Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Practical Synthesis of Fragment- and Lead-Like Molecules Enriched in sp³ Character

Peter S. Campbell,^a Craig Jamieson,^{*,a} Iain Simpson,^b and Allan J. B. Watson^a

^aDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K. ^bAstraZeneca, IMED Oncology, Darwin Building, Unit 310 Cambridge Science Park, Cambridge, CB10 4EW, U.K.

Email: craig.jamieson@strath.ac.uk

Table of Contents

General Details	S2
General Experimental	S3
Array Synthesis	S5-S7
Characterisation Data of Products	S8-S35
NMR Spectra of Products	S36-S84
Chiral HPLC Data	S85-S86
Physicochemical Calculations	S87
References	S88

General

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods. Pd/C used is 10% Pd/C purchased from Sigma Aldrich.

Experimental Details

All reactions were carried out in oven-dried glassware, which was evacuated and purged with N_2 before use. Purging refers to a vacuum/nitrogen-refilling procedure. Room temperature was generally ca. 18 °C. Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer and sand-bath.

Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analysed under 254 nm UV light or developed using potassium permanganate solution. Strong cation exchange chromatography was carried out using Silicycle SiliaPrepTM Propylsulfonic Acid (SCX-2) cartridges.

Analysis of Products

¹H NMR spectra were recorded at 400 or 500 MHz, and ¹³C NMR spectra were recorded at 101 or 126 MHz. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl₃ referenced at 7.26 (¹H) and 77.16 ppm (¹³C), and Acetone-d₆ referenced at 2.05 (¹H) and 29.84 ppm (¹³C). High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

General Procedure A: Optimisation

To an oven dried 2-5 mL microwave vial was added *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), *catalysts*, *base* (3 eq.) and methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.). The vial was capped and purged, then 1,4-dioxane and water were added. The reaction mixture was stirred at 80 °C for 4 h, followed by the addition of MeOH (2 mL) and the appropriate hydrogen source. The reaction was stirred for 16 h at room temperature, before being diluted with ethyl acetate and filtered through Celite. The solvent was removed *in vacuo* and a ¹H NMR was performed on the crude material.

Entry	Catalyst (1	Pd/C	Hydrogen	Base	10:9
	mol%, 2 mg)		Source		
1	Pd(dppf)Cl ₂ .DCM	6 mol%, 16	H ₂ (balloon)	K ₂ CO ₃ , 104	100:0
		mg		mg	
2	Pd(dppf)Cl ₂ .DCM	6 mol%, 16	Et ₃ SiH (3 eq.,	K ₂ CO ₃ , 104	74:26
		mg	120 µL)	mg	
3	Pd(dppf)Cl ₂ .DCM	10 mol%, 26	Et ₃ SiH (3 eq.,	K ₂ CO ₃ , 104	39:61
		mg	120 µL)	mg	
4	PdXPhosG2	10 mol%, 26	NH ₄ HCO ₂ (10	K ₂ PO ₄ , 159	28:72
		mg	eq., 158 mg)	mg	
5	PdXPhosG2	10 mol%, 26	NH_4HCO_2 (10	K ₂ PO ₄ , 159	80:20
		mg	eq., 158 mg)	mg	
6	PdXPhosG2	12 mol%, 32	NH ₄ HCO ₂ (10	K ₂ PO ₄ , 159	100:0
		mg	eq., 158 mg)	mg	

General Procedure B: General Substrate Scope

To an oven dried 2-5 mL microwave vial was added boronic ester/acid (0.25 mmol, 1 equiv.), PdXPhosG2 (2 mg, 0.0025 mmol, 0.01 equiv.), 10% Pd/C (32 mg, 0.04 mmol, 0.12 equiv.), K_3PO_4 (159 mg, 0.75 mmol, 3 equiv.) and aryl halide (0.25 mmol, 1 equiv.). The vial was capped and purged, then 1,4-dioxane (800 µL) and water (200 µL) were added. The reaction mixture was stirred at 80 °C for 4 h, followed by the addition of NH₄HCO₂ in MeOH (1.25 M) (158 mg NH₄HCO₂ in 2 mL MeOH, 10 eq. 2.5 mmol). After this, the reaction was stirred for 16 h at room temperature. The

vial was de-capped, and the reaction mixture was diluted with ethyl acetate, filtered through Celite and rinsed through with further ethyl acetate. The solvent was removed *in vacuo* and the crude material was taken forward to purification.

General Procedure C: Wax capsule

To a boiling tube was added *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), PdXPhosG2 (2 mg, 0.0025 mmol, 0.01 equiv.), 10% Pd/C (32 mg, 0.04 mmol, 0.12 equiv.), K_3PO_4 (159 mg, 0.75 mmol, 3 equiv.), aryl halide (0.25 mmol, 1 eq.) and a wax capsule containing ammonium formate (158 mg, 2.5 mmol, 10 equiv.). The tube was capped with a Suba Seal, purged then charged with 1,4-dioxane (800 µL), water (200 µL) and MeOH (2 mL). The reaction was stirred at 65 °C for 16 h, filtered through Celite then concentrated *in vacuo* before being taken forward to purification.

<u>Synthesis of capsule</u>: $\geq 65\%$ paraffin wax was heated in a conical flask until fully melted and transferred to an unturned Suba Seal using a glass pipette. An NMR tube was placed in the molten wax to create a hollow centre and was held in position for ~1 minute until the wax had solidified. Following this, the Suba Seal was folded over to free the wax capsule, to which ammonium formate was added. Molten wax was dripped over the open capsule to fully encapsulate the ammonium formate, and then the full capsule was dipped in a conical flask of molten wax twice to ensure a full seal, then allowed to cool to room temperature.

Chiral HPLC

For Compound 22, Chiral HPLC was performed using a gradient of 5% IPA/hexanes to 10% IPA/hexanes over 20 minutes, using a ChiralpakIA column. For Compound 12s, Chiral HPLC was performed using an isocratic method of 30% IPA/hexanes over 20 minutes, using a ChiralpakIA column.

Array Synthesis

To an test tube was added Bpin (0.125 mmol, 1 eq.), PdXPhosG2 (1 mg, 0.00125 mmol, 0.01 eq.), Pd/C (16 mg, 0.015 mmol, 0.12 eq.), K_3PO_4 (79 mg, 0.375 mmol, 3 eq.) and aryl halide (0.125 mmol, 1 eq.). The test tube was sealed with a suba seal, purged with nitrogen, then 1,4-dioxane and water were added. The reaction mixture was stirred at 80 °C for 4 h, followed by the addition of NH_4HCO_2 in MeOH (1.25 M) (79 mg NH_4HCO_2 in 1 mL MeOH, 10 eq. 1.25 mmol). Following this, the reaction was stirred through Celite. Concentration *in vacuo* afforded the crude material, on which a ¹H NMR was performed. Conversion was determined by using 1,4-dinitrobenzene as an internal standard.

Compound 11a, tert-butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.). The crude material was taken up in ethyl acetate and washed with water (2 x 10 mL) and brine (10 mL), dried with Na₂SO₄ and concentrated *in vacuo* to afford the title compound as a white amorphous solid (79.6 mg, 99%).

Synthesised according to General Procedure C using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as a white amorphous solid (36.7 mg, 46%).

υ_{max} (neat): 2973, 2930, 2848, 1719, 1688 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, 2H, 2 x ArH, J = 8.3 Hz), 7.26 (d, 2H, 2 x ArH, J = 8.3 Hz), 4.25 (br. s, 2H, 2 x CH), 3.89 (s, 3H, CH₃), 2.80 (t, 2H, 2 x CH, J = 11.0 Hz), 2.70 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.82 (d, 2H, 2 x CH, J = 13.0 Hz), 1.62 (qd, 2H, 2 x CH, J = 12.7, 4.3 Hz), 1.47 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 167.1, 154.9, 151.2, 130.0, 128.5, 127.0, 79.7, 52.1, 44.3, 42.9, 33.0, 28.6.

HRMS (C₁₈H₂₆O₄N) [M+H]⁺ requires: 320.1856, observed: 320.1856

Consistent with previously reported data.¹

Compound 11b, tert-butyl 4-(2-aminophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromo nitrobenzene (51 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a dark yellow oil (66.2 mg, 96%).

 v_{max} (neat): 3456, 3357, 2971, 2921, 2850, 1677, 1625 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.10 – 7.02 (m, 2H, 2 x ArH), 6.79 (td, 1H, ArH, *J* = 7.5, 1.1 Hz), 6.70 (dd, 1H, ArH, *J* = 7.9, 1.1 Hz), 4.27 (br. s, 2H, 2 x CH), 3.64 (s, 2H, NH₂), 2.82 (t, 2H, 2 x CH, *J* =

11.3 Hz), 2.62 (tt, 1H, CH, *J* = 11.9, 3.2 Hz), 1.85 (d, 2H, 2 x CH, *J* = 13.3 Hz), 1.61 (qd, 2H, 2 x CH, *J* = 12.7, 4.3 Hz), 1.49 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.2, 154.4, 138.0, 127.9, 115.5, 79.8, 44.7, 41.9, 33.6, 28.7 (2C not observed).

HRMS (C₁₆H₂₅O₂N₂) [M+H]⁺ requires: 277.1911, observed: 277.1911

Compound 11c, tert-butyl 4-(3-aminophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromoaniline (27 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as an off-white solid (34.4 mg, 50%).

 v_{max} (neat): 3443, 3352, 2935, 2852, 1651, 1604 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.09 (t, 1H, ArH, J = 7.9 Hz), 6.60 (d, 1H, ArH, J = 7.6 Hz), 6.56 – 6.51 (m, 2H, 2 x ArH), 4.22 (br. s, 2H, 2 x CH), 3.63 (s, 2H, NH₂), 2.77 (t, 2H, 2 x CH, J = 10.7 Hz), 2.54 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.79 (d, 2H, 2 x CH, J = 13.0 Hz), 1.65 – 1.53 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 147.3, 146.7, 129.5, 117.3, 113.7, 113.3, 79.5, 44.6, 42.9, 33.2, 28.6.

HRMS (C₁₆H₂₅O₂N₂) [M+H]⁺ requires: 277.1911, observed: 277.1912

Compound 11d, tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromo nitrobenzene (50 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (67.6 mg, 98%).

Synthesised according to General Procedure B using benzyl (4-bromophenyl)carbamate (77 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(*2H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (53.0 mg, 77%).

Synthesised according to General Procedure C using 4-bromo nitrobenzene (50 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (47.6 mg, 69%).

v_{max} (neat): 3462, 3363, 2985, 2928, 2846, 1667 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 6.99 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 6.64 (d, 2 x ArH, *J* = 8.5 Hz), 4.21 (br. s, 2H, 2 x CH), 3.58 (br. s, 2H, NH₂), 2.77 (t, 2H, 2 x CH, *J* = 12.4 Hz), 2.53 (tt, 1H, CH, *J* = 12.1, 3.6 Hz), 1.77 (d, 2H, 2 x CH, *J* = 13.3 Hz), 1.62 – 1.50 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 144.8, 136.2, 127.7, 115.4, 79.5, 44.6, 42.0, 33.6, 28.6.

HRMS (C₁₆H₂₅O₂N₂) [M+H]⁺ requires: 277.1911, observed: 277.1911

Compound 11e, tert-butyl 4-(5-(trifluoromethyl)pyridin-3-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromo-5-(trifluoromethyl)pyridine (57 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound as a yellow oil (61.4 mg, 74%).

υ_{max} (neat): 2981, 2858, 1670, 1498 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H, ArH), 8.67 (s, 1H, ArH), 7.73 (s, 1H, ArH), 4.28 (br. s, 2H, 2 x CH), 2.89 – 2.73 (m, 3H, 3 x CH), 1.86 (d, 2H, 2 x CH, *J* = 13.3 Hz), 1.75 – 1.58 (m, 3H, 3 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, Acetone): δ 155.2, 153.8, 145.3 (${}^{3}J_{CF}$, q, J = 4.2 Hz) 142.9, 132.2 (${}^{1}J_{CF}$, q, J = 3.3 Hz), 126.9 (${}^{2}J_{CF}$, app. d, J = 32.3 Hz), 125.1 (${}^{1}J_{CF}$, q, J = 272.3 Hz), 79.6, 45.0, 40.8, 33.5, 28.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -62.42.

HRMS (C₁₆H₂₂F₃O₂N₂) [M+H]⁺ requires: 331.1628, observed: 331.1630

Compound 11f, tert-butyl 4-(6-methylpyridin-2-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromo-5-(trifluoromethyl)pyridine (28 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-

dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (40.9 mg, 59%).

υ_{max} (neat): 2973, 2922, 2852, 1690, cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.50 (t, 1H, ArH, J = 7.7 Hz), 6.95 (dd, 2H, 2 x ArH, J = 18.4, 7.7 Hz), 4.23 (br. s, 2H, 2 x CH), 2.88 – 2.75 (m, 3H, 3 x CH), 2.52 (s, 3H, CH₃), 1.91 (d, 2H, 2 x CH, J = 13.4 Hz), 1.66 (qd, 2H, 2 x CH, J = 12.7, 4.8 Hz), 1.47 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 164.0, 157.9, 155.0, 136.9, 121.2, 117.5, 79.5, 44.9, 44.2, 32.0, 28.6, 24.7.

HRMS (C₁₆H₂₅O₂N₂) [M+H]⁺ requires: 277.1911, observed: 277.1910

Compound 11g, *tert*-butyl 4-(6-((tert-butoxycarbonyl)amino)pyridin-3-yl)piperidine-1 carboxylate

Synthesised according to General Procedure B using *tert*-butyl (5-bromopyridin-2-yl)carbamate (68 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as a white amorphous solid (70.7 mg, 75%).

υ_{max} (neat): 3171, 2972, 2858, 1720, 1688 cm⁻¹

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H, NH), 8.14 (d, 1H, ArH, J = 2.2 Hz), 7.89 (d, 1H, ArH, J = 8.6 Hz), 7.49 (dd, 1H, ArH, J = 8.7, 2.4 Hz), 4.23 (br. s, 2H, 2 x CH), 2.78 (t, 2H, 2 x CH, J = 12.2 Hz), 2.60 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.78 (d, 2H, 2 x CH, J = 12.8 Hz), 1.67 – 1.53 (m, 2H, 2 x CH), 1.53 (s, 9H, 3 x CH₃), 1.47 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 154.9, 152.9, 151.0, 146.2, 136.6, 135.6, 112.5, 80.9, 79.7, 44.3, 39.8, 33.2, 28.6, 28.5.

HRMS (C₂₀H₃₂N₃O₄) [M+H]⁺ requires: 378.2387, observed: 378.2385

Compound 11h, tert-butyl 4-(4-hydroxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 1-(benzyloxy)-4-bromobenzene (66 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-

1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a clear oil (53.0 mg, 77%).

υ_{max} (neat): 3317, 3006, 2974, 2932, 2852, 1660 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.04 (d, 2H, 2 x ArH, *J* = 8.5 Hz), 6.79 (d, 2H, 2 x ArH, *J* = 8.6 Hz), 6.17 (s, 1H, OH), 4.21 (br. s, 2H, 2 x CH), 2.79 (t, 2H, 2 x CH, *J* = 12.0 Hz), 2.56 (tt, 1H, CH, *J* = 12.1, 3.5 Hz), 1.77 (d, 2H, 2 x CH, *J* = 14.0 Hz), 1.62 – 1.50 (m, 2H, 2 x CH), 1.49 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.2, 154.7, 137.7, 127.9, 115.5, 79.9, 44.8, 41.9, 33.6, 28.6.

HRMS (C₁₆H₂₄NO₃) [M+H]⁺ requires: 278.1751, observed: 278.1752

Compound 11i, tert-butyl 4-(2-methoxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromoanisole (31 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (71.3 mg, 98%).

 v_{max} (neat): 2999, 1667, 1520, 1403 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.21 – 7.17 (m, 1H, ArH), 7.15 (dd, 1H, ArH, *J* = 7.6, 1.4 Hz), 6.93 (t, 1H, ArH, *J* = 7.5 Hz), 6.86 (d, 1H, ArH, *J* = 8.2 Hz), 4.23 (br. s, 2H, 2 x CH), 3.83 (s, 3H, OCH₃), 3.09 (tt, 1H, CH, *J* = 12.1, 3.4 Hz), 2.83 (t, 2H, 2 x CH, *J* = 11.1 Hz), 1.79 (d, 2H, 2 x CH, *J* = 12.8 Hz), 1.59 (qd, 2H, 2 x CH, *J* = 12.6, 4.0 Hz), 1.49 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 156.9, 155.1, 134.0, 127.2, 126.7, 120.8, 110.5, 79.4, 55.4, 44.9, 35.5, 32.0, 28.6.

HRMS (C₁₇H₂₆O₃N) [M+H]⁺ requires: 292.1907, observed: 292.1909

Consistent with previously reported data.²

Compound 11j, tert-butyl 4-(4-methoxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromoanisole (31 μ L, 0.25 mmol, 1 equiv.) and *tert*-Butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a white solid (51.4 mg, 71%).

 v_{max} (neat): 2980, 1671, 1590, 1501 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.12 (d, 2H, 2 x ArH, *J* = 8.6 Hz), 6.85 (d, 2H, 2 x ArH, *J* = 8.7 Hz), 4.23 (br. s, 2H, 2 x CH), 3.79 (s, 3H, CH₃), 2.79 (t, 2H, 2 x CH, *J* = 11.2 Hz), 2.59 (tt, 1H, CH, *J* = 12.1, 3.5 Hz), 1.79 (d, 2H, 2 x CH, *J* = 13.0 Hz), 1.65 – 1.52 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 158.2, 155.0, 138.2, 127.8, 114.0, 79.5, 55.4, 44.5, 42.0, 33.6, 28.6.

HRMS (C₁₇H₂₆O₃N) [M+H]⁺ requires: 292.1907, observed: 292.1908

Consistent with previously reported data.²

Compound 11k, tert-butyl 4-(1-methyl-1H-indol-5-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 5-bromo-1-methylindole (53 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (45.3 mg, 58%).

υ_{max} (neat): 2973, 2928, 2848, 1688, 1422 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 7.46 (s, 1H, ArH), 7.27 (d, 1H, ArH, J = 8.4 Hz), 7.10 (dd, 1H, ArH, J = 8.5, 1.5 Hz), 7.04 (d, 1H, ArH, J = 3.1 Hz), 6.44 (d, 1H, ArH, J = 3.0 Hz), 4.27 (br. s, 2H, 2 x CH), 3.77 (s, 3H, CH₃), 2.84 (t, 2H, 2 x CH, J = 11.1 Hz), 2.75 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.88 (d, 2H, 2 x CH, J = 12.7, 4.0 Hz), 1.51 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.1, 137.1, 135.7, 129.2, 128.8, 121.1, 118.5, 109.3, 100.8, 79.5, 44.7, 43.0, 34.1, 33.0, 28.7.

HRMS (C₁₉H₂₆O₂N₂) [M] requires: 314.1994, observed: 314.1986

Consistent with previously reported data.³

Compound 111, tert-butyl 4-benzylpiperidine-1-carboxylate

Synthesised according to General Procedure B using benzyl bromide (30 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound as a yellow oil (33.0 mg, 48%).

υ_{max} (neat): 3021, 2999, 2939, 1688 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.24 (m, 2H, 2 x ArH), 7.23 – 7.16 (m, 1H, ArH), 7.16 – 7.11 (m, 2H, 2 x ArH), 4.06 (br. s, 2H, 2 x CH), 2.63 (t, 2H, 2 x CH, *J* = 12.4 Hz), 2.53 (d, 2H, CH₂, *J* = 7.0 Hz), 1.69 – 1.57 (m, 3H, 3 x CH), 1.45 (s, 9H, 3 x CH₃), 1.21 – 1.08 (m, 2H, 2 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 140.4, 129.3, 128.4, 126.1, 79.4, 44.1, 43.3, 38.3, 32.1, 28.6.

HRMS (C₁₃H₁₈ON) [M-^{*t*}Bu+H]⁺ requires: 220.1338, observed: 220.1337

Consistent with previously reported data.⁴

Compound 11m, tert-butyl 4-(4-(trifluoromethyl)phenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromobenzotrifluoride (36 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (70.0 mg, 85%).

Synthesised according to General Procedure C using 4-bromobenzotrifluoride (36 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (6% EtOAc/PE) to afford the title compound as a yellow oil (57.6 mg, 70%).

v_{max} (neat): 3005, 2931, 2849, 1655 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 7.31 (d, 2H, 2 x ArH, *J* = 8.1 Hz), 4.26 (br. s, 2H, 2 x CH), 2.81 (t, 2H, 2 x CH, *J* = 11.4 Hz), 2.71 (tt, 1H, CH, *J* = 12.2, 3.5 Hz), 1.82 (d, 2H, 2 x CH, *J* = 13.0 Hz), 1.62 (qd, 2H, 2 x CH, *J* = 12.6, 4.1 Hz), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (126 MHz, CDCl₃): δ 155.0, 149.9, 128.9 (²*J*_{CF}, q, *J* = 32.3 Hz), 127.3, 125.6 (³*J*_{CF}, q, *J* = 3.6 Hz), 124.3 (¹*J*_{CF}, q, *J* = 218.2 Hz), 79.7, 44.4, 42.8, 33.1, 28.6.

¹⁹F NMR (471 MHz, CDCl₃): δ -62.4.

HRMS (C₁₇H₂₃F₃NO₂) [M+H]⁺ requires: 330.1675, observed: 330.1678

Consistent with previously reported data.⁵

Compound 11n, tert-butyl 4-(naphthalen-1-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 1-bromonapthalene (52 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-

carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (45.9 mg, 59%).

 v_{max} (neat): 2982, 2965, 2924, 2835, 1695 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.77 (m, 3H, 3 x ArH), 7.64 (s, 1H, ArH), 7.49 – 7.41 (m, 2H, 2 x ArH), 7.36 (dd, 1H, ArH, *J* = 8.5, 1.7 Hz), 4.30 (br. s, 2H, 2 x CH), 2.93 – 2.76 (m, 3H, 3 x CH), 1.92 (d, 2H, 2 x CH, *J* = 13.0 Hz), 1.74 (qd, 2H, 2 x CH, *J* = 12.7, 4.1 Hz), 1.51 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 143.4, 133.7, 132.4, 128.2, 127.8, 127.7, 126.1, 125.9, 125.5, 124.9, 79.6, 44.6, 42.9, 33.3, 28.6.

HRMS (C₂₀H₂₆NO₂) [M+H]⁺ requires: 312.1958, observed: 312.1958

Compound 11o, tert-butyl 4-(2-amino-4-fluorophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromo-5-fluoroaniline (48 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (35% EtOAc/PE) to afford the title compound as a yellow oil (58.1 mg, 79%).

 v_{max} (neat): 3460, 3363, 2930, 2850, 1673 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 6.98 (dd, 1H, ArH, J = 8.6, 6.4 Hz), 6.46 (td, 1H, ArH, J = 8.5, 2.6 Hz), 6.39 (dd, 1H, ArH, J = 10.5, 2.6 Hz), 4.25 (br. s, 2H, 2 x CH), 2.80 (t, 2H, 2 x CH, J = 12.4 Hz), 2.53 (tt, 1H, CH, J = 11.9, 3.2 Hz), 1.82 (d, 2H, 2 x CH, J = 13.3 Hz), 1.62 – 1.51 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃). 2H not observed (exchangeable).

¹³C NMR (101 MHz, CDCl₃): δ 162.1 (¹*J*_{CF}, d, *J* = 242.5 Hz), 155.0, 145.0 (³*J*_{CF}, d, *J* = 10.5 Hz), 127.4 (³*J*_{CF}, d, *J* = 10.1 Hz), 125.4, 105.6 (²*J*_{CF}, d, *J* = 21.1 Hz), 102.8 (²*J*_{CF}, d, *J* = 24.4 Hz), 79.7, 44.7, 36.5, 31.8, 28.6, 25.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -116.7.

HRMS (C₁₆H₂₄FO₂N₂) [M+H]⁺ requires: 295.1816, observed: 295.1819

Compound 11p, tert-butyl 4-(4-(hydroxymethyl)phenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromobenzyl alcohol (47 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a yellow oil (50.1 mg, 69%).

v_{max} (neat): 3442, 3014, 2910, 2851, 1666 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 7.19 (d, 2H, 2 x ArH, *J* = 8.1 Hz), 4.66 (s, 2H, CH₂), 4.22 (br. s, 2H, 2 x CH), 2.79 (t, 2H, 2 x CH, *J* = 12.2 Hz), 2.64 (tt, 1H, CH, *J* = 12.1, 3.6 Hz), 1.89 (br. s, 1H, OH), 1.80 (d, 2H, 2 x CH, *J* = 13.5 Hz), 1.60 (qd, 2H, 2 x CH, *J* = 12.7, 4.4 Hz), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 145.4, 139.2, 127.4, 127.1, 79.6, 65.2, 44.5, 42.6, 33.3, 28.6.

HRMS (C₁₇H₂₆O₃N) [M+H]⁺ requires: 292.1907, observed: 292.1909

Compound 11q, tert-butyl 4-(2-cyanophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromobenzonitrile (46 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a yellow oil (54.0 mg, 76%).

 v_{max} (neat): 2999, 2923, 2222, 1681 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.63 (dd, 1H, ArH, J = 7.7, 1.0 Hz), 7.55 (td, 1H, ArH, J = 7.8, 1.2 Hz), 7.31 (ddd, 2H, 2 x ArH, J = 9.2, 8.5, 4.4 Hz), 4.27 (br. s, 2H, 2 x CH), 3.13 (tt, 1H, CH, J = 12.1, 3.5 Hz), 2.87 (br. s, 2H, 2 x CH), 1.86 (d, 2H, 2 x CH, *J* = 13.1 Hz), 1.71 – 1.57 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (126 MHz, CDCl₃): δ 154.8, 149.2, 133.1, 133.1, 126.9, 126.5, 117.9, 112.0, 79.6, 44.1, 40.9, 32.4, 28.5.

HRMS (C₁₇H₂₃O₂N₂) [M+H]⁺ requires: 287.1754, observed: 287.1755

Consistent with previously reported data.⁶

Compound 11r, tert-butyl 4-(p-tolyl)piperidine-1-carboxylate

Me BocŃ

Synthesised according to General Procedure B using 4-bromotoluene $(31\mu L, 0.25 \text{ mmol}, 1 \text{ equiv.})$ and *tert*-Butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)carboxylate (77 mg, 0.25 mmol, 1 equiv.). The crude material was taken up in ethyl acetate and washed with water (2 x 10 mL) and brine (10 mL), dried with Na_2SO_4 and concentrated *in vacuo* to afford the title compound as a clear oil (68.0 mg, 99%).

Synthesised according to General Procedure C using 4-bromobenzotrifluoride (36 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (5% EtOAc/PE) to afford the title compound as a yellow oil (67.6 mg, 99%).

v_{max} (neat): 2971, 2926, 2848, 1688 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.13 – 7.09 (m, 4H, 4 x ArH), 4.24 (br. s, 2H), 2.79 (t, 2H, 2 x CH, J = 11.4 Hz), 2.60 (tt, 1H, J = 12.1, 3.5 Hz), 2.32 (s, 3H, CH₃), 1.80 (d, 2H, 2 x CH, J = 13.1 Hz), 1.69 – 1.55 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 143.0, 136.0, 129.3, 126.8, 79.5, 44.6, 42.4, 33.4, 28.6, 21.1.

HRMS (C₁₇H₂₆O₂N) [M+H]⁺ requires: 276.1958, observed: 276.1958

Consistent with previously reported data.⁵

Compound 11s, tert-butyl 4-phenylpiperidine-1-carboxylate

Synthesised according to General Procedure B using bromobenzene (26 μ L, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (61.3 mg, 94%).

 v_{max} (neat): 2945, 2843, 1667, cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.28 (m, 2H, 2 x ArH), 7.24 – 7.18 (m, 3H, 3 x ArH), 4.24 (br. s, 2H, CH₂), 2.80 (t, 2H, J = 12.4 Hz, 2 x CH), 2.64 (tt, 1H, CH, J = 12.2, 3.6 Hz), 1.83 (d, 2H, 2 x CH, J = 13.3 Hz), 1.63 (qd, 2H, 2 x CH, J = 12.8, 4.3 Hz), 1.49 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 145.9, 128.6, 126.9, 126.5, 79.5, 44.6, 42.9, 33.3, 28.6.

HRMS (C₁₆H₂₃O₂NNa) [M+Na]⁺ requires: 284.1621, observed: 284.1621

Consistent with previously reported data.⁷

Compound 12a, 3-(4-methoxyphenyl)-1-tosylpyrrolidine

Synthesised according to General Procedure B using 3-bromo-1-tosyl-2,5-dihydro-1*H*-pyrrole (75 mg, 0.25 mmol, 1 equiv.) and 4-methoxyphenyl boronic acid (38 mg, 0.25 mmol, 1 eq.) and purified by flash column chromatography (7% EtOAc/PE) to afford the title compound an off-white amorphous solid (65.3mg, 79%).

v_{max} (neat): 2930, 2815, 1523, 1493 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 7.34 (d, 2H, 2 x ArH, *J* = 8.0 Hz), 7.01 (d, 2H, 2 x ArH, *J* = 8.6 Hz), 6.80 (d, 2H, 2 x ArH, *J* = 8.7 Hz), 3.77 (s, 3H, CH₃), 3.69 (dd, 1H, CH, *J* = 8.8, 6.8 Hz), 3.51 (ddd, 1H, CH, *J* = 10.0, 8.5, 3.1 Hz), 3.34 (td, 1H, CH, *J* = 9.5, 7.0 Hz), 3.22 - 3.11 (m, 2H, 2 x CH), 2.45 (s, 3H, CH₃), 2.20 - 2.12 (m, 1H, CH), 1.87 - 1.76 (m, 1H, CH).

¹³C NMR (101 MHz, CDCl₃): δ 158.7, 143.6, 134.2, 129.8, 128.0, 127.7, 114.2, 55.4, 54.4, 47.9, 43.3, 33.2, 21.7. (1C not observed).

HRMS (C₁₈H₂₂NO₃S) [M+H]⁺ requires: 332.1315, observed: 332.1317

Consistent with previously reported data.⁸

Compound 12b, 5-(tetrahydro-2*H*-pyran-4-yl)pyridin-2-amine

Synthesised according to General Procedure B using 5-bromo-1-indanone (53 mg, 0.25 mmol, 1 equiv.) and 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (53 mg, 0.25 mmol, 1 eq.) and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound an off-white amorphous solid (43.2mg, 80%).

 v_{max} (neat): 2949, 2930, 2846, 1701, 1610 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, 1H, ArH, J = 8.2 Hz), 7.34 – 7.31 (m, 1H, ArH), 7.24 (ddd, 1H, ArH, J = 7.9, 1.4, 0.6 Hz), 4.12 – 4.07 (m, 2H, 2 x CH), 3.54 (td, 2H, 2 x CH, J = 11.7, 2.4 Hz), 3.14 – 3.10 (m, 2H, CH₂), 2.85 (tt, 1H, CH, J = 11.8, 4.1 Hz), 2.70 – 2.66 (m, 2H, 2 x CH), 1.89 – 1.75 (m, 4H, 2 x CH₂).

¹³C NMR (126 MHz, CDCl₃): δ 206.6, 156.0, 153.4, 135.8, 126.7, 124.8, 124.0, 68.3, 42.3, 36.6, 33.8, 25.9.

HRMS (C₁₄H₁₇O₂) [M+H]⁺ requires: 217.1229, observed: 217.1233

Compound 12c, 5-cyclohexylpyridin-2-amine

Synthesised according to General Procedure B using 5-bromo-2-nitropyridine (51 mg, 0.25 mmol, 1 equiv.) and 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (80% PE/EtOAc) to afford the title compound an off-white amorphous solid (39.4 mg, 90%).

v_{max} (neat): 3441, 3304, 3144, 2918, 2847, 1639, 1505 cm⁻¹

¹H NMR (600 MHz, acetone-d₆) δ 7.82 (d, 1H, ArH, J = 1.8 Hz), 7.27 (dd, 1H, ArH, J = 8.4, 2.3 Hz), 6.47 (d, 1H, ArH, J = 8.4 Hz), 5.11 (br. s, 2H, NH₂), 2.40 – 2.33 (m, 1H, CH), 1.84 – 1.74 (m, 4H, 4 x CH), 1.74 – 1.68 (m, 1H, CH), 1.41 – 1.35 (m, 4H, 4 x CH), 1.28 – 1.22 (m, 1H, CH).

¹³C NMR (151 MHz, acetone-d₆): δ 159.1, 147.0, 136.4, 132.5, 108.7, 42.0, 35.3, 27.6, 26.7.

HRMS (C₁₁H₁₇N₂) [M+H]⁺ requires: 177.1383, observed: 177.1386

Compound 12d, 3-(tetrahydro-2H-pyran-2-yl)aniline

Synthesised according to General Procedure B using 2-(3,4-dihydro-2*H*-pyran-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53 mg, 0.25 mmol, 1 equiv.) and 3-nitrobromobenzene (50 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a clear oil (24.0 mg, 55%).

v_{max} (neat): 3390, 3313, 3067, 2993, 2961, 2806, 1645, 1501 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.11 (t, 1H, ArH, *J* = 7.9 Hz), 6.74 – 6.69 (m, 2H, 2 x ArH), 6.58 (dd, 1H, ArH, *J* = 7.9, 1.4 Hz), 4.24 (dd, 1H, CH, *J* = 10.7, 1.9 Hz), 4.17 – 4.09 (m, 1H, CH), 3.60 (td, 1H, CH, *J* = 11.7, 2.4 Hz), 1.96 – 1.90 (m, 1H, CH), 1.84 – 1.78 (m, 1H, CH), 1.71 – 1.55 (m, 4H, 4 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 146.5, 144.8, 129.3, 116.4, 114.3, 112.7, 80.3, 69.1, 34.1, 26.1, 24.2.

HRMS (C₁₁H₁₆ON) [M+H]⁺ requires: 178.1226, observed: 178.1223

Compound 12e, (2-(2-(trimethylsilyl)ethyl)phenyl)methanol

Synthesised according to General Procedure B using (2-(hydroxymethyl)phenyl)boronic acid (38 mg, 0.25 mmol, 1 equiv.) and (E)-(2-bromovinyl)trimethylsilane (45 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% PE/EtOAc) to afford the title compound a clear oil (33.6 mg, 65%).

v_{max} (neat): 3290 (br.), 2948, 2891, 1247 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, 1H. ArH, J = 7.3 Hz), 7.29 – 7.19 (m, 3H, 3 x ArH), 4.74 (s, 2H, CH₂), 2.73 – 2.65 (m, 2H, CH₂), 0.89 – 0.82 (m, 2H, CH₂), 0.08 (s, 9H, 3 x CH₃) (1H not observed, exchangeable).

 ^{13}C NMR (101 MHz, CDCl₃): δ 143.6, 137.9, 128.8, 128.2, 126.1, 63.1, 26.5, 18.9, -1.7 (1C not observed).

HRMS (C₁₂H₂₁OSi) [M-H]⁻ requires: 207.1205, observed: 207.1207

Compound 12f, methyl 4-(1-phenylethyl)benzoate

Synthesised according to General Procedure B using α -bromostyrene (36 µL, 0.25 mmol, 1 equiv.) and 4-methoxycarbonylphenylboronic acid (45 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (49 mg, 82%).

 v_{max} (neat): 2920, 2852, 1719 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.93 (m, 2H, 2 x ArH), 7.32 – 7.27 (m, 4H, 4 x ArH), 7.23 – 7.17 (m, 3H, 3 x ArH), 4.20 (q, 1H, CH, *J* = 7.2 Hz), 3.89 (s, 3H, CH₃), 1.66 (d, 3H, CH₃, *J* = 7.2 Hz)

¹³C NMR (101 MHz, CDCl₃): δ 167.2, 151.9, 129.9, 128.7, 127.8, 127.8, 126.5, 52.1, 45.0, 21.7 (2C not observed).

HRMS (C₁₆H₁₇O₂) [M+H]⁺ requires: 241.1223, observed: 241.1223

Consistent with previously reported data.⁹

Compound 12g, 2-methoxy-3-(1-(*p*-tolyl)ethyl)pyridine

Synthesised according to General Procedure B using 1-(1-bromovinyl)-4-methylbenzene (49 mg, 0.25 mmol, 1 equiv.) and (2-methoxypyridin-3-yl)boronic acid (38 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (6% EtOAc/PE) to afford the title compound as a clear oil (34.0 mg, 60%).

v_{max} (neat): 3421, 2928, 1703, 1409, 1323 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.00 (dd, 1H, ArH, *J* = 5.0, 1.9 Hz), 7.37 (ddd, 1H, ArH, *J* = 7.3, 1.8, 0.5 Hz), 7.11 (app. q, 4H, 4 x ArH, *J* = 8.3 Hz), 6.81 (dd, 1H, ArH, *J* = 7.3, 5.0 Hz), 4.40 (q, 1H, CH, *J* = 7.2 Hz), 3.93 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 1.55 (d, 3H, CH₃, *J* = 7.2 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 161.6, 144.3, 142.2, 135.8, 135.7, 129.5, 129.1, 127.7, 116.9, 53.5, 37.4, 21.1, 20.6.

HRMS (C₁₅H₁₈ON) [M+H]⁺ requires: 228.1383, observed: 228.1382

Compound 12h, methyl 4-(tetrahydro-2H-pyran-2-yl)benzoate

Synthesised according to General Procedure B using 2-(3,4-dihydro-2H-pyran-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53 mg, 0.25 mmol, 1 equiv.) and methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (12% EtOAc/PE) to afford the title compound as a clear oil (32.5 mg, 59%).

υ_{max} (neat): 2937, 2844, 1714, 1610, 1437 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.41 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 4.38 (dd, 1H, CH, *J* = 11.1, 2.0 Hz), 4.18 – 4.13 (m, 1H, CH), 3.90 (s, 3H, CH₃), 3.62 (td, 1H, CH, *J* = 11.6, 2.5 Hz), 1.98 – 1.91 (m, 1H, CH), 1.85 (d, 1H, CH, *J* = 13.2 Hz), 1.73 – 1.65 (m, 2H, 2 x CH), 1.62 – 1.51 (m, 2H, 2 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 167.2, 148.7, 129.8, 129.1, 125.8, 79.7, 69.1, 52.2, 34.3, 25.9, 24.0.

HRMS (C₁₃H₁₇O₃) [M+H]⁺ requires: 221.1178, observed: 221.1183

Compound 12i, 1-cyclohexyl-3-(methylsulfonyl)benzene

Synthesised according to General Procedure B using 4-bromophenyl methyl sulfone (59 mg, 0.25 mmol, 1 equiv.) and 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (30% PE/EtOAc) to afford the title compound an off-white solid (48.2 mg, 81%).

υ_{max} (neat): 2921, 2848, 1597, 1297, 1143 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.77 (s, 1H, ArH), 7.74 (dt, 1H, ArH, J = 6.4, 2.1 Hz), 7.50 – 7.44 (m, 2H, 2 x ArH), 3.04 (s, 3H, CH₃), 2.60 (ddd, 1H, CH, J = 11.8, 7.4, 3.2 Hz), 1.92 – 1.82 (m, 4H, 4 x CH), 1.80 – 1.72 (m, 1H, CH), 1.49 – 1.36 (m, 4H, 4 x CH), 1.31 – 1.23 (m, 1H, CH).

¹³C NMR (101 MHz, CDCl₃): δ 149.9, 140.6, 132.5, 129.4, 125.7, 124.9, 44.7, 44.6, 34.3, 26.8, 26.0.

HRMS (C₁₃H₁₉O₂S) [M+H]⁺ requires: 239.1106, observed: 239.1107

Compound 12j, 3-(1,1-diethoxypropan-2-yl)-2-methoxypyridine

Synthesised according to General Procedure B using 2-bromopropenal diethyl acetal (42 μ L, 0.25 mmol, 1 equiv.) and 2-methoxy-3-pyridinylboronic acid (38 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound a colourless oil (32.4 mg, 54%).

υ_{max} (neat): 2973, 2876, 1584, 1461, 1413 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.02 (dd, 1H, ArH, *J* = 5.0, 1.8 Hz), 7.51 (dd, 1H, ArH, *J* = 7.3, 1.8 Hz), 6.83 (dd, 1H, ArH, *J* = 7.3, 5.0 Hz), 4.60 (d, 1H, CH, *J* = 5.8 Hz), 3.95 (s, 3H, CH₃), 3.69 (dq, 1H, CH, *J* = 9.3, 7.0 Hz), 3.58 (dq, 1H, CH, *J* = 9.4, 7.0 Hz), 3.48 – 3.38 (m, 2H, 2 x CH), 3.38 – 3.31 (m, 1H, CH), 1.25 (d, 3H, CH₃, *J* = 7.1 Hz), 1.14 (t, 3H, CH₃, *J* = 7.0 Hz), 1.08 (t, 3H, CH₃, *J* = 7.0 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 161.8, 144.4, 137.3, 125.9, 116.9, 105.2, 63.3, 62.4, 53.4, 37.1, 15.3, 14.6.

HRMS (C₁₃H₂₂O₃N) [M+H]⁺ requires: 240.1594, observed: 240.1592

Compound 12k, methyl 4-(3-methoxypropyl)benzoate

Synthesised according to General Procedure B using using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and *trans*-3-methoxy-1-propenylboronic acid pinacol ester (50 mg, 0.25 mmol, 1

equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound an yellow oil (30.6 mg, 59%).

υ_{max} (neat): 2973, 2922, 1690, 1167 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.25 (d, 2H, 2 x ArH, *J* = 8.4 Hz), 3.90 (s, 3H, CH₃), 3.37 (t, 2H, 2 x CH, *J* = 6.3 Hz), 3.34 (s, 3H, CH₃, *J* = 2.6 Hz), 2.78 – 2.70 (m, 2H, 2 x CH), 1.94 – 1.86 (m, 2H, 2 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 167.3, 147.7, 129.9, 128.6, 128.0, 71.8, 58.7, 52.1, 32.5, 31.0.

HRMS (C₁₂H₁₇O₃) [M+H]⁺ requires: 209.1178, observed: 209.1181

Compound 12l, 1-methyl-5-(2-(trimethylsilyl)ethyl)-1H-imidazole

Synthesised according to General Procedure B using (2-bromovinyl)trimethylsilane (45 mg, 0.25 mmol, 1 equiv.) 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-imidazole (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (7% PE/EtOAc) to afford the title compound an off-white solid (32.1mg, 71%).

 v_{max} (neat): 2921, 2850, 1736 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.36 (d, 1H, ArH, *J* = 1.8 Hz), 6.02 (d, 1H, ArH, *J* = 1.7 Hz), 3.77 (s, 3H, CH₃), 2.60 – 2.54 (m, 2H, CH₂), 0.90 – 0.84 (m, 2H, CH₂), 0.04 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 145.4, 138.1, 103.8, 36.1, 20.2, 15.6, -1.7.

HRMS (C₉H₁₉N₂Si) [M+H]⁺ requires: 183.1318, observed: 183.1321

Compound 12m, methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate

Synthesised according to General Procedure B using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and MeOH (1 mL) and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound as an off white amorphous solid (47.3 mg, 86%).

υ_{max} (neat): 3099, 2983, 2799, 1744 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.29 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 4.09 (dd, 2H, 2 x CH, *J* = 11.2, 3.9 Hz), 3.90 (s, 3H, CH₃), 3.53 (td, 2H, 2 x CH, *J* = 11.6, 2.3 Hz), 2.82 (tt, 1H, CH, *J* = 11.7, 4.1 Hz), 1.87 – 1.85 (m, 4H, 2 x CH₂).

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 151.2, 130.0, 128.4, 126.9, 68.3, 52.1, 41.8, 33.7.

HRMS (C₁₃H₁₆O₃Na) [M+Na]⁺ requires: 243.0993, observed: 243.0992

Consistent with previously reported data.¹

Compound 12n, 2-([1,1'-biphenyl]-4-yl)propan-1-ol

Synthesised according to General Procedure B using 2-bromoallyl alcohol (22 μ L, 0.25 mmol, 1 equiv.) and 4-biphenylboronic acid (50 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (70% EtOAc/PE) to afford the title compound a clear oil (39 mg, 73%).

v_{max} (neat): 3301, 3060, 2902, 1491 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.54 (m, 4H, 4 x ArH), 7.48 – 7.40 (m, 2H, 2 x ArH), 7.37 – 7.29 (m, 3H, 3 x ArH), 3.76 (d, 2H, CH₂, *J* = 6.8 Hz), 3.06 – 2.96 (m, 1H, CH), 1.40 (s, 1H, OH), 1.33 (d, 3H, CH₃ *J* = 7.0 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 142.9, 141.1, 139.8, 128.9, 128.1, 127.5, 127.3, 127.2, 68.8, 42.3, 17.7.

HRMS (C₁₅H₂₀ON) [M+NH₄]⁺ requires: 230.1540, observed: 230.1539

Compound 12o, 3-(3-cyclopentylpropyl)-5-(trifluoromethyl)pyridine

Synthesised according to General Procedure B using using 3-bromo-5-(trifluoromethyl)pyridine (57 mg, 0.25 mmol, 1 equiv.) and (*E*)-2-(3-cyclopentylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (59 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound an yellow oil (33.6 mg, 52%).

v_{max} (neat): 2941, 2861, 1338, 1132 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H, ArH), 8.63 (s, 1H, ArH), 7.71 (s, 1H, ArH), 2.71 – 2.65 (m, 2H, 2 x CH), 1.78 – 1.74 (m, 2H, 2 x CH), 1.72 – 1.62 (m, 3H, 3 x CH), 1.62 – 1.54 (m, 2H, 2 x CH), 1.54 – 1.45 (m, 2H, 2 x CH), 1.40 – 1.31 (m, 2H, 2 x CH), 1.13 – 0.99 (m, 2H, 2 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 153.3, 144.1 (³*J*_{CF}, q, *J* = 4.0 Hz), 138.4, 132.7 (³*J*_{CF}, q, *J* = 3.7 Hz), 123.8 (¹*J*_{CF}, q, *J* = 247.3 Hz), 40.0, 35.8, 33.2, 32.8, 30.2, 25.3 (1C not observed).

¹⁹F NMR (471 MHz, CDCl₃): δ -62.43.

HRMS (C₁₄H₁₉F₃N) [M+H]⁺ requires: 258.1470, observed: 258.1466

Compound 12p, 1-(4-(3-cyclopentylpropyl)phenyl)ethan-1-one

Synthesised according to General Procedure B using (E)-2-(3-cyclopentylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (59 mg, 0.25 mmol, 1 equiv.) and 4 bromoacetophenone (50 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound as a clear oil (28.5 mg, 60%).

 v_{max} (neat): 2934, 2855, 1680, 1606, 1266 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.24 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 2.67 – 2.60 (m, 2H, 2 x CH), 2.55 (s, 3H, CH₃), 1.73 – 1.68 (m, 2H, 2 x CH), 1.65 – 1.59 (m, 2H, 2 x CH), 1.58 – 1.52 (m, 2H, 2 x CH), 1.50 – 1.42 (m, 2H, 2 x CH), 1.34 – 1.28 (m, 2H, 2 x CH), 1.24 – 1.20 (m, 1H, CH), 1.07 – 1.00 (m, 2H, 2 x CH).

¹³C NMR (101 MHz, CDCl₃): δ 198.0, 149.0, 135.1, 128.7, 128.6, 127.4, 40.1, 36.4, 35.9, 32.8, 30.4, 26.7, 25.3.

HRMS (C₁₆H₂₂O) [M] requires: 230.1671, observed: 230.1670

Compound 12q, tert-butyl 4-(2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using ethyl 3-(5-bromo-2-nitrophenyl)acrylate (75 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (60% EtOAc/PE) to afford the title compound as a white solid (65.9 mg, 80%).

 v_{max} (neat): 3066, 2944, 1683, 1670 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H, NH), 7.03 – 6.96 (m, 2H, 2 x ArH), 6.73 (d, 1H, ArH, J = 8.7 Hz), 4.22 (br. s, 2H, 2 x CH), 2.97 – 2.91 (m, 2H, 2 x CH), 2.78 (t, 2H, 2 x CH, J = 12.3 Hz), 2.66 – 2.53 (m, 3H, 3 x CH), 1.79 (d, 2H, 2 x CH, J = 13.0 Hz), 1.58 (ddd, 2H, 2 x CH, J = 25.4, 12.8, 4.3 Hz), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 171.8, 155.0, 141.0, 135.7, 126.5, 125.9, 123.9, 115.6, 79.6, 44.5, 42.3, 33.5, 30.9, 28.6, 25.6.

HRMS (C₁₉H₂₇O₃N₂) [M+H]⁺ requires: 331.2016, observed: 331.2018

Compound 12r, 6-cyclohexyl-3,4-dihydroquinolin-2(1H)-one

Synthesised according to General Procedure B using 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.) and ethyl (E)-3-(5-bromo-2-nitrophenyl)acrylate (75 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (50% EtOAc/PE) to afford the title compound an off-white amorphous solid (40.5 mg, 71%).

 v_{max} (neat): 3052, 2921, 2834, 1694 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.60 (s, 1H, NH), 7.01 (d, 2H, 2 x ArH, J = 6.9 Hz), 6.73 (d, 1H, ArH, J = 8.6 Hz), 2.94 (t, 2H, 2 x CH, J = 7.6 Hz), 2.65 – 2.60 (t, 2H, 2 x CH, J = 7.6 Hz), 2.48 – 2.40 (m, 1H, CH), 1.89 – 1.79 (m, 4H, 4 x CH), 1.74 (d, 1H, CH, J = 13.1 Hz), 1.44 – 1.32 (m, 4H, 4 x CH), 1.30 – 1.18 (m, 1H, CH).

¹³C NMR (101 MHz, CDCl₃): δ 172.0, 143.3, 135.2, 126.5, 125.9, 123.6, 115.4, 44.1, 34.7, 31.0, 27.0, 26.3, 25.7.

HRMS (C₁₅H₂₀NO) [M+H]⁺ requires: 230.1539, observed: 230.1538

Compound 12s, (2R,3S)-2,3-diphenyl-1-tosylpyrrolidine (12:1, *trans:cis*)

Synthesised according to General Procedure B using phenyl boronic acid (31 mg, 0.25 mmol, 1 equiv.) and (*S*)-3-bromo-2-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrole (95 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (14% EtOAc/PE) to afford the title compound an off-white amorphous solid (66.0 mg, 70%).

v_{max} (neat): 3002, 2990, 2713, 1515, cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 7.29 (d, 2H, 2 x ArH, *J* = 8.2 Hz), 7.10 – 6.99 (m, 6H, 6 x ArH), 6.74 (d, 2H, 2 x ArH, *J* = 7.2 Hz), 6.65 (d, 2H, 2 x ArH, *J* = 6.6 Hz), 5.03 (d, 1H, CH, *J* = 8.1 Hz), 3.87 (t, 1H, CH, *J* = 8.7 Hz), 3.52 (ddd, 1H, CH, *J* = 10.9, 9.6, 6.6 Hz), 3.29 (ddd, 1H, CH, *J* = 13.6, 8.0, 5.7 Hz), 2.44 (s, 3H, CH₃), 2.41 – 2.34 (m, 1H, CH), 2.06 (dt, 1H, CH, *J* = 12.3, 6.1 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 143.5, 138.8, 137.0, 135.5, 129.7, 128.6, 128.0, 127.6, 127.6, 127.5, 127.0, 67.2, 50.6, 48.0, 27.8, 21.7.

cis isomer observed in ¹H and ¹³C NMR but not reported. Diastereomeric ratio determined by ¹H NMR, ratio between doublet at 5.03 and 4.65.

HRMS (C₂₃H₂₄O₂NS) [M+H]⁺ requires: 378.1522, observed: 378.1522

ee = >97% (by chiral HPLC)

Compound 13, 4-(3-(methylsulfonyl)phenyl)piperidine

Synthesised according to General Procedure B using 3-bromophenylmethylsulfone (59 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (75.4 mg, 89%).

Synthesised according to General Procedure C using 3-bromophenylmethylsulfone (59 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2*H*)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (68.6 mg, 81%).

υ_{max} (neat): 2974, 2926, 1683, 1423 cm⁻¹

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.76 (m, 2H, 2 x ArH), 7.53 – 7.47 (m, 2H, 2 x ArH), 4.26 (br. s, 2H, CH₂), 3.04 (s, 3H, CH₃), 2.86 – 2.72 (m, 3H, 3 x CH), 1.84 (d, 2H, 2 x CH, *J* = 12.8 Hz), 1.69 – 1.60 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (151 MHz, CDCl₃): δ 154.9, 147.7, 141.0, 132.3, 129.8, 125.7, 125.5, 79.8, 44.6, 42.7, 33.1, 28.6. (1C not observed).

HRMS (C17H26O4N2S) [M+H]⁺ requires: 357.1843, observed: 357.1843

Compound 14, 4-(3-(methylsulfonyl)phenyl)piperidine

To a vial containing Compound 13 (60 mg, 0.18 mmol, 1 equiv.) was added DCM (1 mL), then TFA (138 μ L, 1.8 mmol, 10 equiv.) dropwise. The reaction mixture was stirred at room temperature for 4 hours before being concentrated under compressed air. The crude material was dissolved in minimal MeOH and applied to a 2g SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH₃/MeOH (3M). The NH₃/MeOH fractions were combined and concentrated *in vacuo* to afford the title compound as a white amorphous solid (39 mg, 91%).

v_{max} (neat): 3210, 2901, 1688, 1499, 1300 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.81 – 7.74 (m, 2H, 2 x ArH), 7.53 – 7.47 (m, 2H, 2 x ArH), 3.21 (d, 2H, CH₂, *J* = 12.0 Hz), 3.04 (s, 3H, CH₃), 2.74 (m, 2H, CH₂), 2.11 (br. s, 1H, NH), 1.86 (d, 2H, CH₂, *J* = 12.8 Hz), 1.67 (q, 2H, CH₂, *J* = 12.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 148.6, 140.8, 132.3, 129.7, 125.8, 125.3, 47.0, 44.6, 43.0, 34.3.

HRMS (C₁₂H₁₈O₂NS) [M+H]⁺ requires: 240.1052, observed: 240.1053

Consistent with reported data.¹⁰

Compound 3, 4-(3-(methylsulfonyl)phenyl)-1-propylpiperidine

To an oven dried round bottom flask was added K_2CO_3 (45 mg, 0.39 mmol, 2.5 equiv.) and was purged with nitrogen. Compound 14 (30 mg, 0.13 mmol, 1 equiv.) was added in MeCN (2 mL) and the reaction mixture was stirred at room temperature for 15 minutes. 1-Iodopropane (15 μ L, 0.16 mmol, 1.2 equiv.) was added dropwise at 0 °C and the reaction mixture was heated to 70 °C and stirred for 24 h. The reaction was then allowed to cool to room temperature and applied directly to an SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH₃/MeOH (3M). The NH₃/MeOH fractions were combined and concentrated *in vacuo* to afford a clear gum which was purified by flash column chromatography (10% MeOH/DCM) to afford the title compound as a colourless gum (25 mg, 69%).

 v_{max} (neat): 2991, 2920, 1646, 1333 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.75 (m, 2H, 2 x ArH), 7.57 – 7.47 (m, 2H, 2 x ArH), 3.19 (d, 2H, 2 x CH, *J* = 11.6 Hz), 3.04 (s, 3H, CH₃), 2.67 (tt, 1H, CH, *J* = 11.9, 4.0 Hz), 2.49 – 2.42 (m, 2H, 2 x CH), 2.20 (t, 2H, 2 x CH, *J* = 11.8 Hz), 2.02 – 1.85 (m, 4H, 4 x CH), 1.68 – 1.58 (m, 2H, 2 x CH), 0.94 (t, 3H, CH₃, *J* = 7.4 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 147.7, 140.9, 132.2, 129.8, 126.0, 125.4, 60.7, 54.0, 44.6, 42.3, 32.7, 19.8, 12.0.

HRMS (C₁₅H₂₄O₂NS) [M+H]⁺ requires: 282.1528, observed: 282.1532

Consistent with reported data.¹¹

Compound 17, *N*-(2-([1,1'-biphenyl]-4-yl)propyl)-*N*-(2,4-dimethoxybenzyl)propane-2-sulfonamide

Synthesised according to General Procedure C using N-(2-bromoallyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide (98 mg, 0.25 mmol, 1 equiv.) and 4-biphenylboronic acid (50 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography to afford the title compound as a white solid (116.7 mg, 71%).

v_{max} (neat): 2931, 2834, 1612, 1508 cm⁻¹

¹H NMR (400 MHz, Acetone): δ 7.66 – 7.56 (m, 4H, 4 x ArH), 7.47 – 7.41 (m, 2H, 2 x ArH), 7.38 – 7.28 (m, 4H, 4 x ArH), 6.59 (d, 1H, ArH, J = 2.4 Hz), 6.55 (dd, 1H, ArH, J = 8.3, 2.4 Hz), 4.45 (d, 1H, CH, J = 15.0 Hz), 4.29 (d, 1H, CH, J = 15.0 Hz), 3.89 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.38 (qd, 2H, 2 x CH, J = 14.2, 7.6 Hz), 3.17 – 3.05 (m, 1H, CH), 2.91 (dt, 1H, CH, J = 13.6, 6.8 Hz), 1.22 (d, 3H, CH₃, J = 7.0 Hz), 1.14 (dd, 6H, 2 x CH₃, J = 6.8, 1.7 Hz).

¹³C NMR (101 MHz, Acetone): δ 161.9, 159.7, 144.9, 141.7, 140.2, 132.6, 129.7, 128.8, 128.0, 127.8, 127.6, 117.7, 105.6, 99.0, 55.8, 55.7, 54.1, 46.3, 39.1, 19.4, 17.0, 16.9.

HRMS (C₂₇H₃₄NO₄S) [M+H]⁺ requires: 468.2203, observed: 468.2201

Compound 18, N-(2-([1,1'-biphenyl]-4-yl)propyl)propane-2-sulfonamide

To a solution of *N*-(2-([1,1'-biphenyl]-4-yl)propyl)-*N*-(2,4-dimethoxybenzyl)propane-2-sulfonamide (100 mg, 0.21 mmol, 1 eq.) in DCM (2 mL) was added TFA (161 μ L, 2.1 mmol, 10 eq.). The reaction was stirred for 1 h at room temperature before being concentrated *in vacuo*. The crude material was dissolved in minimal MeOH and applied to a 2g SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH₃/MeOH (3M). The NH₃/MeOH fractions were combined and concentrated *in vacuo* to afford the title compound as an off-white amorphous solid (64.5 mg, 97%).

 v_{max} (neat): 3284, 2925, 1612, 1315 cm⁻¹

¹H NMR (400 MHz, Acetone): δ 7.70 – 7.57 (m, 4H, 4 x ArH), 7.48 – 7.42 (m, 2H, 2 x ArH), 7.39 – 7.32 (m, 3H, 3 x ArH), 5.88 (app. t, 1H, NH, *J* = 5.8 Hz), 3.39 – 3.25 (m, 2H, 2 x CH), 3.14 – 3.00 (m, 2H, 2 x CH), 1.34 (d, 3H, CH₃, *J* = 7.0 Hz), 1.25 (d, 1H, *J* = 6.8 Hz), 1.21 (d, 1H, *J* = 6.8 Hz).

¹³C NMR (101 MHz, Acetone): δ 144.6, 141.7, 140.1, 129.7, 128.8, 128.0, 127.8, 127.6, 53.0, 50.9, 41.4, 19.5, 16.9, 16.8.

HRMS (C₁₈H₂₄NO₂S) [M+H]⁺ requires: 318.1522, observed: 318.1527

Synthesis of starting materials and intermediates

Compound 19, Ethyl 3-(5-bromo-2-nitrophenyl)acrylate (20:1, E:Z)

 NO_2 CO₂Et

To a round bottom flask containing 5-bromo-2-nitrobenzaldehyde (300 mg, 1.3 mmol, 1 eq.) and triphenylcarbethoxymethylenephosphorane (1.044 g, 3 mmol, 2.3 eq.) was added DCM (6 mL). The reaction was stirred at room temperature for 16 h before being washed with water (10 mL) and brine (10 mL). The organic layer was dried with Na₂SO₄ before being concentrated *in vacuo*. Purification by flash column chromatography (30% EtOAc/PE) afforded the title compound a yellow amorphous solid (385 mg, 99%).

υ_{max} (neat): 3096, 2977, 1727, 1709 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, 1H, alkene CH, J = 15.8 Hz), 7.95 (d, 1H, ArH, J = 8.7 Hz), 7.78 (d, 1H, ArH, J = 2.1 Hz), 7.67 (dd, 1H, ArH, J = 8.7, 2.1 Hz), 6.37 (d, 1H, alkene CH, J = 15.8 Hz), 4.30 (q, 2H, CH₂, J = 7.1 Hz), 1.35 (t, 3H, CH₃, J = 7.1 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 165.5, 147.0, 138.8, 133.3, 132.7, 132.2, 128.5, 126.5, 124.6, 61.2, 14.3.

(Inconsequential $Z(\sim 5\%)$) isomer observed in ¹H and ¹³C NMR but not reported).

HRMS (C₁₁H₁₁NO₄Br) [M+H⁺] requires: 299.9872, observed: 299.9868

Synthetic route to 12r starting material:

Compound 20, (S)-N-((1E,2Z)-2-bromo-3-phenylallylidene)-2-methylpropane-2-sulfinamide

To a solution of (*Z*)-2-bromo-3-phenylacrylaldehyde (422 mg, 2 mmol, 1 eq.) in DCM (8 mL) was added (*R*)-2-methyl-2-propanesulfinamide (242 mg, 2 mmol, 1 eq.) and Cs_2CO_3 (704 mg, 2 mmol, 1 eq.) and the reaction was stirred at 40 °C with a reflux condenser for 16 h. Following this, the reaction was filtered through Celite, rinsed with DCM and concentrated *in vacuo*. Purification by flash chromatography (14% EtOAc) gave the title compound as a yellow oil (521.2 mg 83%).

v_{max} (neat): 3100, 2977, 1726, 1709, 1519 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H, imine CH), 7.95 – 7.88 (m, 2H, 2 x ArH), 7.64 (s, 1H, alkene CH), 7.48 – 7.40 (m, 3H, 3 x ArH), 1.27 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 161.7, 144.7, 134.0, 130.7, 130.6, 128.7, 120.9, 58.4, 22.7.

HRMS (C₁₃H₁₇NOS) [M+H]⁺ requires: 316.0187, observed: 316.0187

 $[\alpha]_{D}^{20}$: +18.6 (c=0.1, CH₂Cl₂)

Compound 21, (S)-N-((S,Z)-2-bromo-1,3-diphenylallyl)-2-methylpropane-2-sulfinamide

υ_{max} (neat): 3107, 2988, 1729, 1709, 1517 cm⁻¹

To a solution of (*S*)-*N*-((1E,2Z)-2-bromo-3-phenylallylidene)-2-methylpropane-2-sulfinamide (500 mg, 1.59 mmol, 1 eq.) in dry toluene (10 mL) was added PhMgBr (3M in Et₂O) (793 μ L, 2.38 mmol, 1.5 eq.) dropwise at -40°C. The reaction was stirred for 5 h at -40 °C before being quenched with NH₄Cl and washed between water and ethyl acetate. The organic layer was dried with Na₂SO₄, concentrated *in vacuo* and purified by flash chromatography (55% EtOAc/PE) to afford the title compound as a clear oil (330.3 mg, 53%).

¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, 2H, 2 x ArH, *J* = 7.3 Hz), 7.50 (d, 2H, 2 x ArH, *J* = 7.3 Hz), 7.42 – 7.29 (m, 7H, 6 x ArH, 1 x alkene CH), 5.38 (d, 1H, CH, *J* = 3.4 Hz), 3.76 (d, 1H, CH, *J* = 3.2 Hz), 1.32 (s, 9H, 3 xCH₃).

¹³C NMR (126 MHz, CDCl₃): δ 139.4, 135.1, 130.9, 129.4, 128.9, 128.6, 128.5, 128.3, 127.6, 127.1, 66.4, 56.3, 22.9.

HRMS (C₁₉H₂₃NOS) [M+H]⁺ requires: 394.0657, observed: 394.0655

 $[\alpha]_{D}^{20}$: +8.9 (c=0.1, CH₂Cl₂)

Compound 22, (S,Z)-N-allyl-N-(2-bromo-1,3-diphenylallyl)-4-methylbenzenesulfonamide

To a solution of (S)-*N*-((S,Z)-2-bromo-1,3-diphenylallyl)-2-methylpropane-2-sulfinamide (300 mg, 0.77 mmol, 1 eq.) in MeOH (2 mL) was added AcCl (540 μ L, 7.7 mmol, 10 eq.) at 0 °C. The reaction mixture was stirred at room temperature for 1 h before being concentrated *in vacuo*. The resulting HCl salt was taken up in MeCN (4 mL) and K₂CO₃ (638, 4.62 mmol, 6 eq.) was added. After stirring for 15 minutes at room temperature, allyl bromide (80 μ L, 0.92, 1.2 eq.) was added dropwise. The reaction was stirred 60 °C for 6 h before being quenched with NH₄Cl. The mixture was washed between water and EtOAc and the organic layer was dried with Na₂SO₄, filtered and concentrated *in vacuo*. To this was added pyridine (3 mL) and tosyl chloride (195 μ L, 1.54 mmol, 2 eq.)and the reaction was stirred at room temperature for 16 h. HCl (1M) was added and the mixture was washed with DCM. The organic layer was dried with Na₂SO₄, filtered, concentrated *in vacuo* and purified by flash chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (122.2 mg, 33%, >99% ee).

 v_{max} (neat): 3057, 2920, 1597, 1493, 1342 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.45 – 7.39 (m, 2H, 2 x ArH), 7.37 – 7.24 (m, 10H, 10 x ArH), 6.80 (s, 1H, alkene CH), 6.09 (s, 1H, CH), 5.53 – 5.41 (m, 1H, CH), 4.90 – 4.79 (m, 2H, 2 x CH), 4.03 – 3.81 (m, 2H, CH₂), 2.40 (s, 3H, CH₃)

¹³C NMR (101 MHz, CDCl₃) δ 143.57, 137.66, 136.50, 135.09, 134.78, 131.58, 129.66, 129.44, 129.40, 129.17, 128.71, 128.46, 128.41, 128.20, 127.78, 123.71, 117.39, 77.48, 77.16, 76.84, 69.59, 49.07, 21.61.

HRMS (C₂₅H₂₈N₂O₂S) [M+NH₄]⁺ requires: 501.1029, observed: 501.1022

 $[\alpha]_D^{20}$: -2.4 (c=0.05, CH₂Cl₂)

%ee: >99% (by chiral HPLC)

Compound 23, (S)-3-bromo-2-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole

To an oven dried 2-5 mL microwave vial was added Grubbs G2 catalyst (17 mg, 0.02 mmol, 0.1 eq.). The vial was capped, dry benzene (2 mL) was added and the reaction was stirred for 5 minutes at 60 °C. Following this, (*S*,*Z*)-*N*-allyl-*N*-(2-bromo-1,3-diphenylallyl)-4-methylbenzenesulfonamide (100 mg, 0.2 mmol, 1 eq.) in dry benzene (2 mL) was added dropwise at 60 °C. The reaction was stirred at 60 °C for 16 h then was purified directly by flash chromatography (7% EtOAc/PE) to afford the title compound as an orange oil (56.6 mg, 75%).

¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, 2H, 2 x ArH, *J* = 8.3 Hz), 7.32 – 7.27 (m, 3H, 3 x ArH), 7.25 – 7.20 (m, 2H, 2 x ArH), 7.17 (d, 2H, 2 x ArH, *J* = 8.0 Hz), 5.99 (dd, 1H, CH, *J* = 4.0, 2.0 Hz), 5.40 – 5.36 (m, 1H, CH), 4.33 (dt, 1H, CH, *J* = 14.2, 2.5 Hz), 4.21 (ddd, 1H, CH, *J* = 14.2, 5.8, 2.0 Hz), 2.38 (s, 3H, CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 143.6, 138.2, 135.4, 129.7, 128.6, 128.2, 127.4, 125.5, 119.8,73.0, 55.1, 21.6.

HRMS (C₁₁H₁₁NO₄Br) [M+H]⁺ requires: 299.9872, observed: 299.9868

N-(2,4-dimethoxybenzyl)propane-2-sulfonamide

To an oven dried round bottom flask containing 2,4-dimethoxybenzylamine (417 mg, 2.5 mmol, 1 eq.) in DCM (10 mL) was added Et₃N (1043 μ L, 7.5 mmol, 3 eq.) at room temperature. The reaction mixture was cooled to 0 °C and 2-propanesulfonyl chloride (280 μ L, 2.5 mmol, 1 eq.) was added dropwise. The reaction was stirred at room temperature for 3 hours before being quenched with water

then washed between 1 M HCl and DCM, and then water and DCM. The organic layers were dried with Na_2SO_4 and concentrated *in vacuo* before being purified by flash chromatography (40% EtOAc) to afford the title compound as a yellow solid (552.8 mg, 81%).

 v_{max} (neat): 3275, 2936, 2836, 1612 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, 1H, ArH, J = 8.1 Hz), 6.48 – 6.41 (m, 2H, 2 x ArH), 4.69 (t, 1H, CH, J = 5.9 Hz), 4.22 (d, 2H, CH₂, J = 6.2 Hz), 3.83 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 2.95 (hept, 1H, CH, J = 6.8 Hz), 1.27 (d, 6H, 2 x CH₃, J = 6.8 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 161.1, 158.7, 130.6, 118.2, 104.2, 98.8, 55.6, 55.5, 53.6, 43.8, 16.6.

HRMS (C₁₂H₁₉NO₄SNa) [M+Na]⁺ requires: 296.0927, observed: 296.0928

Compound 16, N-(2-bromoallyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide

To a round bottom flask containing *N*-(2,4-dimethoxybenzyl)propane-2-sulfonamide (532 mg, 1.95 mmol, 1 eq.) in MeCN (10 mL) was added Cs_2CO_3 (950 mg, 2.93, 1.5 eq.) at 0 °C. After stirring for 5 minutes, 2,3-dibromopropene (80%) (286 µL, 2.34 mmol, 1.2 eq.) was added at 0 °C. The reaction mixture was then stirred at 80 °C for 2 hours before being quenched with water and washed between water and EtOAc. The organic layers were then dried with Na₂SO₄ and concentrated *in vacuo* before being purified by flash chromatography (30% EtOAc) to afford the title compound as a yellow oil (588.4 mg, 77%).

υ_{max} (neat): 2973, 2936, 1612, 1588 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, 1H, ArH, *J* = 8.2 Hz), 6.46 – 6.41 (m, 2H, 2 x ArH), 5.84 (d, 1H, CH, *J* = 1.3 Hz), 5.60 (br. s, 1H, CH), 4.39 (s, 2H, 2 x CH), 4.02 (s, 2H, 2 x CH), 3.78 (s, 6H, 2 x CH₃), 3.05 (hept, 1H, CH, *J* = 6.8 Hz), 1.26 (d, 6H, 2 x CH₃, *J* = 6.9 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 161.0, 158.7, 131.9, 128.8, 118.6, 116.1, 104.3, 98.4, 55.4, 55.2, 54.6, 46.0, 16.5.

HRMS (C₁₅H₂₂BrNO₄SNa) [M+Na]⁺ requires: 414.0345, observed: 414.0344

¹H NMR of Compound 11a

¹H NMR of Compound 11b

¹H NMR of Compound 11e

¹³C NMR of Compound 11f

¹³C NMR of Compound 11h

¹³C NMR of Compound 11m

¹³C NMR of Compound 11p

¹³C NMR of Compound 11s

¹³C NMR of Compound 12d

¹³C NMR of Compound 12e

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

S73

¹H NMR of Compound 18

¹H NMR of Compound 22

HPLC Data

Racemic Compound 12s

Compound 12s

Due to a lower solubility of minor diastereomer in 2-propanol, dr appears greater by HPLC.

Racemic Compound 22

Compound 22

Physicochemical Analysis of Products

fsp³ data, PBF values, log P and molecular weight were generated using the LLAMA platform at the University of Leeds, UK.¹² Data obtained was analysed using Microsoft Excel to generate the following box-plots.

References

1. D. N. Primer, I. Karakaya, J. C. Tellis, G. A. Molander, J. Am. Chem. Soc., 2015, 137, 2195-2198

2. G. A. Molander, K. M. Traister, B. T. O'Neill, J. Org. Chem., 2014, 79, 5771-5780

3. J. Wang, T. Qin, T-G. Chen, L. Wimmer, J. T. Edwards, J. Cornella, B. Vokits, S. A. Shaw, P. S. Baran, *Angew. Chem. Int. Ed.*, **2016**, *55*, 9676–9679

4. D. F. Thomas, Synthesis, 2013, 45, 2949-2958

5. E. G. Corley, K. Conrad, J. A. Murry, C. Savarin, J. Holko, G. Boice, J. Org. Chem., 2004, 69, 5120

6. C. Han, S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 7532-7533

7. F. Toriyama, J. Cornella, L. Wimmer, T-G. Chen, D. D. Dixon, G. Creech, and P. S. Baran, J. Am. Chem. Soc., **2016**, *138*, 11132–11135

8. P. Evans, T. McCabe, B. S. Morgan, S. Reau, Org. Lett., 2005, 7, 43-46

9. Y. Iwai, K. M. Gligorich, and M. S. Sigman, Angew. Chem. Int. Ed., 2008, 47, 3219-3222

10. Iwai, Y.; Gligorich, K. M.; Sigman, M. S.; Angew. Chem. Int. Ed., 2008, 47, 3219 - 3222.

11. Pettersson, F.; Pontén, H.; Waters, N.; Waters, S.; Sonesson, C.; J. Med. Chem. 2010, 53, 2510–2520.

12. (a) <u>https://llama.leeds.ac.uk/</u> (b) Colomer, I.; Empson, C. J.; Craven, P.; Owen, Z.; Doveston, R. G.; Churcher, I.; Marsden, S. P.; Nelson, A. *Chem. Commun.* **2016**, *52*, 7209 – 7212.