B ->181B -0.31102	180A ->185A -0.11386	
178B ->181B 0.16366	181A ->193A 0.10124	Excited State 12: 2.197-A 3.2976 eV 375.98
179B ->181B 0.43306	169B ->181B 0.15692	nm f=0.0112 <s**2>=0.957</s**2>
	171B ->181B 0.56363	180A ->183A -0.12610
Excited State 5: 2.113-A 2.9159 eV 425.20	172B ->181B 0.14910	181A ->184A 0.18752
nm f=0.2392 <s**2>=0.866</s**2>	177B ->182B 0.10309	171B ->181B 0.10760

172B ->181B 0.15256	180B ->182B -0.50999	Excited State 15: 2.149-A 3.3872 eV 366.04
173B ->181B 0.13841	180B ->186B 0.19568	nm f=0.0051 <s**2>=0.905</s**2>
174B ->181B 0.33995		181A ->183A -0.12006
176B ->181B 0.13442	Excited State 14: 2.227-A 3.3655 eV 368.40	172B ->181B -0.46860
177B ->181B 0.76402	nm f=0.0885 <s**2>=0.990</s**2>	172B ->182B -0.12090
178B ->181B 0.29125	181A ->182A -0.10308	174B ->181B 0.10905
179B ->181B 0.17622	181A ->183A 0.61423	175B ->181B 0.83297
180B ->183B 0.13699	181A ->184A 0.15917	
	181A ->185A 0.42211	Excited State 16: 2.236-A 3.4578 eV 358.57
Excited State 13: 3.328-A 3.3268 eV 37	2.69 181A ->186A -0.10216	nm f=0.0119 <s**2>=1.000</s**2>
nm f=0.0021 <s**2>=2.520</s**2>	181A ->187A 0.19467	181A ->183A -0.20800
177A ->183A -0.14368	181A ->188A 0.22027	181A ->184A -0.11486
180A ->182A 0.62084	167B ->181B 0.11966	181A ->185A -0.14425
180A ->186A -0.20803	168B ->181B 0.33115	181A ->186A 0.11087
181A ->183A 0.10313	174B ->181B -0.13341	167B ->181B -0.11625
172B ->181B -0.15825	175B ->181B 0.17412	168B ->181B 0.86124
177B ->183B 0.13991	177B ->181B -0.11634	170B ->181B -0.12175
179B ->183B 0.10177	178B ->181B 0.13284	171B ->181B -0.13554
180B ->181B 0.17971		

tpyPyBTM'·Zn(OCOCH₃)₂ in dichloromethane UB3LYP / 6-31G(d)

Excitation energies and oscillator strengths:	222B ->228B 0.20731	nm f=0.0045 <s**2>=0.864</s**2>
	223B ->227B -0.18604	216B ->227B 0.63495
Excited State 1: 2.134-A 2.3546 eV 526.55	224B ->227B -0.29433	217B ->227B -0.58410
nm f=0.0001 <s**2>=0.889</s**2>		223B ->227B 0.40344
227A ->228A -0.10216	Excited State 6: 2.166-A 2.7273 eV 454.61	224B ->227B -0.21029
226B ->227B 0.98573	nm f=0.1388 <s**2>=0.923</s**2>	
This state for optimization and/or second-order	227A ->228A 0.27179	Excited State 11: 3.171-A 2.9595 eV 418.93
correction.	227A ->231A -0.19681	nm f=0.0185 <s**2>=2.264</s**2>
Total Energy, E(TD-HF/TD-KS) = -6943.68456371	216B ->227B 0.27243	215A ->228A -0.17183
Copying the excited state density for this state as the 1-	217B ->227B 0.27371	222A ->229A 0.49000
particle RhoCI density.	218B ->227B 0.69490	227A ->228A -0.20477
	218B ->228B -0.10568	214B ->227B -0.26055
Excited State 2: 2.298-A 2.3657 eV 524.09	220B ->227B 0.26577	215B ->227B 0.22540
nm f=0.0245 <s**2>=1.071</s**2>	221B ->227B -0.23366	215B ->228B 0.15885
227A ->228A 0.70841	222B ->227B -0.19511	217B ->227B 0.10584
227A ->230A -0.20428	223B ->227B 0.10787	222B ->229B -0.45542
214B ->227B -0.15110		223B ->227B 0.19100
217B ->227B -0.16803	Excited State 7: 2.127-A 2.8401 eV 436.55	223B ->229B 0.10101
220B ->227B -0.39362	nm f=0.1529 <s**2>=0.881</s**2>	224B ->227B -0.15548
221B ->227B 0.34165	227A ->228A 0.22526	224B ->229B 0.14181
226B ->227B 0.14437	227A ->231A -0.10506	
	216B ->227B 0.39503	Excited State 12: 2.470-A 3.0663 eV 404.34
Excited State 3: 2.132-A 2.4185 eV 512.65	217B ->227B 0.62365	nm f=0.0136 <s**2>=1.275</s**2>
nm f=0.0000 <s**2>=0.886</s**2>	218B ->227B -0.51994	222A ->229A 0.23294
225B ->227B 0.99571	220B ->227B -0.17188	227A ->229A -0.40219
	223B ->227B 0.14955	227A ->230A -0.13788
Excited State 4: 2.130-A 2.6436 eV 468.99		227A ->232A -0.10436
nm f=0.2801 <s**2>=0.884</s**2>	Excited State 8: 2.178-A 2.8808 eV 430.38	227A ->237A 0.10536
227A ->228A 0.46850	nm f=0.0003 <s**2>=0.936</s**2>	214B ->227B 0.65748
227A ->231A 0.14132	219B ->227B -0.12291	215B ->227B -0.16549
216B ->227B -0.17620	222B ->227B 0.37835	215B ->228B 0.10359
217B ->227B -0.15373	223B ->227B 0.38480	220B ->227B -0.11601
218B ->227B -0.30423	224B ->227B 0.81534	221B ->227B -0.20179
220B ->227B 0.58822	224B ->228B 0.10804	222B ->229B -0.23438
221B ->227B -0.40231		
222B ->227B 0.12859	Excited State 9: 2.193-A 2.8959 eV 428.14	Excited State 13: 2.255-A 3.1179 eV 397.65
	nm f=0.0021 <s**2>=0.953</s**2>	nm f=0.0002 <s**2>=1.021</s**2>
Excited State 5: 2.421-A 2.7096 eV 457.57	216B ->227B -0.45988	213B ->227B 0.11948
nm f=0.0046 <s**2>=1.215</s**2>	217B ->227B 0.13077	219B ->227B 0.93197
222A ->228A -0.19585	218B ->227B 0.11292	219B ->228B 0.18546
227A ->229A -0.10203	223B ->227B 0.74210	221B ->227B 0.15213
217B ->227B 0.10759	224B ->227B -0.35002	224B ->227B 0.11876
218B ->227B 0.20344		
222B ->227B 0.82449	Excited State 10: 2.111-A 2.8989 eV 427.70	Excited State 14: 2.233-A 3.1280 eV 396.37

nm f=0.0339 <s**2>=0.997</s**2>	226A ->228A	0.99062	222A ->228A	0.33208
222A ->228A -0.1109	226A ->230A	0.10955	225A ->228A	0.85169
227A ->229A 0.6883	36		215B ->229B	0.10064
227A ->232A 0.1341	Excited State 17:	3.136-A 3.2454 eV 38	2.03 222B ->227B	0.15367
214B ->227B 0.1232	24 nm f=0.0048 <s< td=""><td>**2>=2.209</td><td>222B ->228B</td><td>-0.23938</td></s<>	**2>=2.209	222B ->228B	-0.23938
219B ->227B 0.1415	58 215A ->229A	-0.17017		
220B ->227B -0.3315	4 222A ->228A	0.53032	Excited State 19:	2.442-A 3.2813 eV 377.85
221B ->227B -0.5174	0 222A ->230A	0.12826	nm f=0.1582 <\$	***2>=1.241
	224A ->228A	-0.10617	216A ->235A	0.10229
Excited State 15: 2.230-A	3.1518 eV 393.38 225A ->228A	-0.49657	227A ->230A	0.18093
nm f=0.0178 <s**2>=0.993</s**2>	227A ->229A	0.12449	227A ->231A	0.78533
227A ->229A 0.4750	01 215B ->229B	0.17303	216B ->227B	0.24540
214B ->227B 0.3762	25 222B ->227B	0.27003	217B ->227B	0.16994
217B ->227B 0.1285	53 222B ->228B	-0.39254	218B ->227B	0.21224
220B ->227B 0.4495	57 222B ->230B	-0.11211		
221B ->227B 0.5446	51 224B ->228B	0.13006	Excited State 20:	2.763-A 3.3406 eV 371.15
			nm f=0.0006 <5	***2>=1.658
Excited State 16: 2.867-A	3.2016 eV 387.25 Excited State 18:	2.931-A 3.2631 eV 37	9.96 226B ->228B	0.98475
nm f=0.0004 <s**2>=1.806</s**2>	nm f=0.0016 <s< td=""><td>**2>=1.898</td><td>226B ->230B</td><td>0.11675</td></s<>	**2>=1.898	226B ->230B	0.11675