Supporting Information

Enantioselective Intermolecular All-Carbon [4+2] Annulation via N-Heterocyclic Carbene Organocatalysis

Guoxiang Zhang, Weici Xu, Jian Liu, Deb Kumar Das, Shuang Yang, Saima Perveen, Hao Zhang, Xinglong Li, and Xinqiang Fang*

State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China.

*xqfang@fjirsm.ac.cn

Table of Contents

Ι	general information			
II	optimization of reaction conditions			
III	single-crystal X-ray crystallographic analysis	S5		
IV	1. general procedures for the preparation of substrates	S 7		
	2. general procedures for the [4+2] annulations	S14		
	3. procedures for the product derivatizations	S15		
V	characterizations of new compounds	S18		
VI	¹ H NMR and ¹³ C NMR spectra of substrates and products	S46		
VII	HPLC spectra for ee determination	S98		

I. General Information.

Commercially available materials purchased from Aladdin, Beijing Ouhe, Meryer, BidePharmaTech, and Adamas were used as received, unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk technique. All solvents were purified and dried using standard procedures. ¹H NMR spectra were recorded on a Bruker AVANCE III HD400 (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) or chloroform ($\delta = 7.26$ ppm). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets), m (multiplet), and broad (br). ¹³C NMR spectra were recorded on a Bruker AVANCE III HD400 (100 MHz) spectrometer. High resolution mass spectral analysis (HRMS) was performed on Thermo Fisher Scientific LTQ FT Ultra mass spectrometer. The determination of ee was performed using Shimadzu LC-20AD HPLC workstation. X-ray crystallography analysis was performed on Agilent SuperNova X-ray diffractionmeter. Optical rotations were measured using a 1 mL cell with a 5dm path length on an INESA SGW-1 polarimeter and are reported as follows: [α]^{rt}_D (c in g/100 mL solvent). Analytical thin-layer chromatography (TLC) was carried out on WFH-203 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp, 2,4-Dinitrophenylhydrazine, or potassium permanganate stain.

II. Optimization of Reaction Conditions

Table S1. Optimization of non-asymmetric all-carbon [4+2] annulation.

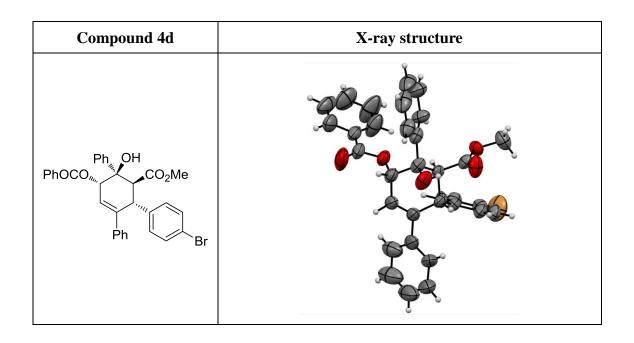
entry	conditons ^a	yield (%) ^b
1	C2, Cs ₂ CO ₃ , THF, 30 °C	0
2	C3, Cs ₂ CO _{3,} THF, 30 °C	0
3	C4, Cs ₂ CO ₃ , THF, 30 °C	0
4	C5, Cs ₂ CO _{3,} THF, 30 °C	0
5	C6, Cs ₂ CO ₃ , THF, 30 °C	0
6	C7, Cs ₂ CO ₃ , THF, 30 °C	0
7	C1, Cs ₂ CO ₃ ,THF, 30 °C	74
8	C1, K ₂ CO _{3,} THF, 30 °C	82
9	C1, CsOAc, THF, 30 °C	27
10	C1, Et ₃ N, THF, 30 °C	53
11	C1, DBU, THF, 30 °C	0
12	C1, Na ₂ CO ₃ , THF, 30 °C	28
13	C1, NaHCO _{3,} THF, 30 °C	7
14	C1, KHCO _{3,} THF, 30 °C	46
15	C1, NaOAc, THF, 30 °C	8
16	C1, K ₂ CO ₃ , toluene, 30 °C	76
17	C1, K ₂ CO ₃ , CH ₂ Cl ₂ , 30 °C	55
18	C1, K ₂ CO ₃ , CH ₃ CN, 30 °C	41
19	C1, K ₂ CO ₃ , DMF, 30 °C	30

^aReaction conditions: **1a** (0.2 mmol), NHC (20 mol %), solvent (1 mL), base (0.22 mmol), **2a** (0.22 mmol), 6 h, argon protection. Diastereomeric ratio was determined via ¹H NMR analysis of the reaction mixture. ^bIsolated yields based on **1a**.

Table S2. Optimization of enantioselective all-carbon [4+2] annulation.^a

entry	NHC	base (equiv)	2a (equiv)	solvent	additive	yield ^b (%)	ee ^c (%)
1	C8	Cs_2CO_3 (1.1)	1.1	THF		24	-53
2	С9	Cs_2CO_3 (1.1)	1.1	THF		trace	
3	C10	Cs_2CO_3 (1.1)	1.1	THF			
4	C11	Cs_2CO_3 (1.1)	1.1	THF			
5	C12	Cs_2CO_3 (1.1)	1.1	THF		33	-55
6	C13	Cs_2CO_3 (1.1)	1.1	THF			
7	C14	Cs_2CO_3 (1.1)	1.1	THF		36	89
8	C15	Cs_2CO_3 (1.1)	1.1	THF			
9	C14	$K_2CO_3(1.1)$	1.1	THF			
10	C14	LiOH (1.1)	1.1	THF			
11	C14	CsOAc (1.1)	1.1	THF			
12	C14	^t BuOLi (1.1)	1.1	THF			
13	C14	DBU (1.1)	1.1	THF		27	89
14	C14	Et ₃ N (1.1)	1.1	THF		trace	

15	C12	Cs_2CO_3 (1.1)	1.1	THF	LiCl (1.0 equiv)		
16	C14	Cs_2CO_3 (1.1)	1.1	THF	LiCl (1.0 equiv)		
17	C14	^t BuOK (1.1)	1.1	THF		trace	
18	C14	Rb2CO3 (1.1)	1.1	THF			
19	C14	$(^{t}BuO)_{2}Mg$ (1.1)	1.1	THF			
20	C14	DABCO (1.1)	1.1	THF			
21	C12	Cs_2CO_3 (1.1)	1.1	THF	4Å M.S. (100 mg)	33	-53
22	C14	Cs_2CO_3 (1.1)	1.1	THF	4Å M.S. (100 mg)	18	89
23	C14	Cs_2CO_3 (1.1)	1.1	THF	4Å M.S. (200 mg)	21	93
24	C14	Cs_2CO_3 (1.1)	1.1	THF	4Å M.S. (300 mg)	17	93
25	C14	Cs_2CO_3 (2.0)	2.0	THF	4Å M.S. (100 mg)	18	93
26	C14	Cs_2CO_3 (2.0)	2.0	THF	4Å M.S. (200 mg)	55	93
27	C14	Cs_2CO_3 (2.0)	2.0	CH ₂ Cl ₂	4Å M.S. (200 mg)	24	93
28	C14	Cs_2CO_3 (2.0)	2.0	toluene	4Å M.S. (200 mg)		
29	C14	Cs_2CO_3 (2.0)	2.0	DMF	4Å M.S. (200 mg)	58	66
30	C14	Cs_2CO_3 (2.0)	2.0	dioxane	4Å M.S. (200 mg)	25	75
31	C14	Cs_2CO_3 (2.0)	2.0	Et ₂ O	4Å M.S. (200 mg)		
32	C14	Cs_2CO_3 (2.0)	2.0	CH ₃ CN	4Å M.S. (200 mg)	44	58


33	C14	Cs_2CO_3 (2.0)	2.0	МеОН	4Å M.S. (200 mg)		
34	C14	Cs_2CO_3 (2.0)	2.0	MTBE	4Å M.S. (200 mg)		
35	C14	Cs_2CO_3 (1.2)	1.5	THF	4Å M.S. (200 mg)	66	93
36	C14	Cs_2CO_3 (1.5)	1.5	THF	4Å M.S. (200 mg)	62	93
37	C14	Cs_2CO_3 (1.2)	2.0	THF	4Å M.S. (200 mg)	45	93
38	C14	Cs_2CO_3 (1.5)	2.0	THF	4Å M.S. (200 mg)	46	93
39	C14	Cs_2CO_3 (1.2)	1.1	THF	4Å M.S. (200 mg)	53	93
40	C14	Cs_2CO_3 (1.2)	1.2	THF	4Å M.S. (200 mg)	60	93
41	C14	Cs_2CO_3 (1.2)	1.3	THF	4Å M.S. (200 mg)	66	93
42	C14	Cs_2CO_3 (1.2)	1.4	THF	4Å M.S. (200 mg)	50	93
43	C14	Cs_2CO_3 (1.5)	1.3	THF	4Å M.S. (200 mg)	74	93
44	C14	Cs_2CO_3 (2.0)	1.5	THF	4Å M.S. (200 mg)	80	93

^aReaction conditions: **1a** (0.2 mmol), NHC (20 mol %), solvent (1 mL), argon protection. Diastereomeric ratio was determined via ¹H NMR analysis of the reaction mixtures. ^bIsolated yields based on **1a**. ^cDetermined via HPLC analysis on a chiral stationary phase.

III. Single-Crystal X-Ray Crystallographic Analysis.

Method for single crystal cultivation: a solid sample of **4d** (10–20 mg) was dissolved in ethyl acetate (50–100 μ L) in a vial at room temperature, and petroleum ether (2–8 mL) was added into the above solution slowly while keeping the sample all dissolved. Then the vial was sealed with a piece of parafilm and stayed quietly for several days to allow the slow evaporation of the solvents until a single crystal was obtained.

CCDC 1569976 (**4d**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S3. Crystal data and structure refinement for data of compound 4d:

Identification code Compound-4d Empirical formula C33 H27 Br O5 Formula weight 583.45 Temperature 293.15 K 0.71073 Å Wavelength Crystal system Monoclinic P 21 Space group Unit cell dimensions a = 10.024(5) Åa= 90 °. b = 11.074(5) Åb= 92.686(9) °. c = 13.112(6) Åg = 90°. $1454.0(12) \text{ Å}^3$ Volume Z 2 1.333 Mg/m^3 Density (calculated) 1.452 mm⁻¹ Absorption coefficient F(000) 600 Crystal size $0.800 \times 0.400 \times 0.300 \text{ mm}^3$ 3.106 to 27.429 °. Theta range for data collection -11 <= h <= 12, -14 <= k <= 13, -16 <= l <= 16Index ranges Reflections collected 12172

Independent reflections 5835 [R(int) = 0.0435]

Completeness to theta = 25.242° 99.2 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.0000 and 0.7225

Refinement method Full-matrix least-squares on F² Data / restraints / parameters 5835 / 101 / 354

Goodness-of-fit on F^2 0.732

Final R indices [I>2sigma(I)] R1 = 0.0477, wR2 = 0.1078 R indices (all data) R1 = 0.0762, wR2 = 0.1157

Absolute structure parameter 0.255(12)

Extinction coefficient n/a

Largest diff. peak and hole 0.179 and -0.356 e.Å-3

IV.

1. General procedures for the preparation of substrates.

(1) Procedures for the synthesis of **1a**, **1i**, **1k**, and **1p**:

Typically, to a 50-mL round bottom flask with septum and stir bar was added **S1** (805.5 mg, 3.0 mmol, 1.5 equiv). The flask was evacuated and backfilled with argon twice, then *trans*-cinnamaldehyde (264 mg, 252 μ L, 2.0 mmol, 1.0 equiv) and 20 mL of THF were added by syringe. The reaction was cooled to -78 °C and stirred under argon atmosphere. A freshly prepared solution of TBAF (1 equiv) in THF (0.2 M) was added dropwise to the reaction mixture and stirred at -78 °C for 1 hour. The reaction was quenched at -78 °C with 20 mL of 2.0 M Cl₃CCO₂H in THF. The cooling bath was then removed and the reaction was stirred at room temperature for 0.5 hour. To the reaction mixture was added 50 mL of Et₂O and transferred to a separatory funnel containing 50 mL of sat. NaHCO₃ aqueous solution. After work-up the ether layer was collected and washed with distilled water (2 × 20 mL) and saturated brine (1 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄, and concentrated using

rotary evaporation. Purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (70:30 v/v) as eluent gave **S2** (520 mg, 79% yield).

To a solution of **S2** (1.6 mmol, 520 mg, 1.0 equiv) in 10 mL of CH₂Cl₂ under argon at 0 °C was added DMAP (0.32 mmol, 39 mg, 20 mol%) and 4 equiv of Et₃N. Then benzoyl chloride (2 equiv) was added dropwise to the stirred solution at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. After the starting materials were consumed, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (80:20 v/v) as eluent gave **S3** (650 mg, 94% yield).

To the solution of **S3** (1.5 mmol, 1 equiv) in acetonitrile/dichloromethane/water (3:1:1) were added the mixture of *N*-chlorosuccinimide (4 equiv) and AgNO₃ (4.5 equiv) at room temperature. The mixture was stirred at room temperature for 20 minutes. After completion, aqueous Na₂S₂O₃ solution was added. Then the reaction mixture was extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (90:10 v/v) as eluent to give **1a** (426 mg, 83% yield).

(2) Procedures for the synthesis of 1j, 1l, 1m, 1n, and 1o:

Typically, to a solution of 4-bromophenylactone (5.0 mmol, 1.0 equiv) in CH₂Cl₂ (50 mL) was added Br₂ (11.0 mmol, 2.2 equiv) dropwise at room temperature. The reaction mixture was stirred overnight. After full consumption of staring material, saturated NaHCO₃ aqueous solution and saturated Na₂S₂O₃ aqueous solution were added to the reaction mixture. After having been stirred for 5 minutes, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (10:1 v/v) as eluent gave **S4** (1.9 g, 100% yield).

Sodium turnings (5.0 mmol, 2.1 equiv) was added in portions to MeOH (2.0 M). After sodium was dissolved completely into MeOH, the starting material **S4** (2.4 mmol, 1.0 equiv) was added by syringe dropwise to the above solution. After 2h, the reaction mixture was checked by TLC, then added water and brine before the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (10:1 v/v) as eluent gave **S5** (655 mg, 100% yield).

In a 100 mL round bottom flask was taken a mixture of benzaldehyde (5.0 mmol, 1 equiv) and **S5** (5.0 mmol, 1 equiv) in 10 mL of methanol. Then a 4.5 mL of 5 M aqueous sodium hydroxide solution (25 mmol) were added. The mixture was stirred for 12 h at room temperature. After the reaction was completed, methanol was removed under reduced pressure and the remaining aqueous phase was extracted with methylene chloride and the organic phase was washed with brine. After drying with anhydrous Na₂SO₄ and evaporation of the organic phase, purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (10:1 v/v) as eluent gave **S6** (1.7 g, 92% yield).

To a solution of **S6** (5 mmol, 1.0 equiv) in absolute MeOH (10 mL) was added NaBH₄ (5 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room temperature for 30 minutes. After completion, H₂O and brine were added. Then the

reaction mixture was extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 , concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (90:10 v/v) as eluent to give **S7** (1.8 g, 100% yield).

To a solution of **S7** (5 mmol, 1.0 equiv) in 10 mL of CH₂Cl₂ under argon at 0 °C was added 20 mol% of DMAP and 4 equiv of Et₃N. Then benzoyl chloride (2 equiv) was added dropwise to the stirred solution at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. After the starting materials were consumed, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of the crude product through a silica gel column using a mixture of hexane and ethyl acetate (80:20 v/v) as eluent gave **S8** (2.2 g, 94% yield).

To a solution of **S8** (5.0 mmol, 1.0 equiv) in acetone (20 mL) was added concentrated HCl (50 mmol, 10.0 equiv), and refluxed for 5 minutes until some precipitates were generated from the reaction mixture. After checked by TLC, the reaction mixture was cooled to room temperature. The solids were filtered and washed with a mixture of hexane and ethyl acetate (100:1 v/v). Collection of the solid by filtration afforded **1j** (1.9 g, 88% yield). Then the solid was further dried under vacuum and used for the NHC-catalyzed reactions.

(3) Procedures for the synthesis of 1t:

The reaction of butane-2,3-dione **S9** with triethylorthoformate afforded 3,3-diethoxybutane-2-one **S10** in 90% yield according to the reported method (*J. Org. Chem.* **1995**, *60*, 8204; *Angew. Chem., Int. Ed.* **2016**, *55*, 1208). In a 100 mL round bottom flask was taken a mixture of aromatic aldehyde (5.0 mmol, 1 equiv) and

3,3-diethoxybutane-2-one **S10** (800.5 mg, 5.0 mmol, 1 equiv) in 10 mL of methanol. Then a 4.5 mL of 5M aqueous sodium hydroxide solution was added. The mixture was stirred for 15 h at room temperature. After the reaction was complete, methanol was removed under reduced pressure and the remaining aqueous phase was extracted with methylene chloride and the organic phase was washed with brine. After drying with anhydrous Na₂SO₄ and evaporation of the organic phase, product **S11** (721 mg, 90% yield) was pure enough and can be used in the next step.

To a solution of **S11** (5 mmol, 1.0 equiv) in absolute MeOH (10 mL) was added NaBH₄ (5 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room temperature for 30 minutes. After completion, H_2O and brine were added. Then the reaction mixture was extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 , concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (90:10 v/v) as eluent to give **S12** (1.3 g, 100% yield).

To the solution of **S12** (5 mmol) in 10 mL of CH₂Cl₂ under argon at 0 °C was added 20 mol% of DMAP and 4 equiv of Et₃N. Then benzoyl chloride (2 equiv) was added dropwise to the solution was stirred at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. After the starting materials were consumed, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of the crude product through a silica gel column using a mixture of hexane and ethyl acetate (80:20 v/v) as eluent gave **S13** (1.7 g, 94% yield).

In a 50 mL round bottom flask, acetal **S13** (5 mmol) was dissolved in 20 mL of acetone. To this solution *p*-TSA (20 mol%) was added and the mixture was stirred for 3 h at room temperature. The solvent was evaporated under reduced pressure and the residue was dissolved in methylene chloride and washed with water. Drying of the organic phase with anhydrous Na₂SO₄ and the following evaporation gave the crude product as a yellowish solid. The yellow solid was kept for crystallization in petroleum ether/methylene chloride (4:1 v/v, 20 mL). After crystallization, the yellow

solid was filtered through a Büchner funnel to afford α,β -unsaturated compound 1t (1.3 g, 92%).

(4) Procedures for the synthesis of **1u**:

To a 50-mL round bottom flask with septum and stir bar was added **S14** (3.0 mmol, 1.0 equiv). The flask was evacuated and backfilled with argon twice before 20 mL of THF was added. n-Butylithium (4.5 mmol, 1.5 equiv) was subsequently added dropwise by syringe at -40 °C. The reaction mixture was stirred for 1h at -40 °C under argon atmosphere. Then cinnamaldehyde (3.0 mmol, 1.0 equiv) was added dropwise to the above reaction mixture at the same temperature. After cinnamaldehyde was consumed completely (about 1h), the reaction mixture was quenched with water at -40 °C and the ice bath was removed. After the reaction mixture was warmed to room temperature, the solvent was removed under vacuum and the crude product was extracted with CH_2Cl_2 . The organic layers were collected and dried over anhydrous sodium sulfate before evaporation. The residue was purified by silica gel column chromatography using the mixture of hexanes/ethyl acetate (80:20 v/v) as eluent to give **S15** (353 mg, 40% yield).

To a solution of **S15** (5 mmol) in 10 mL of CH₂Cl₂ under argon at 0 °C was added 20 mol% of DMAP and 4 equiv of Et₃N. Then benzoyl chloride (2 equiv) was added dropwise to the stirred solution at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. After the starting materials were consumed, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of the crude product through a silica gel column using a mixture of hexanes and ethyl acetate (80:20 v/v) as eluent gave **S16** (1.4 g, 70% yield).

To the solution of **S16** (5.0 mmol, 1 equiv) in acetonitrile/dichloromethane/water (3:1:1) was added the mixture of *N*-chlorosuccinimide (4 equiv) and AgNO₃ (4.5 equiv) at room temperature. The mixture was stirred at room temperature for 20 minutes. After completion, aqueous Na₂S₂O₃ solution was added. Then the reaction mixture was extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (90:10 v/v) as eluent to give **1u** (1.0 g, 65% yield).

(5) Procedures for the synthesis of 1v, 1w, 1x, 1y, and 1z:

To a 50-mL round bottom flask with septum and stir bar was added S1 (805.5 mg, 3.0 mmol, 1.5 equiv). The flask was evacuated and backfilled with argon twice, then *trans*-cinnamaldehyde (264 mg, 252 μ L, 2.0 mmol, 1.0 equiv) and 20 mL of THF were added by syringe. The reaction was cooled to -78 °C and stirred under argon atmosphere. A freshly prepared solution of TBAF (1 equiv) in THF (0.2 M) was added dropwise to the reaction mixture and stirred at -78 °C for 1 hour. The reaction was quenched at -78 °C with 20 mL of 2.0 M Cl₃CCO₂H in. The cooling bath was then removed and the reaction was stirred at room temperature for 0.5 hour. The reaction mixture was added 50 mL of Et₂O and transferred to a separatory funnel containing 50 mL of sat. NaHCO₃ aq solution. After work-up the ether layer was separated and washed with distilled water (2 × 20 mL) and saturated brine (1 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄, and concentrated using rotary evaporation. Purification of the crude product through a silica gel column using a mixture of hexane and ethyl acetate (70:30 v/v) as eluent gave S2 (520 mg, 79% yield).

To a solution of **S2** (5 mmol) in 10 mL of CH₂Cl₂ under argon at 0 °C was added 20 mol% of DMAP and 4 equiv of Et₃N. Then acetyl chloride (2 equiv) was added dropwise to the stirred solution at 0 °C. The reaction mixture was warmed to room temperature and stirred overnight. After the starting materials were consumed, the reaction mixture was extracted with dichloromethane (20 mL) and water. The organic layer was then separated, dried over anhydrous sodium sulfate and concentrated using rotary evaporation. Purification of crude product through a silica gel column using a mixture of hexane and ethyl acetate (80:20 v/v) as eluent gave **S17**(1.1 g, 60%).

To the solution of **S17** (5.0 mmol, 1 equiv) in acetonitrile/dichloromethane/water (3:1:1) was added the mixture of *N*-chlorosuccinimide (4 equiv) and AgNO₃ (4.5 equiv) at room temperature. The mixture was stirred at room temperature for 20 minutes. After completion, aqueous Na₂S₂O₃ solution was added. Then the reaction mixture was extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (90:10 v/v) as eluent to give **1v** (700 mg, 50% yield).

2. General procedures for the annulation reactions.

(1) General procedure for the non-asymmetric all-carbon [4+2] annulation:

To a dried 10 mL Schlenk tube equipped with a tiny magnetic stir bar were added catalyst C1 (13.6 mg, 20 mol %), K_2CO_3 (30.4 mg, 0.22 mmol, 1.1 equiv), 1a (68.5 mg, 0.2 mmol, 1 equiv), and α -bromocinnamaldehyde 2a (46.4 mg, 0.22 mmol, 1.1 equiv). After argon was backfilled twice, THF (1 mL) was added and the resulting solution was stirred for 6h at 30 °C. After completion of the reaction, solvent was evaporated and the resulting crude product was purified through a short column chromatography on silica gel with petroleum ether/ethyl acetate (4:1 v/v) as eluent to afford the cyclohexyl β -lactone product and it was used immediately for the next step.

To a solution of the cyclohexyl β -lactone (0.2 mmol, 1.0 equiv) in MeOH (1 mL) was added Na₂CO₃ (0.2 mmol, 1.0 equiv) at room temperature. After the completion

of reaction, water and brine were added, and the reaction mixture was extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 , concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (5:1 v/v) as eluent to give rac-3a (82 mg, 82% yield over two steps).

(2) General procedure for the asymmetric all-carbon [4+2] annulation:

To a dried 10 mL Schlenk tube equipped with a tiny magnetic stir bar were added catalyst C10 (16.8 mg, 20 mol %), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv), 1a (68.5 mg, 0.2 mmol, 1 equiv), α -bromocinnamaldehyde 2a (63.3 mg, 0.3 mmol, 1.5 equiv) and 4Å molecular seives (400 mg). The tube was backfilled with argon twice. THF (1 mL) was added and the resulting solution was stirred for 12 at 30 °C. After completion of the reaction, solvent was evaporated after filtration through celite and the resulting crude product was purified through a short column chromatography on silica gel with petroleum ether/ethyl acetate (4:1 v/v) as eluent to afford the cyclohexyl β -lactone product and it was used immediately for the next step.

To a solution of the cyclohexyl β -lactone (0.2 mmol, 1.0 equiv) in MeOH (1 mL) was added Na₂CO₃ (0.2 mmol, 1.0 equiv) and stirred at room temperature. After the completion of the reaction, water and brine were added, and the reaction mixture was extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (5:1 v/v) as eluent to give **4a** (81 mg, 80% yield over two steps).

3. Procedures for products derivatizations.

Synthesis of compound 5a. To the solution of **4l** (467 mg, 0.8 mmol) in MeOH/CH₂Cl₂ (1:1 v/v, 8.0 mL) was added 4.0 mL solution of NaOMe (1.0 M in MeOH) at room temperature. The mixture was stirred at room temperature for 1 hour. After completion, the reaction mixture was diluted by water, extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography using a mixture of petroleum ether and ethyl acetate (5:1 v/v) as eluent gave **5a** as a white solid in 89% yield (340.3 mg).

Synthesis of compound 5b. To a solution of **5a** (144 mg, 0.3 mmol) in 12 mL CH_2Cl_2 at room temperature, was added 3 equiv of NaHCO₃ (76 mg, 0.9 mmol) and 2 equiv of Dess-Martin periodinane (254 mg, 0.6 mmol). After having been stirred for 5 h, the reaction was quenched via addition of saturated aqueous NaHCO₃ (10 mL) and $Na_2S_2O_3$ (10 mL), and diluted with CH_2Cl_2 (10 mL). The biphasic mixture was vigorously stirred at room temperature for 15 min and then the aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated and the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl acetate (4:1 v/v) as eluent to give **5b** as a white solid in 89% yield (127.1 mg).

Synthesis of compound 5c. To a solution of CuI (38 mg, 0.2 mmol) in 1.0 mL dry THF at -10 °C, was added CH₂CHMgBr solution (1.0 M in THF, 400 uL). After having been stirred for 10 mins, **5b** (48 mg, 0.1 mmol) was added, then the mixture was stirred at room temperature for 2h. The reaction was quenched with saturated

aqueous $NH_4Cl/25\%$ aqueous NH_3 (9:1 v/v, 10 mL), then the aqueous phase was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated and the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl acetate (10:1 v/v) as eluent to give **5c** as a white solid in 82% yield (39.0 mg).

Synthesis of compound 5d. To a solution of 4l (467 mg, 0.8 mmol) in dry CH_2Cl_2 (16 mL) at room temperature, was added m-chloroperoxybenzoic acid (413 mg, 2.4 mmol) and $NaHCO_3$ (202 mg, 2.4 mmol). The mixture was stirred at room temperature for 22 h, then the reaction was quenched via addition of saturated aqueous $NaHCO_3$ (10 mL) and $Na_2S_2O_3$ (10 mL) after completion, and diluted with CH_2Cl_2 (10 mL). The biphasic mixture was vigorously stirred at room temperature for 10 min and then the aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated and the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl acetate (10:1 v/v) as eluent to give 5d as a white solid in 70% yield (334.9 mg).

Synthesis of compound 5e. To a solution of **5d** (100 mg, 0.167 mmol) in 1.67 mL dry DMF at room temperature, was added NaN₃ (108 mg, 1.67 mmol) and SmCl₃ (26 mg, 0.167 mmol). The mixture was stirred at 100 $^{\circ}$ C under argon atmosphere for 12 h. After cooled to room temperature, the mixture was diluted by ethyl acetate(20 mL), then washed by saturated aqueous NaCl (3 \times 20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated and the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl acetate (10:1 v/v) as eluent to give **5c** as a white solid in 56% yield (59.9 mg).

Synthesis of compound 5f. To a solution of **5d** (105 mg, 0.175 mmol) in 5 mL THF at room temperature, was added 5 drops $HClO_4$ (60% in water). After stirred at room temperature for 10 h, the reaction was quenched via addition of saturated aqueous $NaHCO_3$ (20 mL), then the aqueous phase was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated and the crude product was purified by column chromatography using a mixture of

petroleum ether and ethyl acetate (5:1 v/v) as eluent to give **5f** as a white solid in 71% yield (76.5 mg).

V. Characterizations of New Compounds.

(*E*)-1-oxo-1,4-diphenylbut-3-en-2-yl benzoate (1a): White solid, 141.9 mg, 83% yield. Mp 147–149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.07 (m, 4H), 7.59–7.55 (m, 2H), 7.49–7.39 (m, 6H), 7.32–7.23 (m, 3H), 6.95 (d, J = 15.9 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.46 (dd, J = 15.9 and 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 166.0, 136.9, 135.7, 134.8, 133.8, 133.5, 130.1, 129.5, 128.93, 128.92, 128.83, 128.81, 128.6, 127.0, 121.5, 76.7; HRMS (ESI, m/z): calcd. for C₂₃H₁₉O₃⁺ 343.1329, found 343.1329; IR (KBr thin film, cm⁻¹): v 3062, 1718, 1698, 1271, 1109, 709.

(*E*)-1-(4-chlorophenyl)-1-oxo-4-phenylbut-3-en-2-yl benzoate (1i): White solid, 118.4 mg, 63% yield. Mp 142–143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.12 (m, 2H), 8.03–8.00 (m, 2H), 7.60–7.57 (m, 1H), 7.48–7.39 (m, 6H), 7.34–7.25 (m, 3H), 6.94 (d, *J* = 15.9 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 6.43 (dd, *J* = 15.9 and 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 166.0, 140.3, 137.3, 135.5, 133.7, 133.1, 130.3, 130.1, 129.34, 129.30, 129.0, 128.9, 128.6, 127.0, 121.1, 76.8; HRMS (ESI, m/z): calcd. for C₂₃H₁₈ClO₃⁺ 377.0939, found 377.0944; IR (KBr thin film, cm⁻¹): v 3063, 1718, 1699, 1588, 1273, 1245, 1093, 709.

(*E*)-1-(4-bromophenyl)-1-oxo-4-phenylbut-3-en-2-yl benzoate (1j): White solid, 184.8 mg, 88% yield. Mp 142–144 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13–8.11 (m, 2H), 7.94–7.92 (m, 2H), 7.63–7.57 (m, 3H), 7.48–7.39 (m, 4H), 7.34–7.25 (m, 3H), 6.94 (d, J = 15.9 Hz, 1H), 6.63 (d, J = 7.5 Hz, 1H), 6.43 (dd, J = 15.9 and 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 166.0, 137.3, 135.6, 133.7, 133.6, 132.3, 130.4, 130.1, 129.4, 129.2, 129.0, 128.9, 128.7, 127.1, 121.1, 76.8; HRMS (ESI, m/z): calcd. for C₂₃H₁₈BrO₃⁺ 421.0434, found 421.0435; IR (KBr thin film, cm⁻¹): v3064, 1717, 1699, 1541, 1272, 713.

(*E*)-1-oxo-4-phenyl-1-p-tolylbut-3-en-2-yl benzoate (1k): White solid, 124.6 mg, 70% yield. Mp 141–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.13 (m, 2H), 7.99–7.97 (m, 2H), 7.58–7.55 (m, 1H), 7.46–7.38 (m, 4H), 7.32–7.24 (m, 5H), 6.94 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.46 (dd, J = 16.0 and 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 165.9, 144.8, 136.7, 135.8, 133.5, 132.3, 130.1, 129.6, 129.1, 128.8, 128.6, 127.0, 121.7, 76.7, 21.9; HRMS (ESI, m/z): calcd. for C₂₄H₂₁O₃⁺ 357.1485, found 357.1486; IR (KBr thin film, cm⁻¹): v 3056, 1717, 1698, 1266, 739, 709.

(*E*)-4-(4-bromophenyl)-1-oxo-1-phenylbut-3-en-2-yl benzoate (1l): White solid, 184.8 mg, 88% yield. Mp 149–152 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.12 (m, 2H), 8.07–8.05 (m, 2H), 7.61–7.57 (m, 2H), 7.51–7.43 (m, 6H), 7.27–7.25 (m, 2H), 6.88 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 7.4 Hz, 1H), 6.45 (dd, J = 16.0 and 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 165.9, 135.5, 134.8, 134.7, 134.0, 133.6, 132.0, 130.1, 129.5, 129.0, 128.9, 128.6, 128.5, 122.8, 122.3, 76.5; HRMS (ESI, m/z): calcd. for C₂₃H₁₈BrO₃⁺ 421.0434, found 421.0435; IR (KBr thin film, cm⁻¹): v 2922, 1718, 1699.1268, 1070, 709.

(*E*)-1-oxo-1-phenyl-4-p-tolylbut-3-en-2-yl benzoate (1m): White solid, 160.2 mg, 90% yield. Mp 154–156 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.13 (m, 2H), 8.08–8.06 (m, 2H), 7.60–7.56 (m, 2H), 7.50–7.44 (m, 4H), 7.31–7.29 (m, 2H), 7.13–7.11 (m, 2H), 6.92 (d, J = 16.0 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 6.40 (dd, J = 16.0 and 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 166.0, 138.9, 137.0, 134.9, 133.8, 133.5, 133.0, 130.1, 129.6, 129.5, 128.90, 128.89, 128.5, 126.9, 120.3, 76.9, 21.4; HRMS (ESI, m/z): calcd. for $C_{24}H_{21}O_3^+$ 357.1485, found 357.1485; IR (KBr thin film, cm⁻¹): v 3059, 1718, 1698, 1449, 1272,1109, 711.

(*E*)-4-(4-methoxyphenyl)-1-oxo-1-phenylbut-3-en-2-yl benzoate (1n): White solid, 120.9 mg, 65% yield. Mp 116–117 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.14–8.13 (m, 2H), 8.09–8.07 (m, 2H), 7.59–7.56 (m, 2H), 7.50–7.43 (m, 4H), 7.35–7.33 (m, 2H),

6.91–6.84 (m, 3H), 6.69 (d, J = 7.8 Hz, 1H), 6.31 (dd, J = 15.8 and 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 166.1, 160.2, 136.8, 134.9, 133.8, 133.5, 130.1, 129.6, 128.95, 128.92, 128.6, 128.5, 128.4, 119.1, 114.2, 77.0, 55.5; HRMS (ESI, m/z): calcd. for $C_{24}H_{21}O_4^+$ 373.1434, found 373.1433; IR (KBr thin film, cm⁻¹): v 3064, 1718, 1698, 1511, 1274, 1252,710.

(*E*)-1-oxo-1-phenyl-4-(thiophen-2-yl)but-3-en-2-yl benzoate (1o): White solid, 132.2 mg, 76% yield. Mp 124–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.12 (m, 2H), 8.07–8.05 (m, 2H), 7.56–7.53 (m, 2H), 7.47–7.41 (m, 4H), 7.18–7.17 (m, 1H), 7.08–7.01 (m, 2H), 6.93–6.92 (m, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.28 (dd, J = 15.7 and 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 165.9, 140.6, 134.7, 133.8, 133.5, 130.0, 129.9, 129.4, 128.9, 128.8, 128.5, 127.7, 127.6, 125.9, 120.4, 76.3; HRMS (ESI, m/z): calcd. for C₂₁H₁₇O₃S⁺ 349.0893, found 349.0895; IR (KBr thin film, cm⁻¹): v 3066, 1719, 1698, 1450, 1275, 1109, 956, 708.

(*E*)-1-(4-chlorophenyl)-1-oxo-4-p-tolylbut-3-en-2-yl benzoate (1p): White solid, 152.1 mg, 78% yield. Mp 153–155 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13–8.11 (m, 2H), 8.02–8.00 (m, 2H), 7.60–7.56 (m, 1H), 7.47–7.43 (m, 4H), 7.30–7.29 (m, 2H), 7.13–7.12 (m, 2H), 6.90 (d, J = 15.9 Hz, 1H), 6.68 (d, J = 7.7 Hz, 1H), 6.37 (dd, J = 15.9 and 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 166.0, 140.3, 139.1, 137.4, 133.6, 133.2, 132.8, 130.3, 130.1, 129.6, 129.4, 129.3, 128.6, 127.0, 120.0,

76.9, 21.4; HRMS (ESI, m/z): calcd. for $C_{24}H_{20}ClO_3^+391.1096$, found 391.1098; IR (KBr thin film, cm⁻¹): v 3065, 1718, 1698, 1273, 1245, 1093,709.

(*E*)-1-(4-chlorophenyl)-1-oxo-4-p-tolylbut-3-en-2-yl benzoate (1t): White solid, 65.8 mg, 47% yield. Mp 43–45 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.12 (m, 2H), 7.63–7.59 (m, 1H), 7.50–7.43 (m, 4H), 7.38–7.30 (m, 3H), 6.91 (d, J = 15.9 Hz, 1H), 6.31 (dd, J = 15.9 and 7.5 Hz, 1H), 5.86 (d, J = 7.5 Hz, 1H), 2.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 165.9, 136.3, 135.7, 133.7, 130.1, 129.4, 128.91, 128.89, 128.7, 127.0, 120.8, 80.4, 26.3; HRMS (ESI, m/z): calcd. for C₁₈H₁₇O₃⁺ 281.1172, found 281.1166; IR (KBr thin film, cm⁻¹): v 1720, 1272, 1111, 746, 712, 693.

(*E*)-5-methyl-4-oxo-1-phenylhex-1-en-3-yl benzoate (1u): Yellow oil, 117.0 mg, 76% yield. 1 H NMR (400 MHz, CDCl₃) δ 8.14–8.11 (m, 2H), 7.60–7.56 (m, 1H), 7.48–7.42 (m, 4H), 7.37–7.30 (m, 3H), 6.91 (d, J = 15.9 Hz, 1H), 6.31 (dd, J = 15.9 and 7.8 Hz, 1H), 6.01 (dd, J = 7.8 and 1.1 Hz, 1H), 3.03–2.96 (m, 1H), 1.26 (d, J = 7.0 Hz, 3H), 1.11 (d, J = 6.8 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 208.4, 165.8, 136.5, 135.7, 133.5, 130.0, 129.6, 128.9, 128.8, 128.6, 127.0, 121.2, 79.0, 37.4, 19.1, 18.1; HRMS (ESI, m/z): calcd. for $C_{20}H_{21}O_{3}^{+}$ 309.1485, found 309.1488; IR (KBr thin film, cm⁻¹): v 2926, 2854, 1718, 1456, 1269, 1108, 710.

(E)-1-oxo-1,4-diphenylbut-3-en-2-yl acetate (1v): Yellow oil, 105.0 mg, 75% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.02–8.00 (m, 2H), 7.59–7.55 (m, 1H), 7.49–7.44 (m, 2H), 7.37–7.24 (m, 5H), 6.86 (d, J = 15.9 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 6.31 (d, J = 15.9 and 7.6 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 170.4, 136.8, 135.7, 134.8, 133.8, 128.91, 128.86, 128.82, 128.79, 127.0, 121.3, 76.3, 20.9; HRMS (ESI, m/z): calcd. for C₁₈H₁₇O₃⁺ 281.1172, found 281.1171; IR (KBr thin film, cm⁻¹): v 3064, 2926, 1735, 1699, 1450, 1230, 699.

(*E*)-1-oxo-1,4-diphenylbut-3-en-2-yl pivalate (1w): White solid, 112.7 mg, 70% yield. Mp 64–66 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00–8.00 (m, 2H), 7.59–7.55 (m, 1H), 7.48–7.44 (m, 2H), 7.38–7.36 (m, 2H), 7.33–7.27 (m, 3H), 6.84 (d, *J* = 15.7 Hz, 1H), 6.42 (d, *J* = 7.4 Hz, 1H), 6.33 (d, *J* = 15.7 and 7.4 Hz, 1H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 177.9, 136.2, 135.9, 135.0, 133.7, 128.9, 128.8, 128.7, 127.0, 121.6, 76.3, 38.9, 27.2; HRMS (ESI, m/z): calcd. for C₂₁H₂₃O₃⁺ 323.1642, found 323.1643; IR (KBr thin film, cm⁻¹): v 2974, 1733, 1717, 1699, 1541, 1148.

(*E*)-ethyl 1-oxo-1,4-diphenylbut-3-en-2-yl carbonate (1x): White solid, 97.7 mg, 63% yield. Mp 68–70 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.03–8.01 (m, 2H), 7.60–7.57 (m, 1H), 7.50–7.46 (m, 2H), 7.37–7.35 (m, 2H), 7.32–7.27 (m, 3H), 6.90 (d, *J* = 15.6 Hz, 1H), 6.39–6.28 (m, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 193.9, 154.5, 137.1, 135.6, 134.6, 133.9, 129.0, 128.93, 128.90, 128.8, 127.0, 120.8, 79.0, 64.9, 14.3; HRMS (ESI, m/z): calcd. for C₁₉H₁₉O₄⁺ 311.1278, found 311.1278; IR (KBr thin film, cm⁻¹): v 2926, 1747, 1699, 1449, 1373, 1268, 699.

(*E*)-tert-butyl 1-oxo-1,4-diphenylbut-3-en-2-yl carbonate (1y): Yellow oil, 82.8 mg, 49% yield. 1 H NMR (400 MHz, CDCl₃) δ 8.03–8.00 (m, 2H), 7.59–7.55 (m, 1H), 7.49–7.45 (m, 2H), 7.36–7.24 (m, 5H), 6.90–6.85 (m, 1H), 6.31–6.28 (m, 2H), 1.47 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 194.4, 152.8, 136.8, 135.7, 134.7, 133.8, 128.9, 128.8, 127.0, 121.0, 83.4, 78.6, 27.8; HRMS (ESI, m/z): calcd. for C₂₁H₂₃O₄⁺ 339.1591, found 339.1596; IR (KBr thin film, cm⁻¹): v 3064, 2925, 1717, 1698, 1685, 1596, 1559, 1450, 697.

(*E*)-1-(4-chlorophenyl)-1-oxo-4-phenylbut-3-en-2-yl acetate (1z): Yellow oil, 128.7 mg, 82% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 7.38–7.26 (m, 5H), 6.85 (d, J = 15.9 Hz, 1H), 6.41 (d, J = 7.7 Hz, 1H), 6.28 (dd, J = 15.9 and 7.7 Hz, 1H), 2.20 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 193.2, 170.4, 140.4, 137.2, 135.5, 133.1, 130.3, 129.3, 129.0, 128.9, 127.0, 120.9, 76.3, 20.9; HRMS (ESI, m/z): calcd. for $C_{16}H_{10}O_{2}H^{+}$ 235.0754, found 235.0754; IR (KBr thin film, cm⁻¹): v 3064, 1735, 1698, 1684, 1229, 1092.

(1*S*,4*R*,5*S*,6*R*)-6-(4-chlorophenyl)-6-hydroxy-5-(methoxycarbonyl)-4-(4-methoxy phenyl)-3-phenylcyclohex-2-enyl benzoate (*rac*-3i): Yellow oil, 82.9 mg, 73% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.92–7.90 (m, 2H), 7.58–7.56 (m, 3H), 7.46–7.42 (m, 2H), 7.21–7.08 (m, 7H), 7.02–6.99 (m, 2H), 6.72–6.70 (m, 2H), 6.37 (dd, J = 5.6 and 1.8 Hz, 1H), 5.47 (d, J = 5.7 Hz, 1H), 4.50 (d, J = 10.0 Hz, 1H), 4.30 (s, 1H), 3.77 (d, J = 10.2 Hz, 1H), 3.71 (s, 3H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.8, 158.4, 145.1, 141.3, 139.9, 134.0, 133.3, 132.9, 129.8, 129.6, 129.5, 128.6, 128.2, 128.1, 128.0, 127.4, 127.2, 122.6, 114.1, 74.4, 71.4, 55.2, 53.5, 52.0, 45.9; HRMS (ESI, m/z): calcd. for C₃₄H₃₀ClO₆⁺ 569.1725, found 569.1728; IR (KBr thin film, cm⁻¹): v 3497, 2926, 1719, 1511, 1261, 1175, 1095, 710.

(1*S*,4*R*,5*S*,6*R*)-6-(4-chlorophenyl)-4-(4-fluorophenyl)-6-hydroxy-5-(methoxycarbo nyl)-3-phenylcyclohex-2-enyl benzoate (rac-3j): Yellow oil, 81.2 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.59–7.55 (m, 3H), 7.46–7.43 (m, 2H), 7.20–7.04 (m, 9H), 6.89–6.85 (m, 2H), 6.39 (dd, J = 5.7 and 2.1 Hz, 1H), 5.47 (d, J = 5.8 Hz, 1H), 4.55 (d, J = 10.1 Hz, 1H), 4.28 (s, 1H), 3.75 (d, J = 10.3 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 164.8, 161.6 (d, J = 244.1 Hz), 144.5, 141.1, 139.6, 136.7 (d, J = 3.3 Hz), 134.0, 133.4, 130.0 (d, J = 8.0 Hz), 129.7, 129.6, 128.6, 128.2, 128.1, 128.0, 127.6, 127.1, 122.9, 115.7 (d, J = 21.4 Hz), 74.4, 71.3, 53.4, 52.0, 46.0; HRMS (ESI, m/z): calcd. for $C_{33}H_{27}ClFO_5^+$ 557.1526, found 557.1524; IR (KBr thin film, cm⁻¹): v 3504, 2927, 1720, 1509, 1262, 1095, 711.

(1S,4R,5S,6R)-6-hydroxy-5-(methoxycarbonyl)-3,4,6-triphenylcyclohex-2-enyl benzoate (4a): Yellow oil, 80.6 mg, 80% yield. 1 H NMR (400 MHz, CDCl₃) δ

7.91–7.89 (m, 2H), 7.64–7.62 (m, 2H), 7.57–7.53 (m, 1H), 7.44–7.40 (m, 2H), 7.23–7.07 (m, 13H), 6.42 (dd, J = 5.7 and 2.0 Hz, 1H), 5.51 (d, J = 5.7 Hz, 1H), 4.57 (d, J = 10.2 Hz, 1H), 4.29 (s, 1H), 3.85 (d, J = 10.3 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 164.9, 144.8, 142.7, 141.2, 139.9, 133.2, 130.0, 129.7, 128.7, 128.6, 128.5, 128.1, 128.0, 127.4, 127.2, 127.0, 126.5, 123.0, 74.7, 71.7, 53.5, 51.8, 46.9; HRMS (ESI, m/z): calcd. for $C_{33}H_{29}O_5^+$ 505.2010, found 505.1995; IR (KBr thin film, cm⁻¹): v 3503, 3060, 3028, 2952, 1720, 1264, 1172, 1105, 701; $[\alpha]^{29}D^{2}$: 9.0 (c 0.7, CHCl₃); HPLC analysis: 93% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_1 (major) = 8.7 min, R_1 (minor) = 18.8 min.

(1*S*,4*R*,5*S*,6*R*)-4-(4-fluorophenyl)-6-hydroxy-5-(methoxycarbonyl)-3,6-diphenylcy clohex-2-enyl benzoate (4b): Yellow oil, 66.8 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.63–7.53 (m, 3H), 7.44–7.39 (m, 2H), 7.22–7.05 (m, 10H), 6.89–6.85 (m, 2H), 6.41 (dd, J = 5.7 and 2.1 Hz, 1H), 5.50 (d, J = 5.7 Hz, 1H), 4.57 (d, J = 10.3 Hz, 1H), 4.24 (s, 1H), 3.85 (d, J = 10.4 Hz, 1H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.9, 162.9, 160.4, 144.6, 142.5, 139.8, 137.0 (d, J = 3.2 Hz), 133.2, 130.1, 130.04, 129.97, 129.7, 128.5, 128.1, 127.5, 127.2, 126.5, 123.2, 115.7 (d, J = 21.3 Hz), 77.4, 73.1 (d, J = 306.7 Hz), 53.5, 51.9, 46.1; HRMS (ESI, m/z): calcd. for C₃₃H₂₇FO₅Na+545.1735, found 545.1734; IR (KBr thin film, cm⁻¹): v 3502, 3061, 2954, 2926, 1720, 1509, 1264, 1096, 701; [α]³¹_D: 11.7 (c 1.2, CHCl₃); HPLC analysis: 89% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 9.4 min, R_t (minor) = 12.7 min.

(1S,4R,5S,6R)-4-(4-chlorophenyl)-6-hydroxy-5-(methoxycarbonyl)-3,6-diphenylc

yclohex-2-enyl benzoate (4c): Yellow oil, 86.1 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.81 (m, 2H), 7.56–7.47 (m, 3H), 7.37–7.33 (m, 2H), 7.19–6.96 (m, 12H), 6.35 (dd, J = 5.7 and 2.0 Hz, 1H), 5.42 (d, J = 5.6 Hz, 1H), 4.49 (d, J = 10.4 Hz, 1H), 4.16 (s, 1H), 3.72 (d, J = 10.3 Hz, 1H), 3.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 164.9, 144.3, 142.4, 139.9, 139.7, 133.2, 132.7, 130.0, 129.9, 129.7, 129.0, 128.5, 128.2, 128.1, 127.6, 127.1, 126.5, 123.4, 74.6, 71.6, 53.4, 52.0 46.3; HRMS (ESI, m/z): calcd. for $C_{33}H_{27}ClO_5Na^+$ 561.1439, found 561.1440; IR (KBr thin film, cm⁻¹): v 3503, 2925, 1719, 1262, 1094, 701; [α]³²_D: 17.1 (*c* 1.9, CHCl₃); HPLC analysis: 91% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 6.5 min, R_t (minor) = 7.4 min.

(1*S*,4*R*,5*S*,6*R*)-4-(4-bromophenyl)-6-hydroxy-5-(methoxycarbonyl)-3,6-diphenylc yclohex-2-enyl benzoate (4d): Yellow solid, 74.5 mg, 64% yield. Mp 62–63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.63–7.53 (m, 3H), 7.44–7.36 (m, 2H), 7.31–7.29 (m, 2H), 7.25–7.12 (m, 8H), 7.00–6.84 (m, 2H), 6.42 (d, *J* = 4.5 Hz, 1H), 5.50 (d, *J* = 5.3 Hz, 1H), 4.55 (d, *J* = 9.5 Hz, 1H), 4.24 (s, 1H), 3.79 (d, *J* = 10.2 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 164.9, 144.1, 142.4, 140.4, 139.6, 133.2, 131.9, 130.3, 129.9, 129.7, 128.5, 128.2, 128.1, 127.6, 127.1, 126.4, 123.4, 120.8, 74.6, 71.5, 53.3, 52.0 46.3; HRMS (ESI, m/z): calcd. for C₃₃H₂₇BrO₅Na⁺ 605.0934, found 605.0934; IR (KBr thin film, cm⁻¹): v 2923, 2853, 1718, 1448, 1095, 1262, 700; [α]²⁹D: 8.7 (*c* 4.2, CHCl₃); HPLC analysis: 90% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 6.7 min, R_t (minor) = 7.6 min.

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-4-(4-methoxyphenyl)-3,6-dipheny lcyclohex-2-enyl benzoate (4e): Yellow oil, 64.1 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.64–7.53 (m, 3H), 7.44–7.40 (m, 2H), 7.22–7.01 (m, 10H), 6.72–6.70 (m, 2H), 6.39 (dd, J = 5.6 and 2.0 Hz, 1H), 5.49 (d, J = 5.6 Hz, 1H), 4.52 (d, J = 10.1 Hz, 1H), 4.27 (s, 1H), 3.82 (d, J = 10.3 Hz, 1H), 3.71 (s, 3H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 164.9, 158.3, 145.1, 142.7, 140.0, 133.1, 130.0, 129.7, 129.5, 128.5, 128.1, 128.0, 127.3, 127.2, 126.5, 122.8, 114.1, 74.7, 71.7, 55.2, 53.6, 51.9 46.0; HRMS (ESI, m/z): calcd. for $C_{34}H_{30}O_6Na^+$ 557.1935, found 557.1935; IR (KBr thin film, cm⁻¹): v 3502, 2928, 1719, 1511, 1261, 701; $[\alpha]^{31}_{D}$: 8.5 (*c* 2.5, CHCl₃); HPLC analysis: 97% ee (Chiralcel AD-H, 10:90 [†]PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 10.8 min, R_t (minor) = 14.3 min.

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-3,6-diphenyl-4-p-tolylcyclohex-2-enyl benzoate (4*f*): Yellow oil, 59.1 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.82 (m, 2H), 7.56–7.46 (m, 3H), 7.36–7.32 (m, 2H), 7.18–6.99 (m, 8H), 6.93–6.89 (m, 4H), 6.34 (dd, J = 5.7 and 1.9 Hz, 1H), 5.42 (d, J = 5.7 Hz, 1H), 4.46 (d, J = 9.7 Hz, 1H), 4.21 (s, 1H), 3.76 (d, J = 10.2 Hz, 1H), 3.27 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 164.9, 145.0, 142.7, 140.0, 138.1, 136.4, 133.1, 130.1, 129.7, 129.5, 128.5, 128.4, 128.1, 128.0, 127.4, 127.2, 126.5, 122.9, 74.6, 71.7, 53.6, 51.9, 46.4, 21.2; HRMS (ESI, m/z): calcd. for C₃₄H₃₀O₅Na⁺ 541.1986, found 541.1986; IR (KBr thin film, cm⁻¹): v 2925, 1719, 1263, 1171, 1096, 752, 700; [α]³⁰D: 4.9 (c 1.4, CHCl₃); HPLC analysis: 97% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1

 $mL/min, 254 \text{ nm}), R_t \text{ (major)} = 7.4 \text{ min}, R_t \text{ (minor)} = 10.8 \text{ min}.$

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-4-(naphthalen-2-yl)-3,6-diphenylc yclohex-2-enyl benzoate (4g): Yellow oil, 70.9 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H), 7.71–7.63 (m, 5H), 7.58–7.54 (m, 2H), 7.45–7.39 (m, 4H), 7.28–7.15 (m, 6H), 7.09–7.00 (m, 3H), 6.48 (d, *J* = 4.0 Hz, 1H), 5.54 (d, *J* = 5.6 Hz, 1H), 4.76 (d, *J* = 10.1 Hz, 1H), 4.35 (s, 1H), 3.95 (d, *J* = 10.2 Hz, 1H), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 165.0, 144.7, 142.6, 139.8, 138.7, 133.5, 133.2, 132.4, 130.0, 129.7, 129.3, 129.1, 128.8, 128.5, 128.1, 128.0, 127.8, 127.7, 127.4, 127.2, 126.5, 126.2, 126.0, 125.8, 123.2, 74.7, 71.7, 53.3, 51.9, 47.0; HRMS (ESI, m/z): calcd. for C₃₇H₃₀O₅Na⁺ 577.1986, found 577.1981; IR (KBr thin film, cm⁻¹): v 3504, 2925, 1719, 1263, 1096, 1068,752, 700; [α]³⁰_D: -22.2 (*c* 2./1, CHCl₃); HPLC analysis: 99% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_1 (major) = 7.7 min, R_1 (minor) = 10.1 min.

(1*S*,4*S*,5*S*,6*R*)-4-(furan-2-yl)-6-hydroxy-5-(methoxycarbonyl)-3,6-diphenylcycloh ex-2-enyl benzoate (4h): Yellow oil, 42.5 mg, 43% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.89–7.87 (m, 2H), 7.65–7.64 (m, 2H), 7.55–7.51 (m, 1H), 7.42–7.38 (m, 2H), 7.25–7.16 (m, 9H), 6.28 (dd, J = 5.4 and 2.3 Hz, 1H), 6.13 (s, 1H), 5.99 (d, J = 2.8 Hz, 1H), 5.47 (d, J = 5.4 Hz, 1H), 4.68 (d, J = 10.7 Hz, 1H), 4.25 (s, 1H), 4.09 (d, J = 10.7 Hz, 1H), 3.42 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 175.8, 164.9, 152.9, 142.9, 142.5, 142.1, 139.7, 133.1, 129.9, 129.7, 128.4, 128.12, 128.09, 128.0, 127.6, 126.9, 126.5, 122.7, 110.3, 108.6, 74.6, 71.4, 52.1, 50.0, 40.6; HRMS (ESI, m/z): calcd. for $C_{31}H_{26}O_{6}Na^{+}$ 517.1622, found 517.1627; IR (KBr thin film, cm $^{-1}$): v 3503, 2926, 1719,

1262, 1096, 701; $[\alpha]^{29}_{D}$: 13.6 (*c* 1.0, CHCl₃); HPLC analysis: 73% ee (Chiralcel AD-H, 10:90 ^{*i*}PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 9.5 min, R_t (minor) = 21.0 min.

(1*S*,4*R*,5*S*,6*R*)-6-(4-chlorophenyl)-6-hydroxy-5-(methoxycarbonyl)-3,4-diphenylc yclohex-2-enyl benzoate (4i): Yellow oil, 81.8 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.91 (m, 2H), 7.60–7.56 (m, 3H), 7.47–7.43 (m, 2H), 7.22–7.07 (m, 12H), 6.40 (dd, J = 5.7 and 2.0 Hz, 1H), 5.48 (d, J = 5.6 Hz, 1H), 4.55 (d, J = 10.0 Hz, 1H), 4.32 (s, 1H), 3.79 (d, J = 10.3 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.9, 144.8, 141.3, 141.0, 139.8, 134.0, 133.3, 129.8, 129.7, 128.8, 128.6, 128.5, 128.2, 128.1, 127.5, 127.2, 127.1, 122.7, 74.4, 71.4, 53.4, 52.0, 46.8; HRMS (ESI, m/z): calcd. for C₃₃H₂ClO₅Na⁺ 561.1439, found 561.1443; IR (KBr thin film, cm⁻¹): v 3497, 2924, 1721, 1262, 1095, 709; $[\alpha]^{31}_{D}$: 3.8 (*c* 2.1, CHCl₃); HPLC analysis: 81% ee (Chiralcel AD-H, 10:90 [†]PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 6.5 min, R_t (minor) = 15.3 min.

(1*S*,4*R*,5*S*,6*R*)-6-(4-bromophenyl)-6-hydroxy-5-(methoxycarbonyl)-3,4-diphenylc yclohex-2-enyl benzoate (4j): Yellow oil, 89.6 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.90 (m, 2H), 7.59–7.50 (m, 3H), 7.46–7.42 (m, 2H), 7.34–7.32 (m, 2H), 7.22–7.06 (m, 10H), 6.40 (d, J = 5.4 Hz, 1H), 5.48 (d, J = 5.6 Hz, 1H), 4.54 (d, J = 10.1 Hz, 1H), 4.32 (s, 1H), 3.79 (d, J = 10.2 Hz, 1H), 3.33 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 175.8, 164.8, 144.8, 141.9, 141.0, 139.8, 133.3, 131.2, 129.9, 129.6, 128.8, 128.6, 128.5, 128.4, 128.1, 127.5, 127.2, 127.1, 122.7, 122.3, 74.5, 71.4, 53.4, 52.0, 46.9; HRMS (ESI, m/z): calcd. for $C_{33}H_{27}BrO_5Na^+$ 605.0934, found 605.0935; IR (KBr thin film, cm⁻¹): v 3497, 2954, 2927, 1720, 1262, 1095, 710; [α]³⁰_D: 7.1 (c 2.5, CHCl₃); HPLC analysis: 83% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 7.2 min, R_t (minor) = 17.6 min.

 $(1S,\!4R,\!5S,\!6R)\text{-}6-\text{hydroxy-}5-(\text{methoxycarbonyl})\text{-}3,\!4-\text{diphenyl-}6-\text{p-tolylcyclohex-}2-\text{diphenyl-}6$

enyl benzoate (4k): Yellow oil, 57.0 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.91 (m, 2H), 7.57–7.49 (m, 3H), 7.44–7.41 (m, 2H), 7.22–7.00 (m, 12H), 6.42 (d, J = 5.2 Hz, 1H), 5.47 (d, J = 5.7 Hz, 1H), 4.55 (d, J = 10.1 Hz, 1H), 4.22 (s, 1H), 3.83 (d, J = 10.3 Hz, 1H), 3.33 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 165.0, 144.8, 141.3, 140.0, 139.7, 137.6, 133.1, 130.2, 129.7, 128.8, 128.7, 128.6, 128.5, 128.0, 127.4, 127.2, 126.9, 126.4, 123.1, 74.5, 71.8, 53.6, 51.8, 47.0, 21.1; HRMS (ESI, m/z): calcd. for $C_{34}H_{31}O_5^+$ 519.2166, found 519.2177; IR (KBr thin film, cm⁻¹): v 3504, 2925, 1719, 1264, 1106,711; [α]³¹_D: -8.5 (c 1.7, CHCl₃); HPLC analysis: 91% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 6.2 min, R_t (minor) = 13.0 min.

(1S,4R,5S,6R)-3-(4-bromophenyl)-6-hydroxy-5-(methoxycarbonyl)-4,6-diphenylc

yclohex-2-enyl benzoate (4l): Yellow oil, 89.6 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.63–7.61 (m, 2H), 7.56–7.53 (m, 1H), 7.43–7.39 (m, 2H), 7.25–7.08 (m, 12H), 6.42 (d, J = 5.6 Hz, 1H), 5.48 (d, J = 5.7 Hz, 1H), 4.51 (d, J = 10.2 Hz, 1H), 4.28 (s, 1H), 3.84 (d, J = 10.3 Hz, 1H), 3.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.9, 143.8, 142.5, 140.8, 138.9, 133.2, 131.2, 129.9, 129.7, 128.9, 128.8, 128.53, 128.50, 128.1, 127.2, 126.5, 123.6, 121.4, 74.6, 71.5, 53.4, 51.9, 46.8; HRMS (ESI, m/z): calcd. for C₃₃H₂₈BrO₅⁺ 605.0934, found 605.0933; IR (KBr thin film, cm⁻¹): v 3503, 3062, 3028, 2952, 1717, 1316, 1263, 704; [α]³¹_D: -28.2 (c 1.3, CHCl₃); HPLC analysis: 95% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 11.2 min, R_t (minor) = 14.6 min.

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-4,6-diphenyl-3-p-tolylcyclohex-2-enyl benzoate (4m): Yellow oil, 76.7 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.64–7.62 (m, 2H), 7.56–7.52 (m, 1H), 7.43–7.39 (m, 2H), 7.25–7.09 (m, 10H), 6.92–6.90 (m, 2H), 6.39 (dd, J = 7.8 and 2.1 Hz, 1H), 5.50 (d, J = 5.8 Hz, 1H), 4.55 (d, J = 10.3 Hz, 1H), 4.27 (s, 1H), 3.84 (d, J = 10.3 Hz, 1H), 3.32 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 164.9, 144.6, 142.7, 141.5, 137.1, 137.0, 133.1, 130.1, 129.7, 128.8, 128.7, 128.6, 128.5, 128.1, 128.0, 127.0, 126.9, 126.5, 122.3, 74.6, 71.8, 53.6, 51.8, 46.9, 21.2; HRMS (ESI, m/z): calcd. for C₃₄H₃₀O₅Na⁺ 541.1986, found 541.1986; IR (KBr thin film, cm⁻¹): v 3503, 3027, 2952, 1720, 1451, 1263, 1105, 703; [α]³⁰D: -13.7 (c 1.9, CHCl₃); HPLC analysis: 87% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 9.1 min, R_t (minor) = 14.3 min.

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-3-(4-methoxyphenyl)-4,6-dipheny lcyclohex-2-enyl benzoate (4n): Yellow oil, 70.5 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.88 (m, 2H), 7.64–7.62 (m, 2H), 7.54–7.52 (m, 1H), 7.43–7.39 (m, 2H), 7.22–7.10 (m, 10H), 6.66–6.63 (m, 2H), 6.37 (dd, *J* = 5.8 and 2.1 Hz, 1H), 5.49 (d, *J* = 5.8 Hz, 1H), 4.52 (d, *J* = 10.2 Hz, 1H), 4.27 (s, 1H), 3.84 (d, *J* = 10.3 Hz, 1H), 3.68 (s, 3H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 165.0, 158.9, 144.2, 142.7, 141.6, 133.1, 132.4, 130.1, 129.7, 128.7, 128.6, 128.5, 128.3, 128.1, 128.0, 126.9, 126.5, 121.7, 113.4, 74.6, 71.8, 55.2, 53.6, 51.8, 46.9; HRMS (ESI, m/z): calcd. for C₃₄H₃₁O₆⁺ 535.2115, found 535.2122; IR (KBr thin film, cm⁻¹): v 3503, 2954, 1719, 1513, 1250, 1175, 703; $[\alpha]^{31}_{D}$: -21.7 (*c* 1.1, CHCl₃); HPLC analysis: 93% ee (Chiralcel AD-H, 10:90 ^{*i*}PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 11.3 min, R_t (minor) = 14.8 min.

(1*S*,4*R*,5*S*,6*R*)-6-hydroxy-5-(methoxycarbonyl)-4,6-diphenyl-3-(thiophen-2-yl)cyc lohex-2-enyl benzoate (4o): Yellow oil, 85.7 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 2H), 7.63–7.60 (m, 2H), 7.52–7.50 (m, 1H), 7.41–7.37 (m, 2H), 7.31–7.12 (m, 8H), 7.01–6.99 (m, 1H), 6.73–6.68 (m, 2H), 6.62 (dd, *J* = 6.0 and 1.9 Hz, 1H), 5.51 (d, *J* = 6.0 Hz, 1H), 4.40 (d, *J* = 10.1 Hz, 1H), 4.24 (s, 1H), 3.88 (d, *J* = 10.2 Hz, 1H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 164.9, 142.7,

142.3, 141.8, 138.1, 133.1, 129.9, 129.6, 129.0, 128.5, 128.4, 128.0, 127.4, 127.0, 126.5, 126.3, 124.8, 121.8, 74.4, 71.8, 53.8, 51.8, 47.4; HRMS (ESI, m/z): calcd. for $C_{31}H_{26}O_5SNa^+$ 533.1393, found 533.1400; IR (KBr thin film, cm⁻¹): v 3503, 3062, 2953, 1720, 1263, 1095, 702; $[\alpha]^{31}_D$: 8.2 (*c* 4.5, CHCl₃); HPLC analysis: 97% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 10.9 min, R_t (minor) = 30.3 min.

(1*S*,4*R*,5*S*,6*R*)-6-(4-chlorophenyl)-6-hydroxy-5-(methoxycarbonyl)-4-phenyl-3-p-t olylcyclohex-2-enyl benzoate (4p): Yellow oil, 61.8 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.90 (m, 2H), 7.58–7.54 (m, 3H), 7.48–7.41 (m, 2H), 7.20–7.09 (m, 9H), 6.92–6.90 (m, 2H), 6.38 (d, *J* = 5.8 Hz, 1H), 5.48 (d, *J* = 5.8 Hz, 1H), 4.53 (d, *J* = 10.2 Hz, 1H), 4.31 (s, 1H), 3.79 (d, *J* = 10.2 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.8, 144.6, 141.4, 141.3, 137.2, 136.8, 134.0, 133.3, 129.9, 129.6, 128.8, 128.6, 128.5, 128.2, 128.1, 127.0, 122.1, 74.4, 71.5, 53.5 51.9, 46.8, 21.2; HRMS (ESI, m/z): calcd. for C₃₄H₂₉ClO₅Na⁺ 575.1596, found 575.1592; IR (KBr thin film, cm⁻¹): v 3498, 3028, 2923, 1720, 1491, 1262, 1095, 710; [α]³⁰_D: 2.2 (*c* 1.7, CHCl₃); HPLC analysis: 80% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), $R_{\rm t}$ (major) = 5.7 min, $R_{\rm t}$ (minor) = 12.2 min.

(1*S*,4*R*,5*S*,6*R*)-6-(4-bromophenyl)-4-(4-fluorophenyl)-6-hydroxy-5-(methoxycarb onyl)-3-phenylcyclohex-2-enyl benzoate (4q): Yellow oil, 78.0 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.59–7.55 (m, 1H), 7.51–7.42 (m, 4H), 7.35–7.33 (m, 2H), 7.19–7.04 (m, 7H), 6.89–6.84 (m, 2H), 6.39 (dd, *J* = 5.7 and 2.2 Hz, 1H), 5.47 (d, *J* = 5.7 Hz, 1H), 4.54 (d, *J* = 10.2 Hz, 1H), 4.28 (s, 1H), 3.74 (d, *J* = 10.3 Hz, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 164.8, 161.7 (d, *J* = 244.2 Hz), 144.6, 140.7 (d, *J* = 211.3 Hz), 136.8 (d, *J* = 3.3 Hz), 134.0, 133.4, 131.2, 130.0 (d, *J* = 8.0 Hz), 129.8, 129.6, 128.6, 128.4, 128.2, 127.6, 127.2, 123.0, 122.4, 115.8 (d, *J* = 21.3 Hz), 74.5, 71.3, 53.4 52.1, 46.1; HRMS (ESI, m/z): calcd. for C₃₃H₂₆BrFO₅Na⁺ 623.0840, found 623.0840; IR (KBr thin film, cm⁻¹): v 3500, 3062, 2953, 1720, 1509, 1262, 1095, 711; [α]³¹D: 5.4 (*c* 1.8, CHCl₃); HPLC analysis: 82% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 7.5 min, R_t (minor) = 9.9 min.

(1*S*,4*R*,5*S*,6*R*)-3-(4-bromophenyl)-4-(4-fluorophenyl)-6-hydroxy-5-(methoxycarb onyl)-6-phenylcyclohex-2-enyl benzoate (4r): Yellow oil, 66.0 g, 55% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.89–7.87 (m, 2H), 7.63–7.61 (m, 2H), 7.56–7.52 (m, 1H), 7.43–7.39 (m, 2H), 7.23–7.14 (m, 5H), 7.07–7.04 (m, 4H), 6.90–6.86 (m, 2H), 6.41 (dd, *J* = 5.7 and 2.1 Hz, 1H), 5.48 (d, *J* = 5.7 Hz, 1H), 4.53 (d, *J* = 9.3 Hz, 1H), 4.25 (s,

1H), 3.79 (d, J = 10.3 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 164.9, 163.0, 160.5, 143.6, 142.3, 138.7, 136.6 (d, J = 3.2 Hz), 133.2, 131.3, 130.0 (d, J = 8.0 Hz), 129.8, 129.6, 128.8, 128.5, 128.2, 128.1, 126.4, 123.8, 121.5, 115.9 (d, J = 21.4 Hz), 74.6, 71.4, 53.4 51.9, 46.0; HRMS (ESI, m/z): calcd. for C₃₃H₂₆BrFO₅Na⁺ 623.0840, found 623.0836; IR (KBr thin film, cm⁻¹): v 3508, 3062, 2952, 1719, 1509, 1263, 1096, 710; $[\alpha]^{31}_{D}$: -18.9 (c 1.6, CHCl₃); HPLC analysis: 92% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 8.1 min, R_t (minor) = 10.8 min.

(1*S*,4*R*,5*S*,6*R*)-4,6-bis(4-chlorophenyl)-6-hydroxy-5-(methoxycarbonyl)-3-p-tolylc yclohex-2-enyl benzoate (4s): Yellow oil, 82.0 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.89 (m, 2H), 7.58–7.54 (m, 3H), 7.45–7.41 (m, 2H), 7.24–7.14 (m, 4H), 7.08–7.02 (m, 4H), 6.94–6.92 (m, 2H), 6.37 (dd, *J* = 5.8 and 2.0 Hz, 1H), 5.47 (d, *J* = 5.8 Hz, 1H), 4.53 (d, *J* = 10.2 Hz, 1H), 4.26 (s, 1H), 3.73 (d, *J* = 10.3 Hz, 1H), 3.35 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 164.8, 141.1, 139.9, 137.4, 136.5, 134.1, 133.3, 132.7, 129.83, 129.81, 129.6, 129.0, 128.9, 128.6, 128.2, 128.0, 126.9, 122.4, 74.4, 71.4, 53.4, 52.0, 46.2, 21.2; HRMS (ESI, m/z): calcd. for C₃₄H₂₈Cl₂O₅Na⁺ 609.1206, found 609.1206; IR (KBr thin film, cm⁻¹): v 3456, 2960, 2927, 1729, 1489, 1250, 1093, 711; [α]²⁷_D: -6.7 (*c* 1.8, CHCl₃); HPLC analysis: 85% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 7.9 min, R_t (minor) = 9.9 min.

(1*S*,4*R*,5*S*,6*S*)-6-hydroxy-5-(methoxycarbonyl)-6-methyl-3,4-diphenylcyclohex-2-enyl benzoate (4t): Yellow oil, 35.4 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.09 (m, 2H), 7.63–7.60 (m, 1H), 7.52–7.48 (m, 2H), 7.20–7.04 (m, 10H), 6.37 (d, *J* = 4.7 Hz, 1H), 5.45 (d, *J* = 5.7 Hz, 1H), 4.48 (d, *J* = 10.3 Hz, 1H), 3.58 (s, 3H), 3.32 (s, 1H), 3.13 (d, *J* = 10.4 Hz, 1H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 165.6, 145.1, 141.4, 139.8, 133.5, 130.1, 129.9, 128.75, 128.68, 128.5, 128.0, 127.4, 127.1, 126.8, 122.4, 71.8, 70.9, 55.9, 52.0, 46.2, 25.1; HRMS (ESI, m/z): calcd. for C₂₈H₂₇O₅⁺ 443.1853, found 443.1852; IR (KBr thin film, cm⁻¹): v 3514, 2953, 1720, 1452, 1263, 1107, 700; α [α]³¹D: -7.6 (*c* 1.5, CHCl₃); HPLC analysis: 61% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (minor) = 12.3 min, R_t (major) = 24.1 min.

(1*S*,4*R*,5*S*,6*S*)-6-hydroxy-6-isopropyl-5-(methoxycarbonyl)-3,4-diphenylcyclohex-**2-enyl benzoate** (**4u**): Yellow oil, 14.1 mg, 15% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12–8.10 (m, 2H), 7.64–7.60 (m, 1H), 7.52–7.48 (m, 2H), 7.17–7.03 (m, 10H), 6.41 (dd, J = 6.0 and 1.9 Hz, 1H), 5.62 (d, J = 6.0 Hz, 1H), 4.44 (d, J = 10.1 Hz, 1H), 3.57 (s, 3H), 3.41 (d, J = 10.1 Hz, 1H), 3.29 (s, 1H), 1.94–1.87 (m, 1H), 1.09–1.06 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 165.2, 144.5, 141.5, 133.4, 130.1, 130.0, 128.8, 128.7, 128.5, 128.0, 127.4, 127.1, 126.8, 122.7, 69.2, 54.0, 51.9, 47.2, 37.4, 18.6, 16.7; HRMS (ESI, m/z): calcd. for $C_{30}H_{30}O_5Na^+$ 493.1986, found 493.1987; IR (KBr thin film, cm⁻¹): v 2925, 2853, 1719, 1263, 1095, 711; [α]³²_D: -16.9 (*c* 1.9, CHCl₃); HPLC analysis: 99% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_1

 $(minor) = 6.8 min, R_t (major) = 12.9 min.$

(1S,2R,5S,6R)-methyl

5-acetoxy-6-hydroxy-2,3,6-triphenylcyclohex-3-enecarboxylate (**4v**): Yellow oil, 36.2 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.56 (m, 2H), 7.31–7.03 (m, 13H), 6.22 (dd, J = 5.6 and 1.6 Hz, 1H), 5.30 (d, J = 5.1 Hz, 1H), 4.51 (d, J = 10.4 Hz, 1H), 4.21 (s, 1H), 3.69 (d, J = 10.4 Hz, 1H), 3.25 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 169.2, 144.5, 142.6, 141.1, 140.0, 128.62, 128.59, 128.0, 127.9, 127.3, 127.1, 126.9, 126.6, 123.0, 74.5, 70.7, 53.3, 51.7, 46.7, 20.9; HRMS (ESI, m/z): calcd. for $C_{28}H_{27}O_5^+$ 443.1853, found 443.1862; IR (KBr thin film, cm⁻¹): v 3502, 3027, 2926, 1741, 1369, 1229, 700; [α]²⁹_D: -14.5 (*c* 2.7, CHCl₃); HPLC analysis: 83% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 7.5 min, R_t (minor) = 12.1 min.

(1S,2R,5S,6R)-methyl

6-hydroxy-2,3,6-triphenyl-5-(pivaloyloxy)cyclohex-3-enecarboxylate (4w): Yellow oil, 54.2 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.57 (m, 2H), 7.30–7.02 (m, 13H), 6.31 (d, J = 4.4 Hz, 1H), 5.21 (d, J = 5.6 Hz, 1H), 4.50 (d, J = 10.1 Hz, 1H), 4.28 (s, 1H), 3.72 (d, J = 10.3 Hz, 1H), 3.30 (s, 3H), 1.03 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 176.1, 144.4, 143.0, 141.2, 140.0, 128.6, 128.5, 128.0, 127.94, 127.91, 127.3, 127.1, 126.9, 126.6, 123.0, 74.4, 71.3, 53.1, 51.7, 46.9, 38.7, 27.1; HRMS (ESI, m/z): calcd. for C₃₁H₃₂O₅Na⁺ 507.2142, found 507.2140; IR (KBr thin film, cm⁻¹): v 3504, 2972, 1731, 1145, 759, 700; [α]³²_D: -30.1 (c 3.3, CHCl₃); HPLC analysis: 91% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t

 $(major) = 5.0 \text{ min}, R_t (minor) = 6.5 \text{ min}.$

(1S,2R,5S,6R)-methyl

Yellow oil, 33.0 mg, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.60 (m, 2H), 7.32–7.05 (m, 13H), 6.24 (dd, J = 5.8 and 2.2 Hz, 1H), 5.16 (dd, J = 5.8 and 0.8 Hz, 1H), 4.49 (dd, J = 10.4 and 1.0 Hz, 1H), 4.24 (s, 1H), 3.97–3.89 (m, 2H), 3.71 (d, J = 10.4 Hz, 1H), 3.23 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 154.0, 145.3, 142.1, 140.8, 140.0, 128.8, 128.6, 128.03, 128.02, 128.00, 127.4, 127.2, 126.9, 126.8, 122.3, 74.5, 73.7, 64.2, 53.1, 51.7, 46.8, 14.3; HRMS (ESI, m/z): calcd. for $C_{29}H_{28}O_6Na^+$ 495.1778, found 495.1776; IR (KBr thin film, cm⁻¹): v 3503, 2926, 1748, 1716, 1248, 699; $[\alpha]_{D}^{31}$: -25.2 (*c* 1.5, CHCl₃); HPLC analysis: 86% ee

(Chiralcel AD-H, 10:90 PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 6.5 min, R_t

5-(ethoxycarbonyloxy)-6-hydroxy-2,3,6-triphenylcyclohex-3-enecarboxylate (4x):

(minor) = 13.3 min.

(1S,2R,5S,6R)-methyl

5-(tert-butoxycarbonyloxy)-6-hydroxy-2,3,6-triphenylcyclohex-3-enecarboxylate (**4y**): Yellow oil, 33.0 mg, 33% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.62–7.60 (m, 2H), 7.31–7.27 (m, 2H), 7.24–7.20 (m, 3H), 7.15–7.03 (m, 8H), 6.20 (dd, J = 5.7 and 2.1 Hz, 1H), 5.19 (d, J = 5.2 Hz, 1H), 4.49 (d, J = 10.2 Hz, 1H), 4.23 (s, 1H), 3.71 (d, J = 10.5 Hz, 1H), 3.20 (s, 3H), 1.23 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 176.1, 152.2, 144.7, 142.2, 140.9, 140.1, 128.8, 128.5, 127.98, 127.95, 127.8, 127.23, 127.16, 126.8, 122.7, 82.2, 74.7, 72.6, 53.2, 51.6, 46.7, 27.6; HRMS (ESI, m/z): calcd. for $C_{31}H_{33}O_6^+$ 501.2272, found 501.2279; IR (KBr thin film, cm $^{-1}$): v 3503, 2980, 1745, s39

1271, 1168, 700; $[\alpha]^{28}_{D}$: -15.4 (*c* 2.2, CHCl₃); HPLC analysis: 81% ee (Chiralcel AD-H, 10:90 ^{*i*}PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 4.7 min, R_t (minor) = 9.5 min.

(1S, 2R, 5S, 6R)-methyl

5-acetoxy-6-(4-chlorophenyl)-6-hydroxy-2,3-diphenylcyclohex-3-enecarboxylate

(4z): Yellow oil, 39.0 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.51 (m, 2H), 7.28–7.25 (m, 2H), 7.21–7.06 (m, 10H), 6.22 (dd, J = 5.7 and 1.9 Hz, 1H), 5.26 (d, J = 5.7 Hz, 1H), 4.48 (d, J = 10.3 Hz, 1H), 4.24 (s, 1H), 3.64 (d, J = 10.4 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 169.1, 144.5, 141.3, 140.8, 139.8, 134.0, 128.7, 128.6, 128.2, 128.1, 128.0, 127.4, 127.1, 127.0, 122.8, 74.3, 70.5, 53.2, 51.9, 46.7, 20.9; HRMS (ESI, m/z): calcd. for C₂₈H₂₆ClO₅⁺ 477.1463, found 477.1455; IR (KBr thin film, cm⁻¹): v 3502, 2925, 2853, 1744, 1370, 1226, 1017, 699; [α] ³¹_D: 4.3 (c 2.0, CHCl₃); HPLC analysis: 84% ee (Chiralcel AD-H, 10:90 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 7.4 min, R_t (minor) = 11.3 min.

(1S,4R,5S,6R)-5-(benzylcarbamoyl)-6-hydroxy-3,4,6-triphenylcyclohex-2-enyl

benzoate (**4aa**): Yellow oil, 30.1 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H), 7.66–7.64 (m, 2H), 7.55–7.51 (m, 1H), 7.42–7.39 (m, 2H), 7.23–7.05 (m, 16H), 6.68–6.66 (m, 2H), 6.42 (dd, J = 5.8 and 1.8 Hz, 1H), 5.70 (s, 1H), 5.49 (d, J = 5.8 Hz, 1H), 5.28 (d, J = 5.3 Hz, 1H), 4.64 (d, J = 9.4 Hz, 1H), 4.24 (dd, J = 14.7 and 6.4 Hz, 1H), 3.83 (dd, J = 14.7 and 4.7 Hz, 1H), 3.44 (d, J = 9.9 Hz,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 164.9, 144.9, 143.0, 142.1, 140.1, 137.0, 133.1, 130.2, 129.6, 128.8, 128.6, 128.5, 128.0, 127.8, 127.7, 127.5, 127.3,127.2, 126.9, 126.7, 123.0, 74.5, 71.6, 54.2, 46.6, 43.3; HRMS (ESI, m/z): calcd. for $C_{39}H_{34}NO_4^+$ 580.2482, found 580.2488; IR (KBr thin film, cm⁻¹) v 3356, 2921, 2852, 1718, 1641, 1262, 1094, 969, 702; $[\alpha]_D^{27.7}$ -4.073 (c 1.85, CHCl₃); HPLC analysis: 90% ee (Chiralcel AD-H, 30:70 ⁱPrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 3.7 min, R_t (minor) = 6.0 min.

(1'R,4'S,5'R,6'S)-5'-hydroxy-6'-(methoxy(methyl)carbamoyl)-5'-phenyl-1',4',5',6' -tetrahydro-[1,1':2',1''-terphenyl]-4'-yl benzoate (4ab): Yellow oil, 68.2 mg, 64% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.95–7.93 (m, 2H), 7.69–7.67 (m, 2H), 7.55–7.53 (m, 1H), 7.45–7.41 (m, 2H), 7.25–7.03 (m, 13H), 6.46 (dd, J = 5.8 and 2.0 Hz, 1H), 5.43–5.42 (m, 2H), 4.69 (d, J = 10.0 Hz, 1H), 4.46 (d, J = 10.1 Hz, 1H), 2.78 (s, 3H), 2.54 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 176.0, 165.1, 145.6, 143.1, 142.2, 140.4, 133.0, 130.4, 129.6, 129.5, 128.8, 128.4, 127.9, 127.8, 127.74, 127.67, 127.1, 126.8, 123.1, 75.9, 72.1, 60.3, 47.1, 46.6, 31.8; HRMS (ESI, m/z): calcd. for $C_{34}H_{32}NO_5^+$ 534.2275, found 534.2277; IR (KBr thin film, cm $^{-1}$): v 3421, 2919, 2850, 1718, 1624, 1261, 1096, 701; $[\alpha]^{28}_D$: -9.1 (c 2.0, CHCl₃); HPLC analysis: 88% ee (Chiralcel AD-H, 30:70 i PrOH/hexane, 1 mL/min, 254 nm), R_t (major) = 3.8 min, R_t (minor) = 5.3 min.

(2'R,3'S,4'R,5'S)-methyl

4-bromo-4',5'-dihydroxy-4'-phenyl-2',3',4',5'-tetrahydro-[1,1':2',1''-terphenyl]-3'

-carboxylate (5a): White solid, 340.3 mg, 89% yield . Mp 227–230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.59 (m, 2H), 7.39–7.29 (m, 3H), 7.26–7.24 (m, 2H), 7.18–7.06 (m, 7H), 6.27 (dd, J = 5.5 and 2.0 Hz, 1H), 4.41 (d, J = 10.1 Hz, 1H), 4.14 (s, 1H), 4.03 (s, 1H), 3.68 (d, J = 10.4 Hz, 1H), 3.25 (s, 3H), 1.63 (d, J = 3.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 143.0, 142.1, 140.8, 139.4, 131.1, 128.8, 128.7, 128.64, 128.58, 128.3, 127.0, 126.6, 126.1, 121.1, 75.8, 70.2, 52.1, 51.7, 46.8; HRMS (ESI, m/z): calcd. for C₂₆H₂₃BrO₄Na⁺ 501.0672, found 501.0664; IR (KBr thin film, cm⁻¹): v 3450, 1701, 1045, 980, 806, 699; [α]²⁷_D: -11.1 (c 0.3, CHCl₃); HPLC analysis: 93% ee (Chiralcel AD-H, 20:80 iPrOH/hexane, 1 mL/min, 254 nm), R_t (minor) = 6.1 min, R_t (major) = 7.2 min.

(2'R,3'S,4'R)-methyl

4-bromo-4'-hydroxy-5'-oxo-4'-phenyl-2',3',4',5'-tetrahydro-[1,1':2',1''-terphenyl] -3'-carboxylate (**5b**): White solid, 127.1 mg, 89% yield. Mp 70–71 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.35 (m, 2H), 7.26–7.23 (m, 2H), 7.16 (s, 4H), 7.00–6.98 (m, 3H), 6.83–6.80 (m, 3H), 4.75 (dd, J = 5.7 and 1.3 Hz, 1H), 4.36 (s, 1H), 3.90 (d, J = 5.8 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 173.0, 157.4, 139.5, 138.7, 136.4, 131.9, 128.7, 128.6, 128.5, 128.2, 127.0, 126.54, 126.50, 124.3, 76.5, 59.7, 52.3, 45.8; HRMS (ESI, m/z): calcd. for $C_{26}H_{22}BrO_4^+$ 477.0696, found 477.0698; IR (KBr thin film, cm⁻¹): v 3461, 2925, 1737,1679, 1167, 698; $[\alpha]^{27}_D$: -23.3 (*c* 0.1, CHCl₃); HPLC analysis: 94% ee (Chiralcel AD-H, 20:80 iPrOH/hexane, 1 mL/min, 254 nm), R_t (minor) = 15.5 min, R_t (major) = 20.9 min.

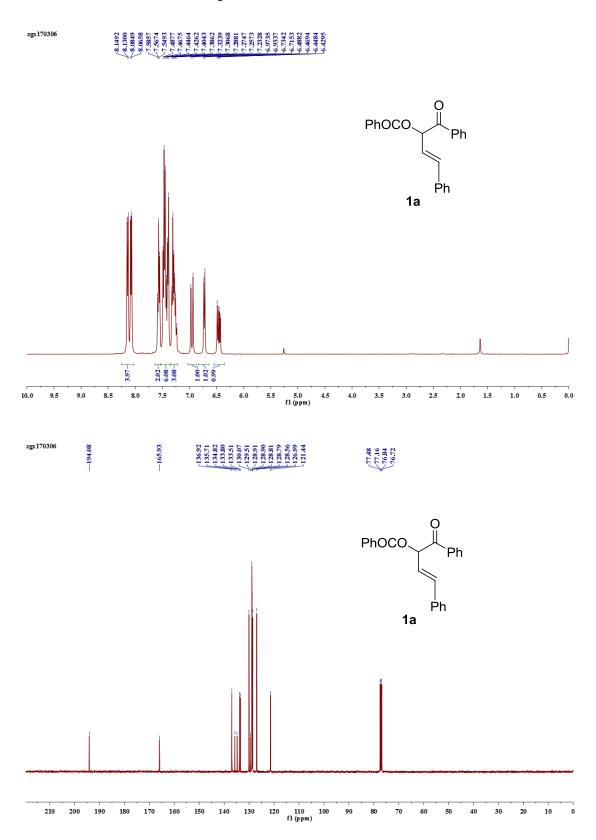
(1S,2R,5R)-methyl

2-benzoyl-4-(4-bromophenyl)-2-hydroxy-5-phenylcyclopent-3-enecarboxylate

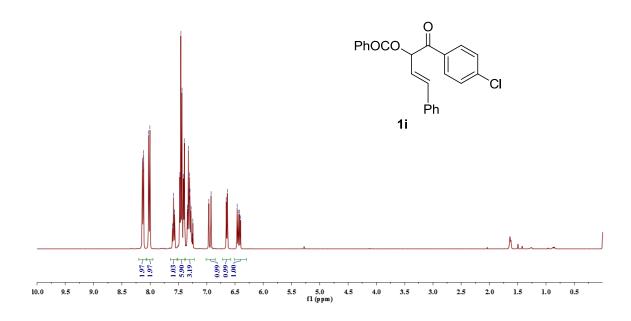
(5c): White solid, 39.0 mg, 82% yield. Mp 45–46 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.19 (m, 2H), 7.62–7.58 (m, 1H), 7.51–7.48 (m, 2H), 7.37–7.34 (m, 2H), 7.23–7.12 (m, 7H), 6.36 (d, J = 1.9 Hz, 1H), 5.22 (dd, J = 5.7 and 1.9 Hz, 1H), 4.90 (s, 1H), 3.78 (d, J = 7.7 Hz, 1H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 169.9, 149.9, 141.5, 133.9, 133.8, 133.1, 131.7, 129.9, 129.0, 128.84, 128.81, 128.4, 128.3, 127.1, 122.8, 87.8, 63.1, 52.2, 51.7; HRMS (ESI, m/z): calcd. for C₂₆H₂₂BrO₄ + 477.0696, found 477.0693; IR (KBr thin film, cm⁻¹): v 3433, 2951, 1745, 1677, 1488, 1232, 699; $[\alpha]^{27}_{D}$: -12.7 (*c* 0.3, CHCl₃); HPLC analysis: 94% ee (Chiralcel AS-H, 20:80 iPrOH/hexane, 1 mL/min, 254 nm), R_{t} (major) = 7.1 min, R_{t} (minor) = 8.8 min.

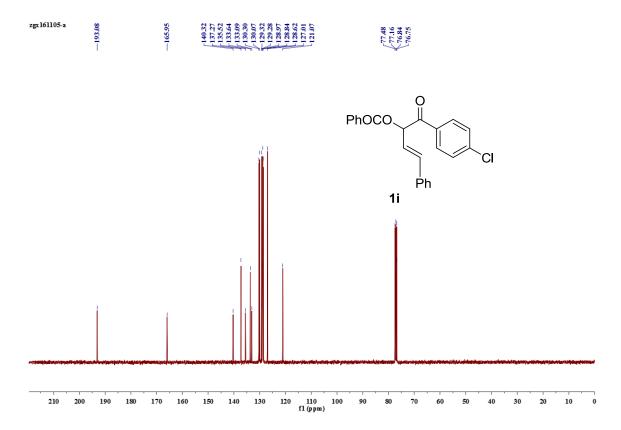
(1S,2R,3S,4R,5S,6S)-methyl

5-(benzoyloxy)-1-(4-bromophenyl)-4-hydroxy-2,4-diphenyl-7-oxabicyclo[4.1.0]he ptane-3-carboxylate (**5d**): White solid, 334.9 mg, 70% yield. Mp 202–205 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06–8.04 (m, 2H), 7.68–7.64 (m, 3H), 7.56–7.52 (m, 2H), 7.21–7.01 (m, 12H), 5.63 (d, J = 2.7 Hz, 1H), 4.79 (s, 1H), 4.45 (d, J = 11.1 Hz, 1H), 3.99 (d, J = 11.1 Hz, 1H), 3.95 (dd, J = 2.6 and 0.8 Hz, 1H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 164.5, 140.3, 139.2, 136.9, 133.8, 131.1, 130.1, 129.8, 129.7, 129.2, 128.9, 128.7, 128.0, 127.7, 127.5, 126.9, 122.2, 74.9, 70.9, 64.7, 60.3, 52.2, 51.8, 46.6; HRMS (ESI, m/z): calcd. for $C_{33}H_{28}BrO_6^+$ 599.1064, found 599.1064;

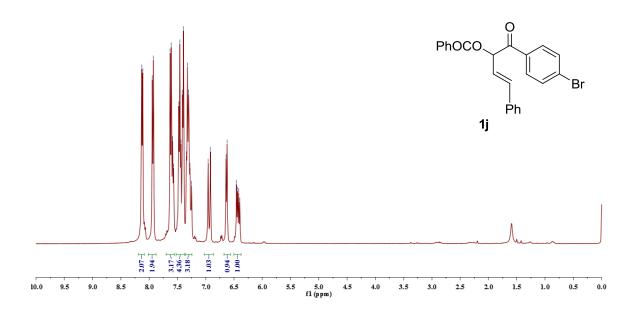

IR (KBr thin film, cm⁻¹): v 3458, 3062, 1734, 1255, 1093, 1070, 703; $[\alpha]^{27}_D$: 9.6 (*c* 0.1, CHCl₃); HPLC analysis: 93% ee (Chiralcel AD-H, 30:70 iPrOH/hexane, 1 mL/min, 220 nm), R_t (minor) = 15.8 min, R_t (major) = 27.3 min.

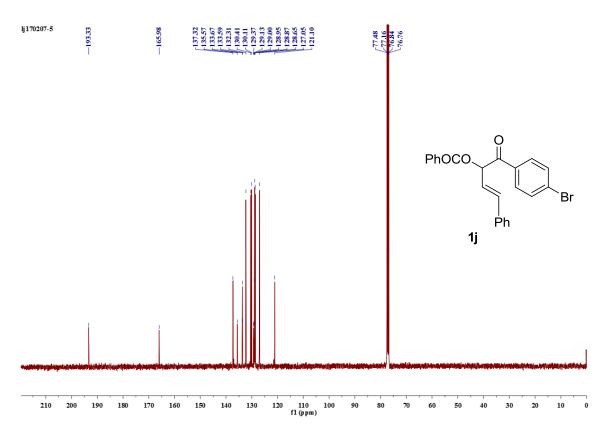
(1S,2R,3S,4R,5S,6R)-6-azido-5-(4-bromophenyl)-2,5-dihydroxy-3-(methoxycarbo nyl)-2,4-diphenylcyclohexyl benzoate (5e): White solid, 59.9 mg, 56% yield. Mp 223–225 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.96 (m, 2H), 7.67–7.65 (m, 2H), 7.59–7.55 (m, 1H), 7.48–7.38 (m, 4H), 7.33–7.30 (m, 2H), 7.24–7.15 (m, 6H), 5.59 (s, 1H), 5.55 (d, J = 2.4 Hz, 1H), 5.32 (d, J = 10.0 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.33 (dd, J = 10.0 and 2.4 Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 164.4, 140.8, 138.2, 135.4, 133.5, 131.1, 129.9, 129.7, 129.2, 128.63, 128.58, 128.3, 127.9, 126.4, 122.2, 74.2, 72.9, 69.8, 52.0, 48.9, 45.9; HRMS (ESI, m/z): calcd. for C₃₃H₂₈BrN₃O₆Na⁺ 664.1054, found 664.1054; IR (KBr thin film, cm⁻¹): v 3433, 2106, 1729, 1265, 1094, 700; [α]²⁷D: 13.7 (c 0.1, CHCl₃); HPLC analysis: 93% ee (Chiralcel AD-H, 50:50 iPrOH/hexane, 1 mL/min, 220 nm), R_1 (minor) = 6.5 min, R_1 (major) = 10.5 min.

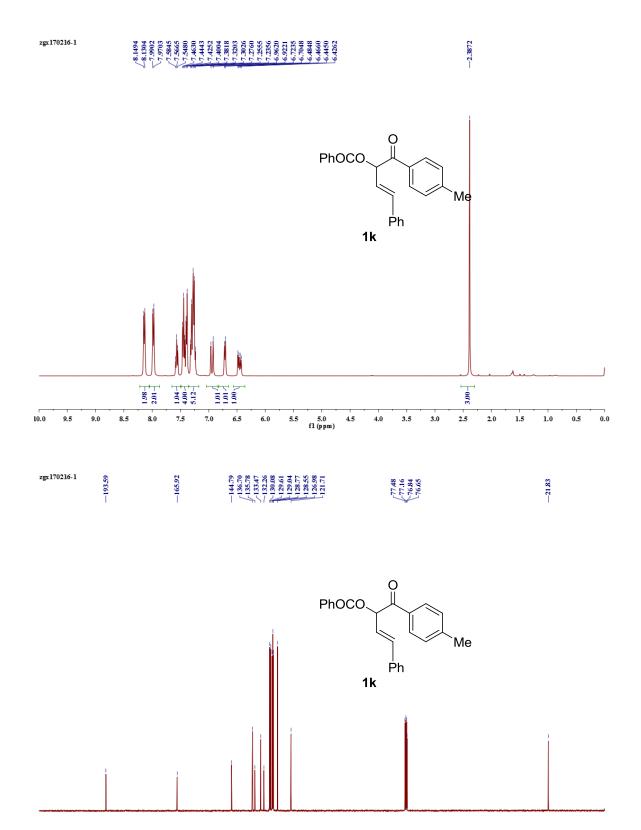

(1S,2R,3S,4R,5S,6R)-5-(4-bromophenyl)-2,5,6-trihydroxy-3-(methoxycarbonyl)-2,4-diphenylcyclohexyl benzoate (5f): White solid, 76.5 mg, 71% yield. Mp 234–236 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.19–8.17 (m, 2H), 7.96 (brs, 1H), 7.68–7.55 (m, 5H), 7.41–7.30 (m, 6H), 7.14–7.10 (m, 3H), 6.98–6.95 (m, 1H), 6.45 (brs, 1H), 5.76 (d, J = 9.7 Hz, 1H), 5.65 (dd, J = 9.7 and 2.7 Hz, 1H), 5.56 (s, 1H),


4.82 (d, J = 11.9 Hz, 1H), 4.12 (d, J = 11.9 Hz, 1H), 4.02 (dd, J = 4.8 and 2.8 Hz, 1H), 3.09 (s, 3H), 1.54 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 165.7, 141.6, 139.2, 135.6, 133.0, 131.8, 130.3, 129.7, 129.0, 128.74, 128.67, 128.6, 127.7, 127.4, 126.5, 121.3, 85.2, 78.5, 75.7, 70.6, 52.0, 48.4, 47.8; HRMS (ESI, m/z): calcd. for C₃₃H₂₉BrO₇Na⁺ 639.0989, found 639.0995; IR (KBr thin film, cm⁻¹): v 3431, 1722, 1271, 1246, 1108, 1067, 700; $[\alpha]^{27}_{D}$: -4.0 (c 0.2, CHCl₃); HPLC analysis: 94% ee (Chiralcel IC, 10:90 iPrOH/hexane, 1 mL/min, 220 nm), R_t (major) = 9.9 min, R_t (minor) = 12.7 min.

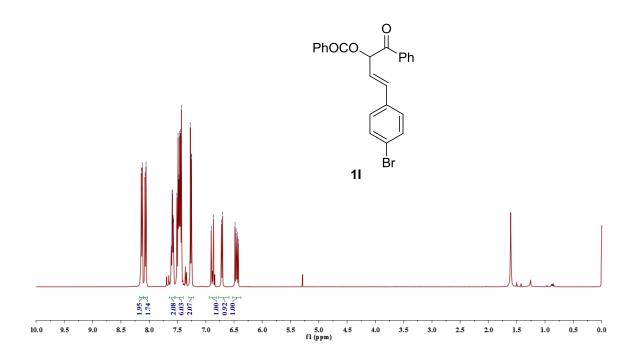
VI. 1 H NMR and 13 C NMR Spectra of Substrates and Products

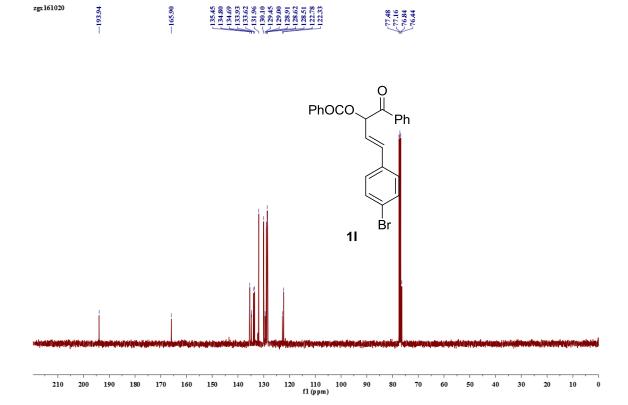


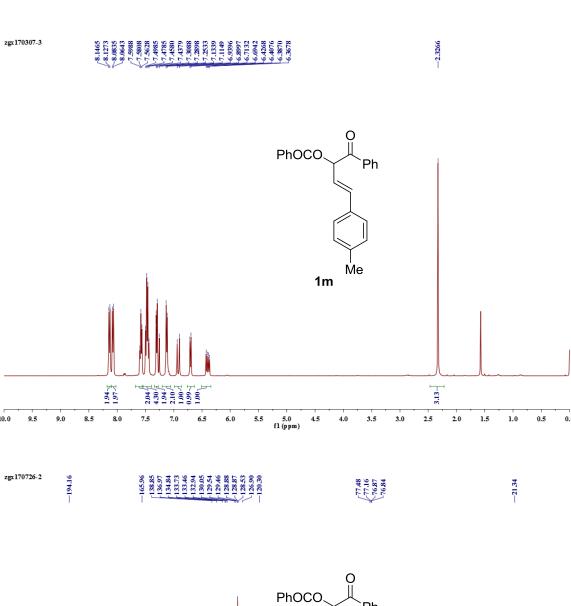

8.1383 8.1188 8.0042 8.0042 8.0043 7.0043 7.4672 7.4672 7.4673 7.4734 7.

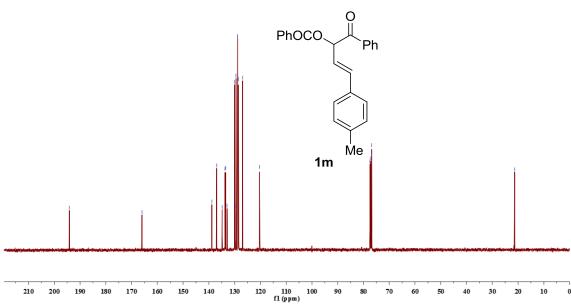


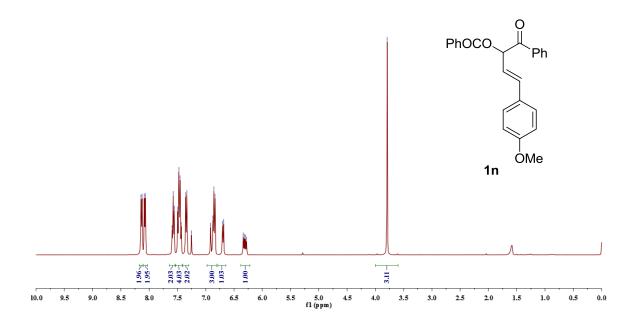
8.1331 8.1141 7. 8.131 7. 9.244 7. 0.294 7. 0.896 7. 4.886 7. 5.886 7. 5.886 7. 6.886 7. 6.886 7. 6.886 7. 6.886 7. 6.886 7. 6.886 7. 6.886 7. 6.886 7. 7. 886 7. 88

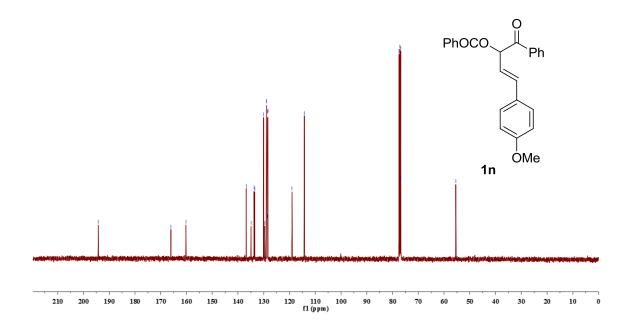


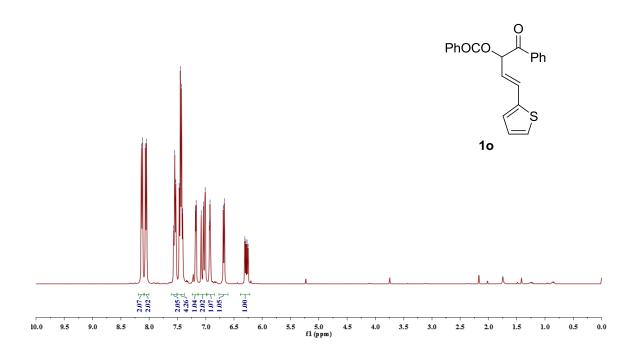

130 120 110 100 fl (ppm)

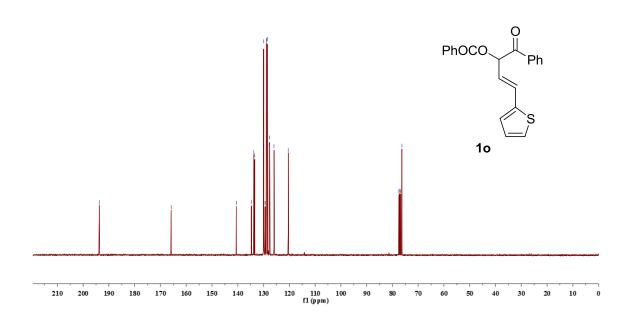

160 150 140

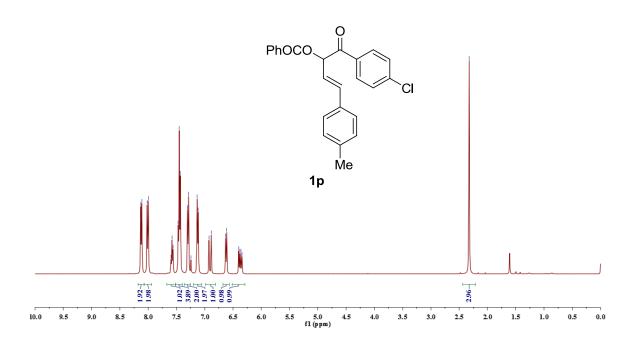

210

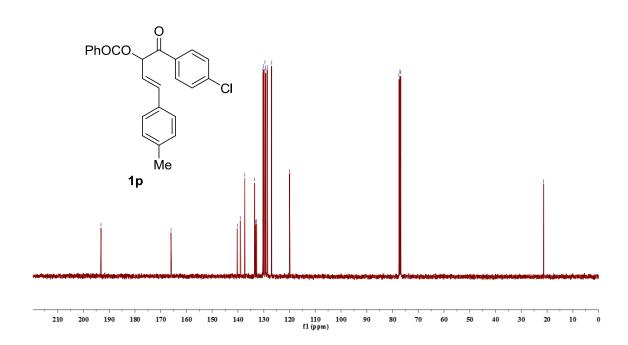


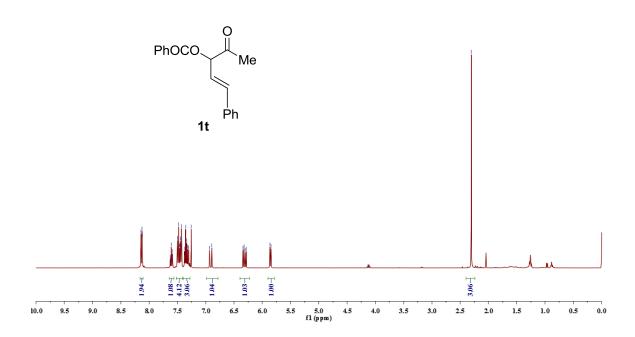


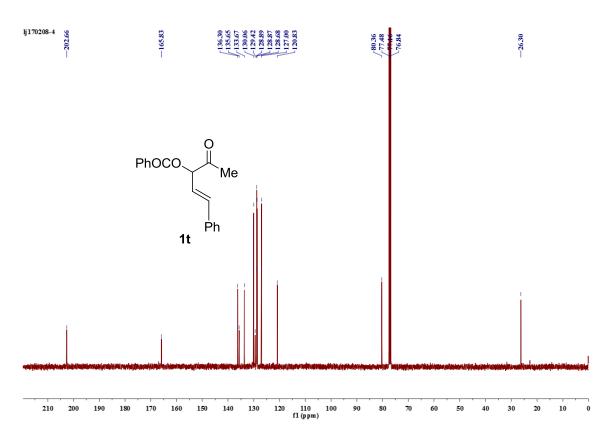


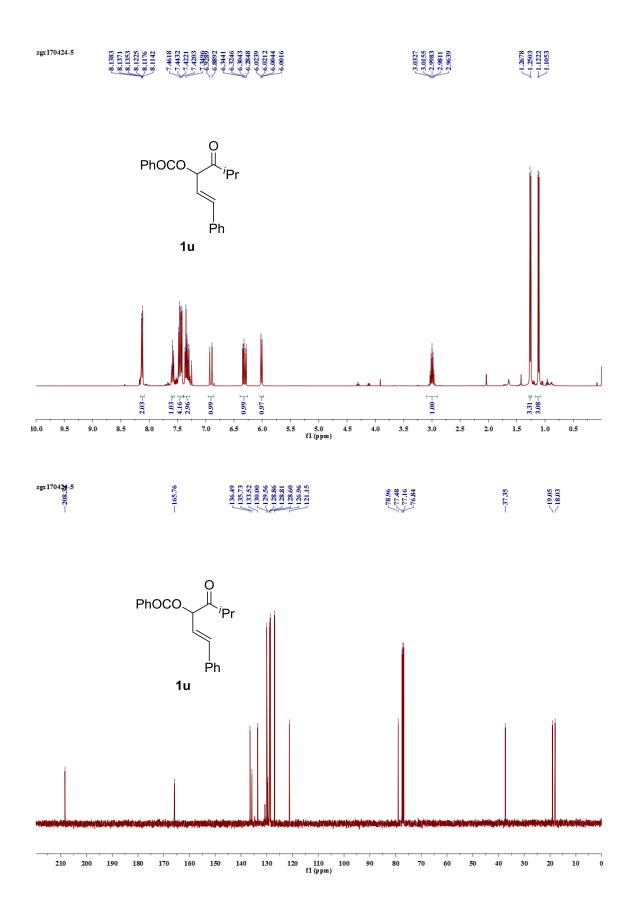


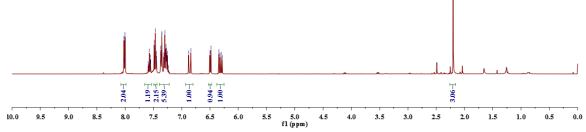


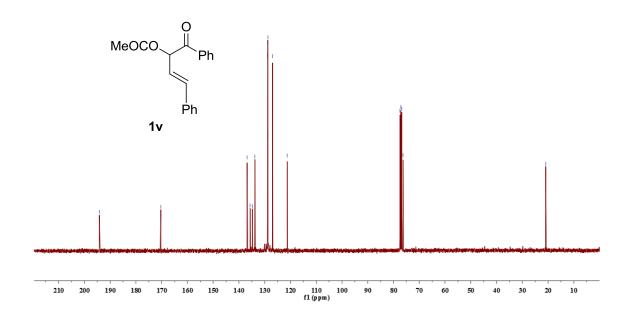


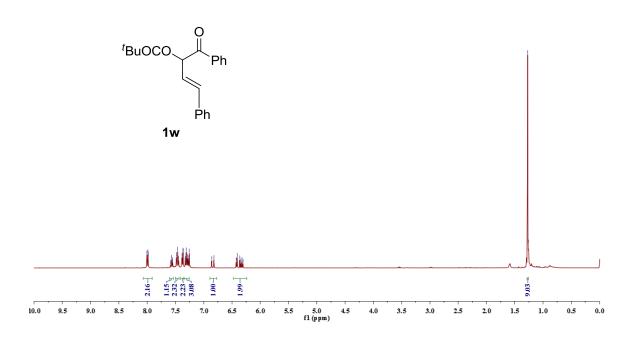


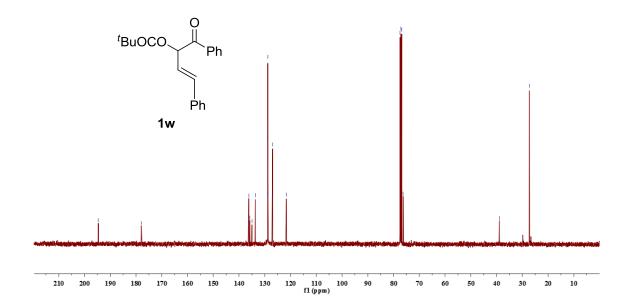


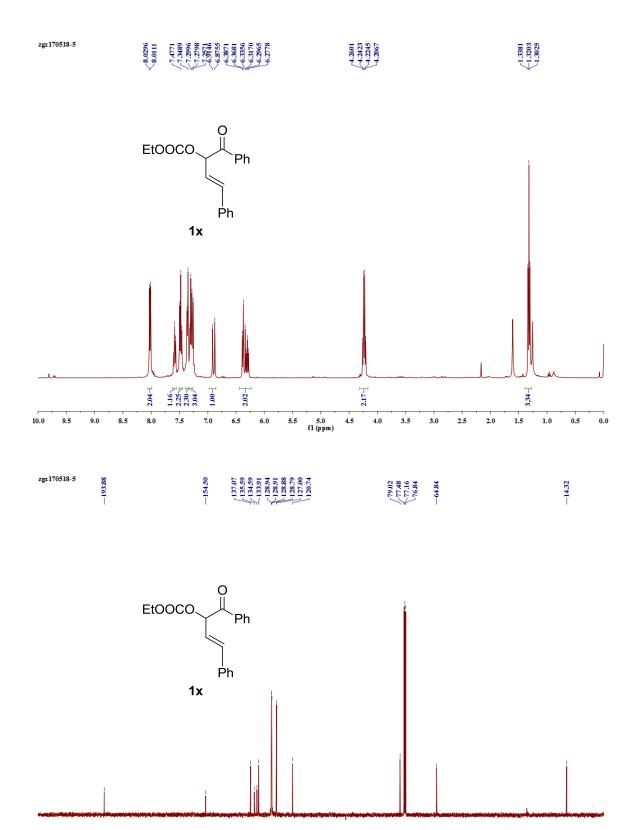


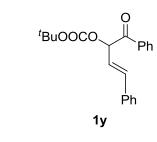


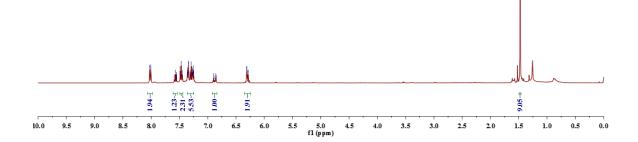






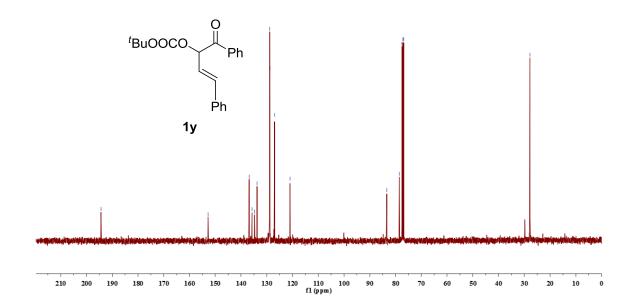


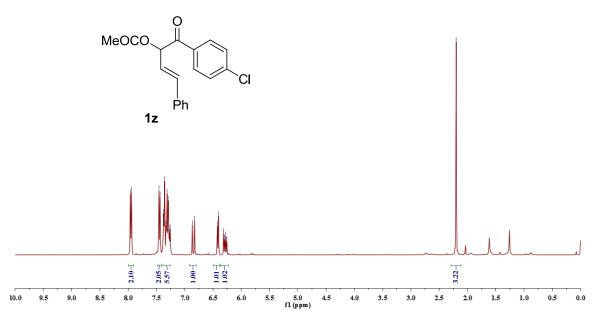


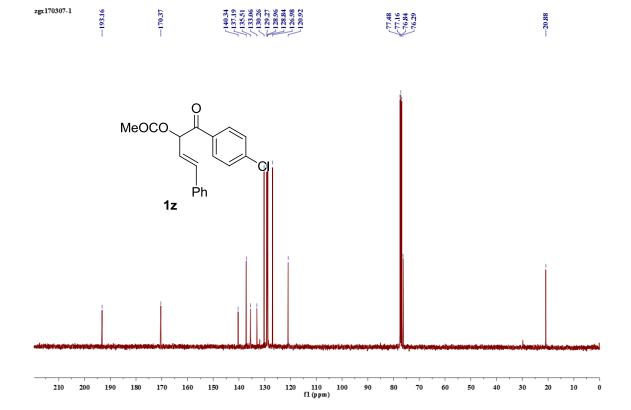


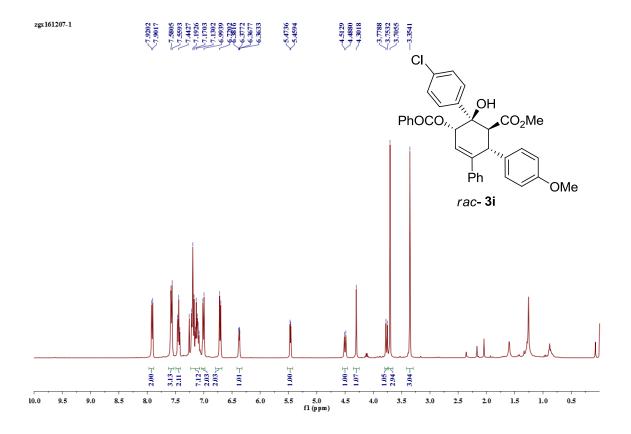
140 130 120 110 100 f1 (ppm)

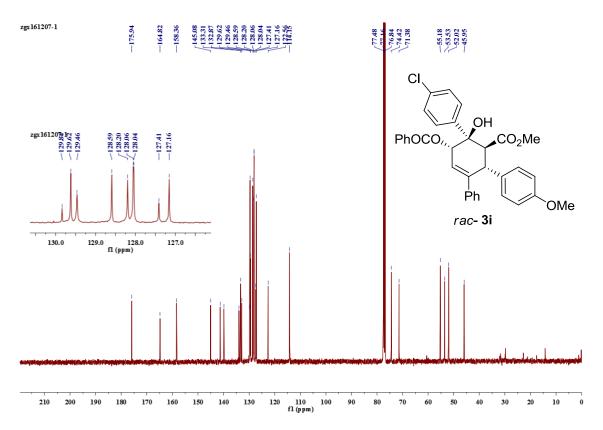
210

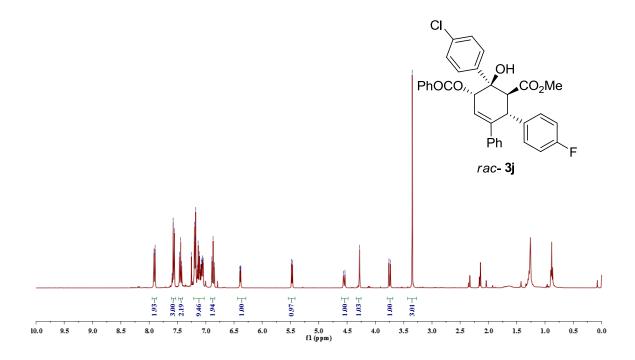

170 160 150

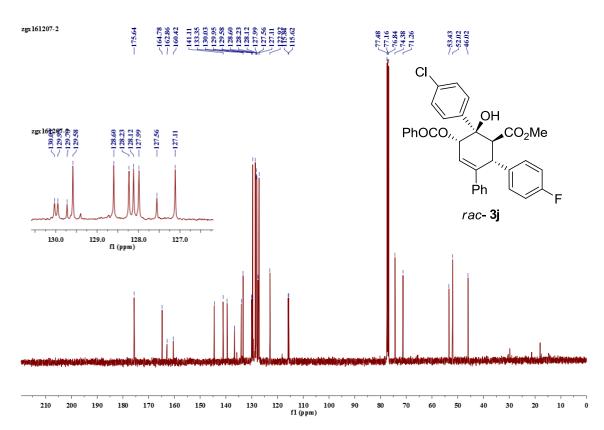


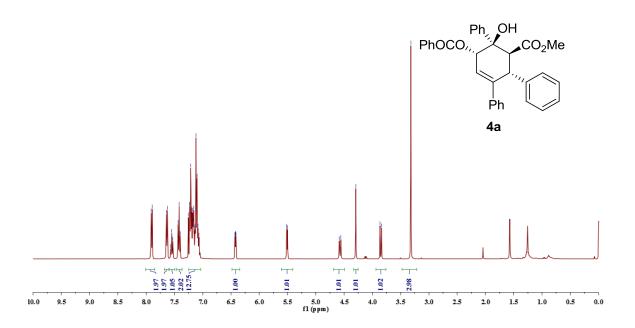


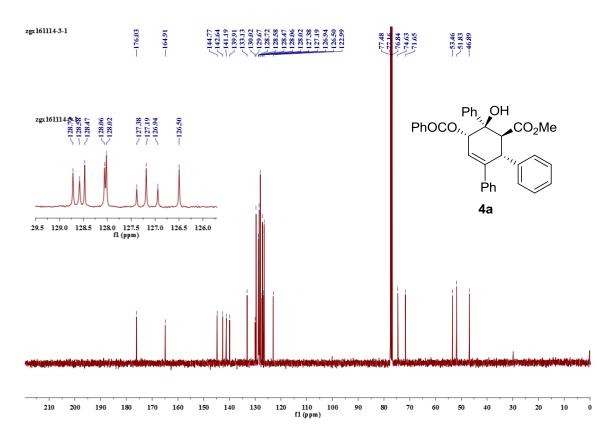

2gx170518-3

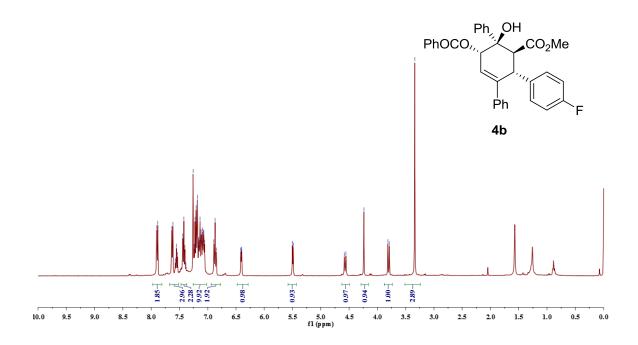

9E 961
9E 751
9E 88
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10 0 5 81
10

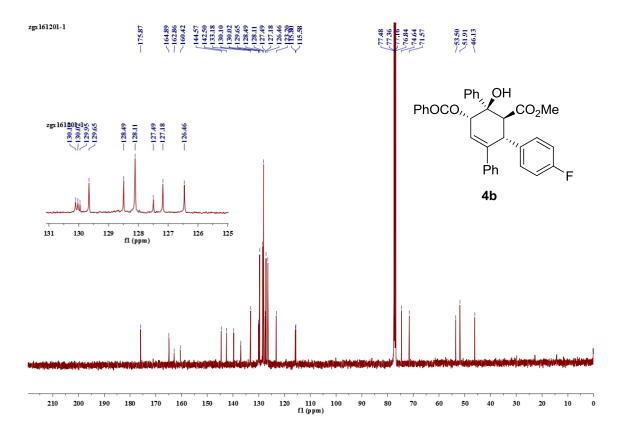


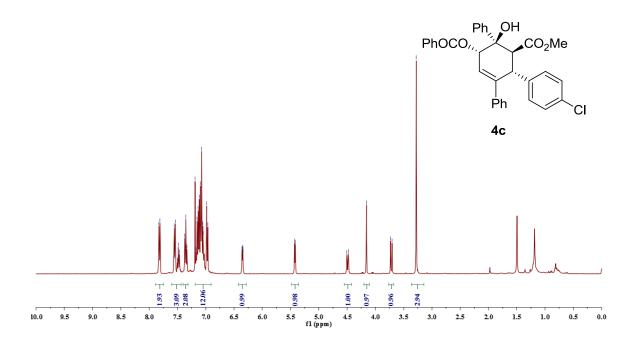


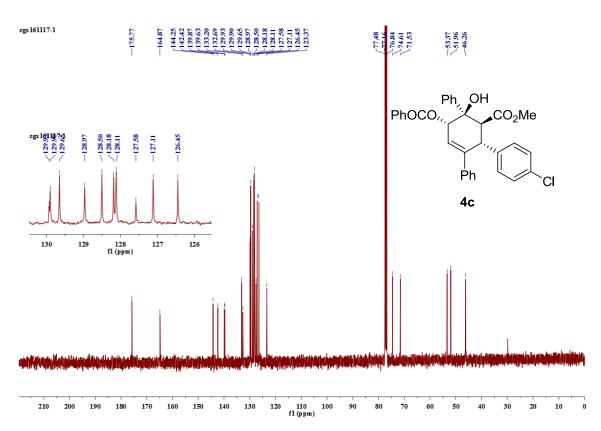


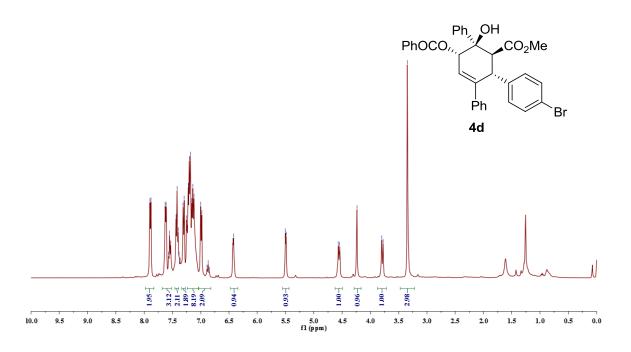

7.9145 7.7864 7.7867 7.7443 7.7443 6.3917 6.3917 6.3917 6.3917 6.3917 6.3917 6.3917 7.374 6.3917 7.374

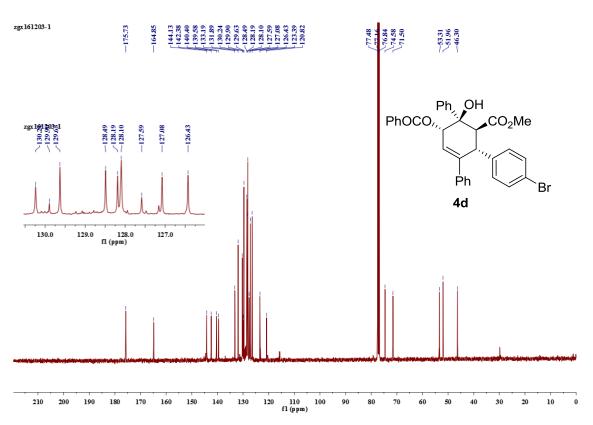


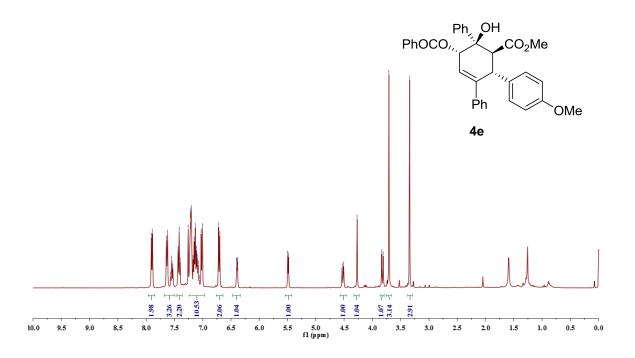

7. 1910 7. 629 1910 7. 629 1910 7. 629 1910 7. 629 1910 7. 629 1910 7. 629 1910 7. 641 191

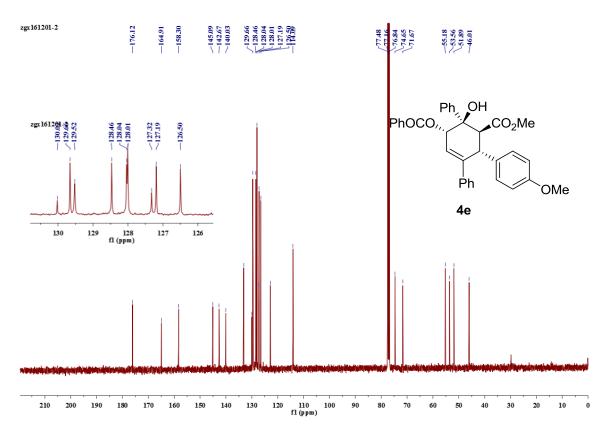


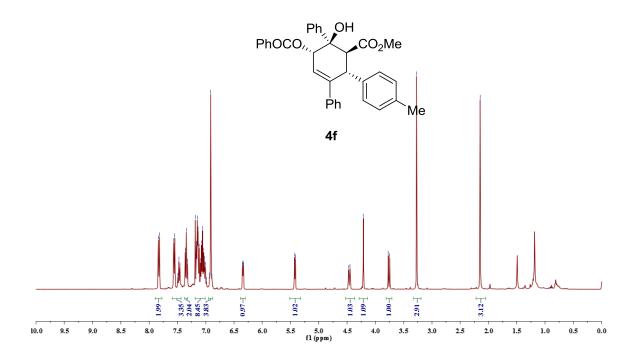

| 175 | 17

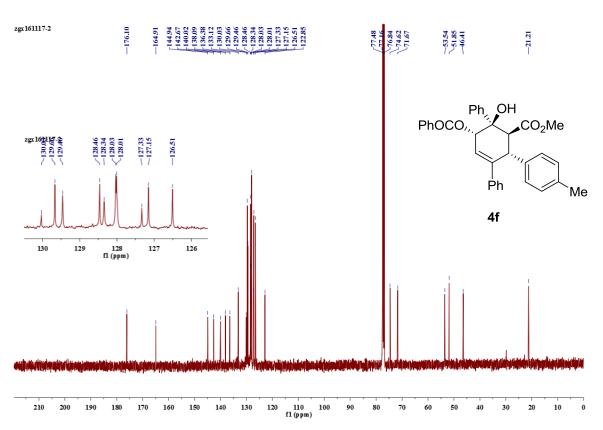


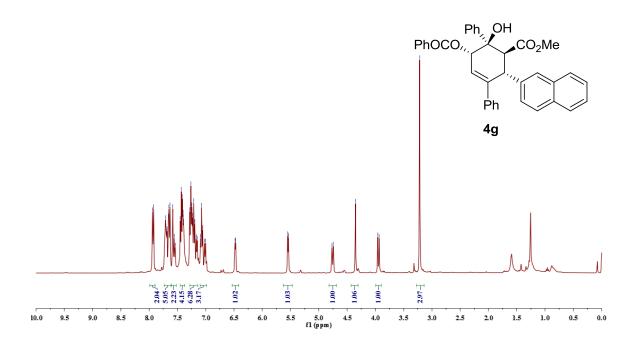

7.8279 7.8679 7.7678 7.7678 7.7678 7.7678 7.7770 7.

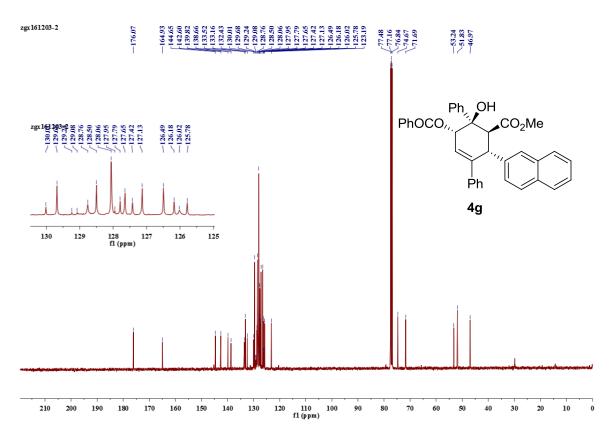


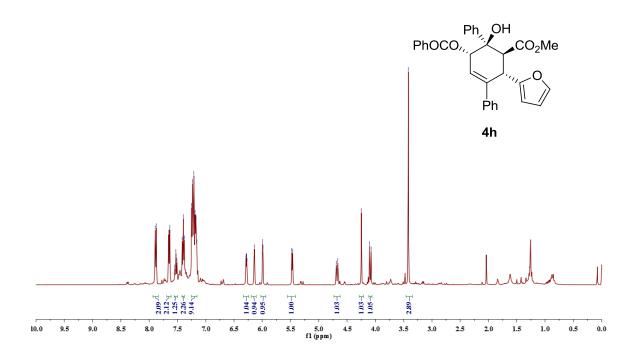

7.88676 7.5876 7.5876 7.5876 7.5876 7.5876 7.7877 7

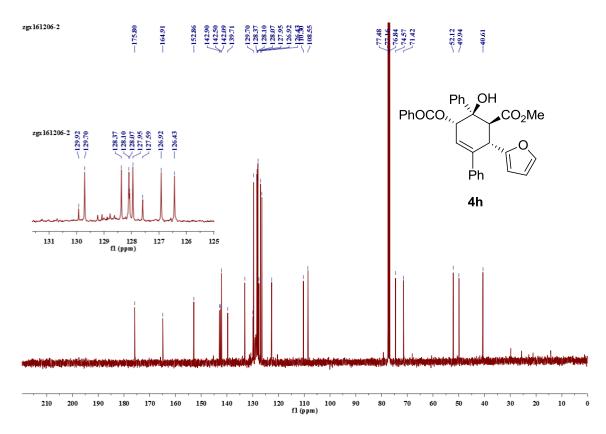


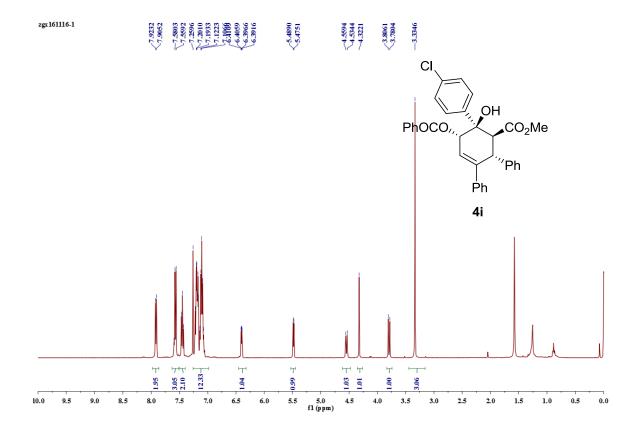

7. 20728 7. 5284 7. 6248 7. 6248 7. 6248 7. 6248 7. 6248 7. 6248 7. 6288 7. 6288 7. 6288 7. 6288 7. 6288 7. 6288 7. 6288 7. 6288 6. 6380 6. 6380 6. 6380 7. 6288 7. 62

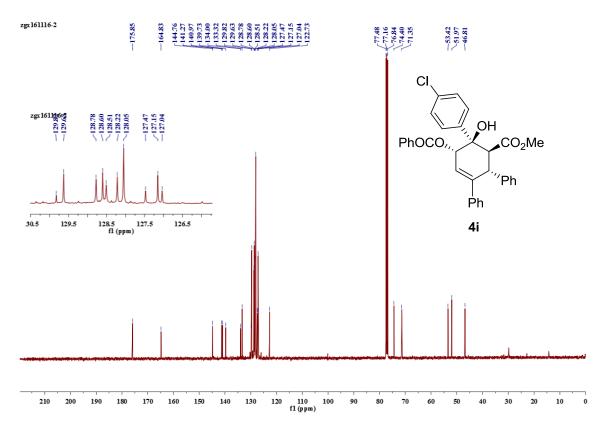


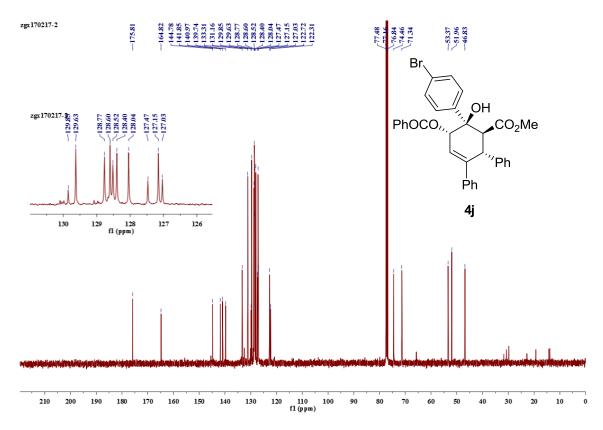

7.88382 7.4666. 7.4666. 7.4666. 7.4666. 7.11638 7.11638 7.11638 7.11638 7.11638 7.11646 7.1164

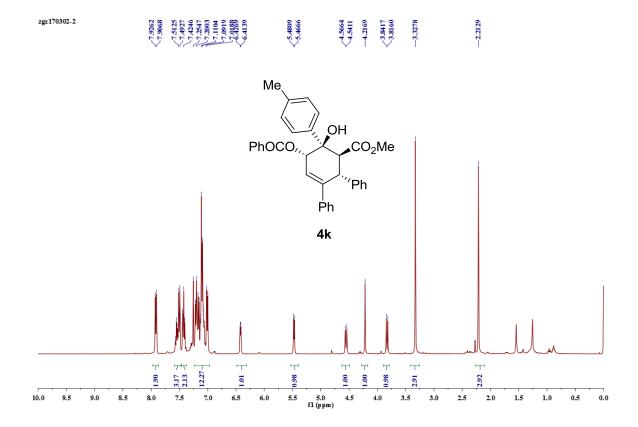


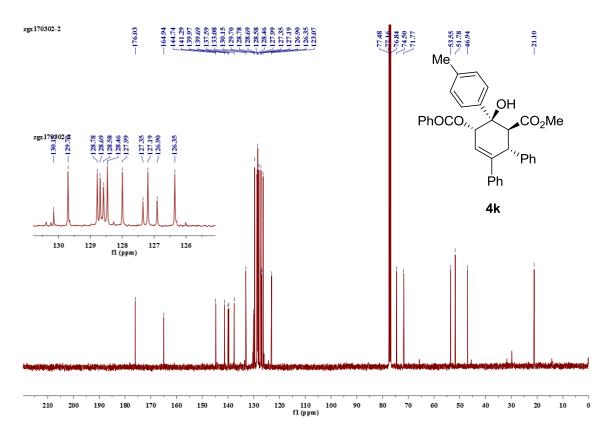


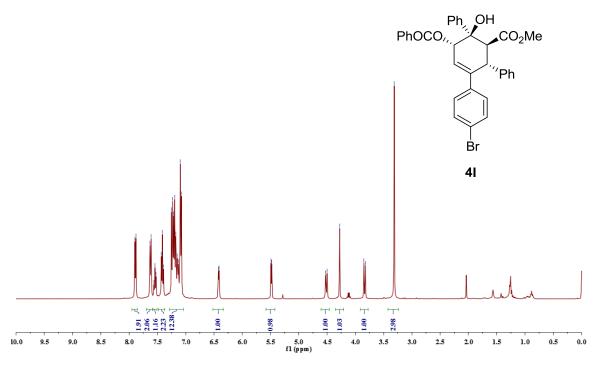

7. 94 77. 108. 17. 10

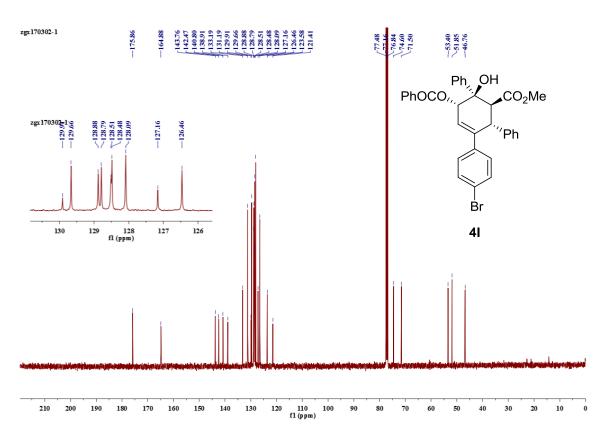


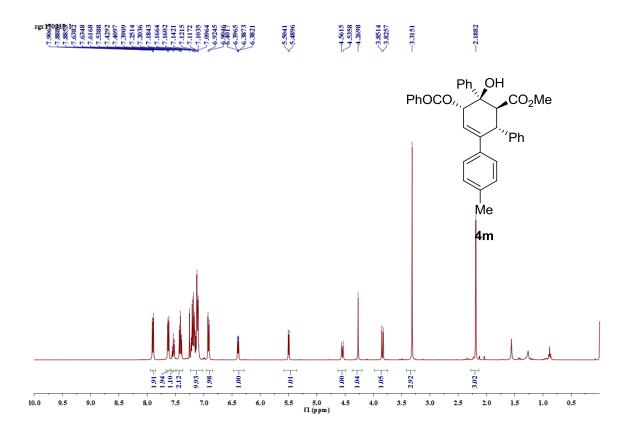


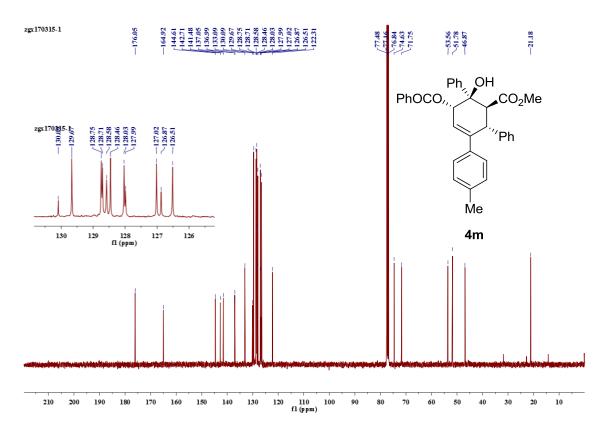


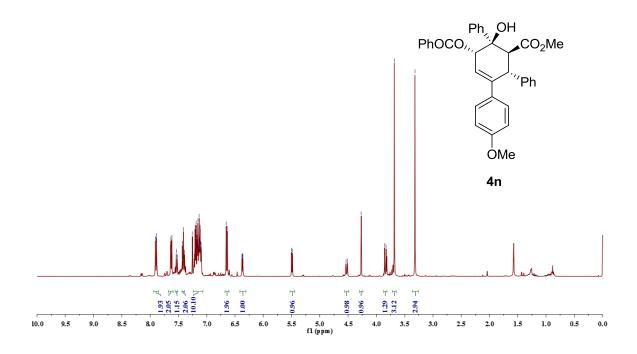


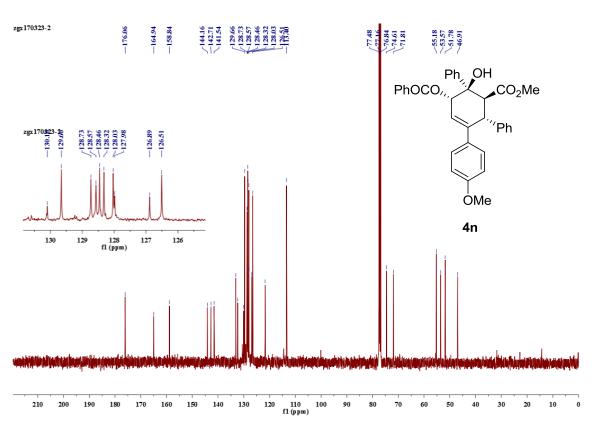


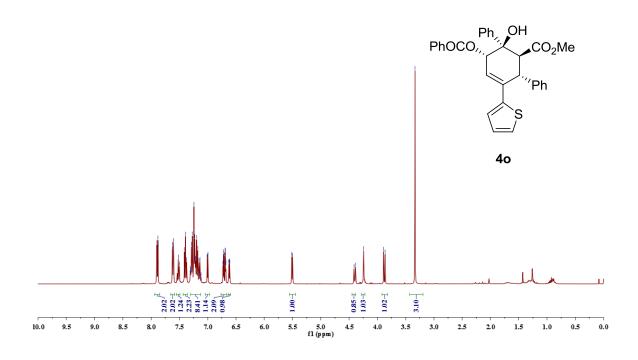


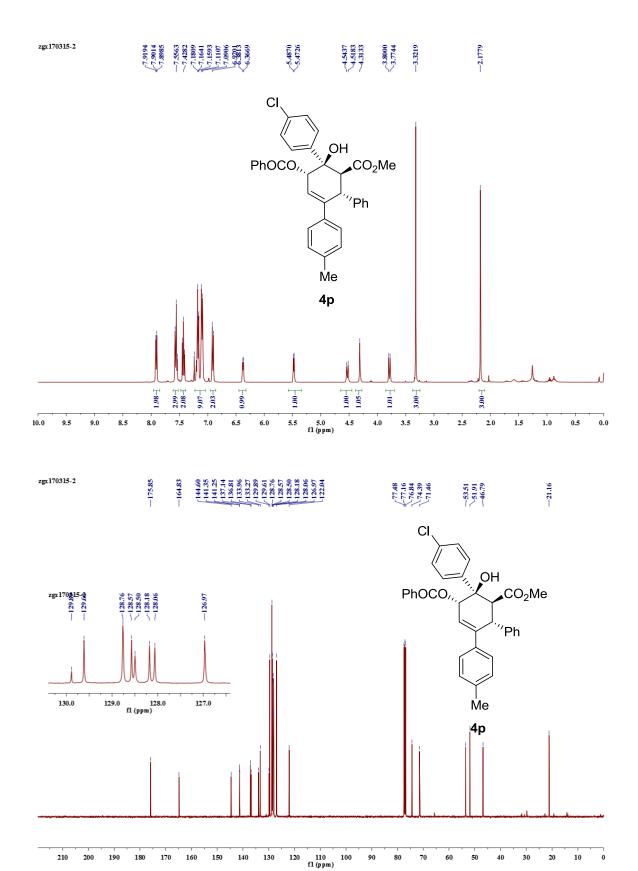


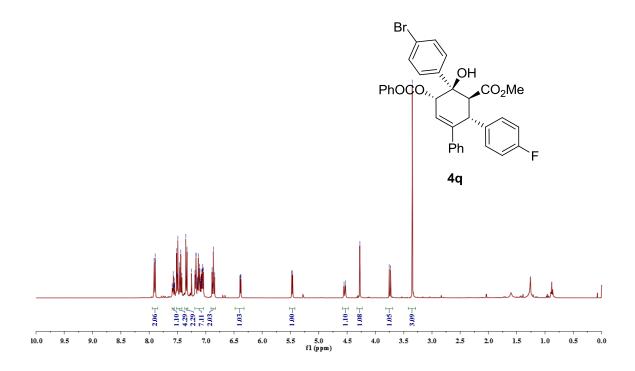


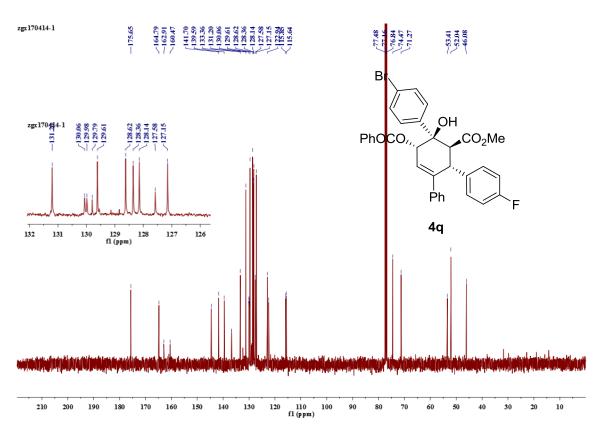


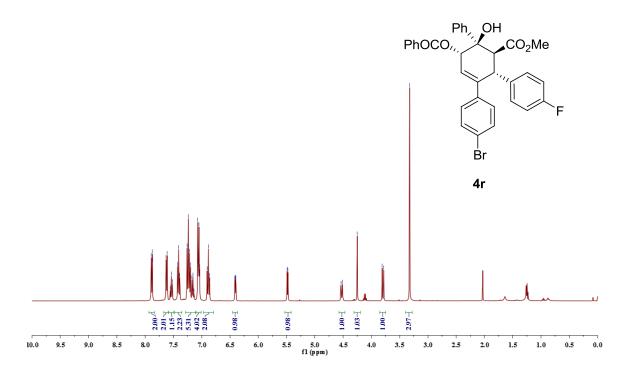


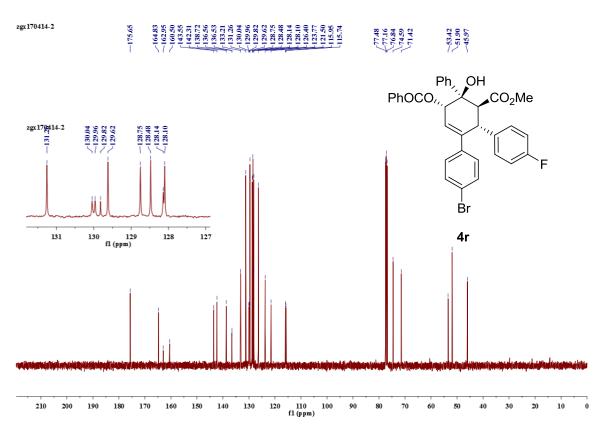


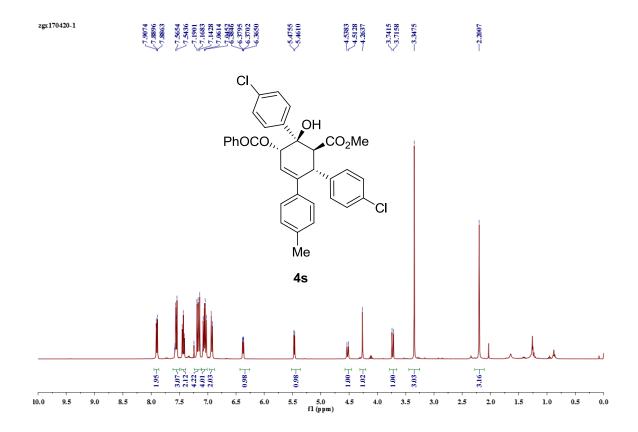


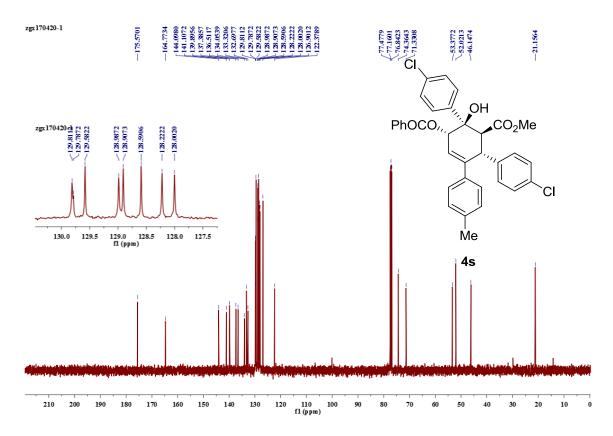

7.88.60 7.78.60 7.76.23 7.76.2

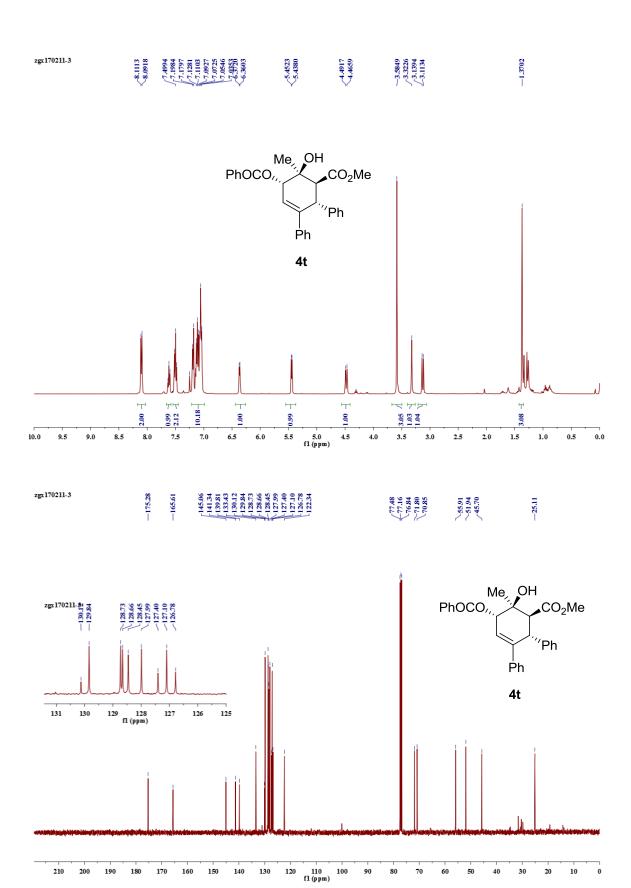


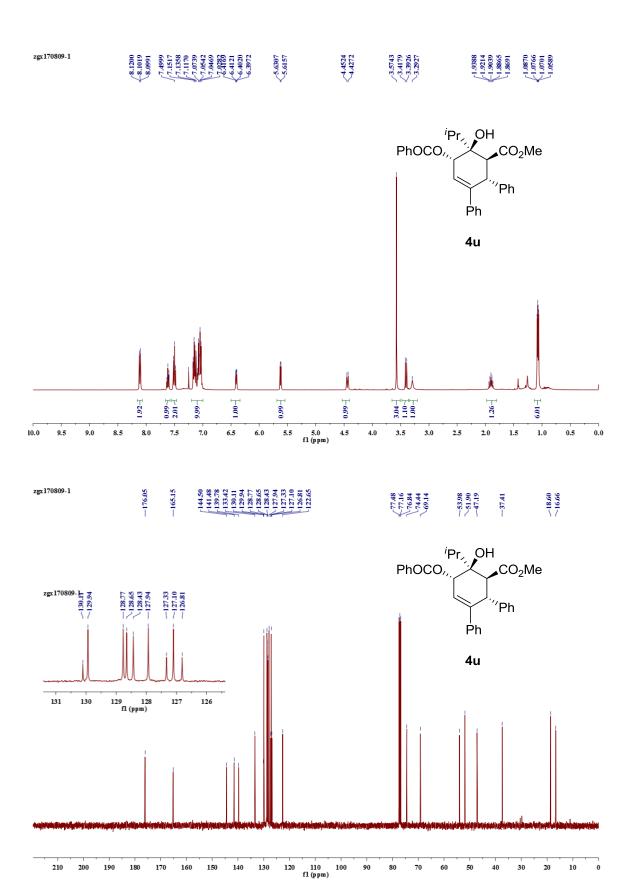


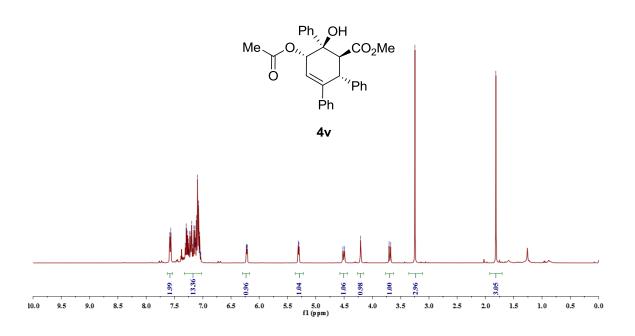


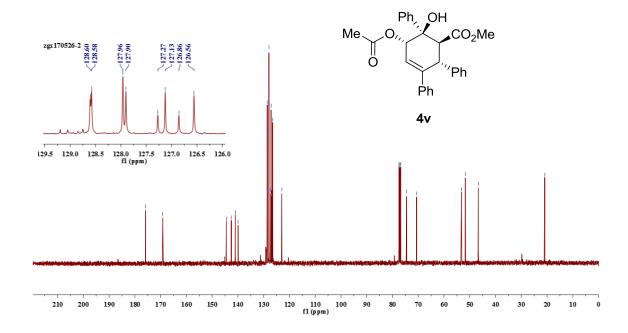


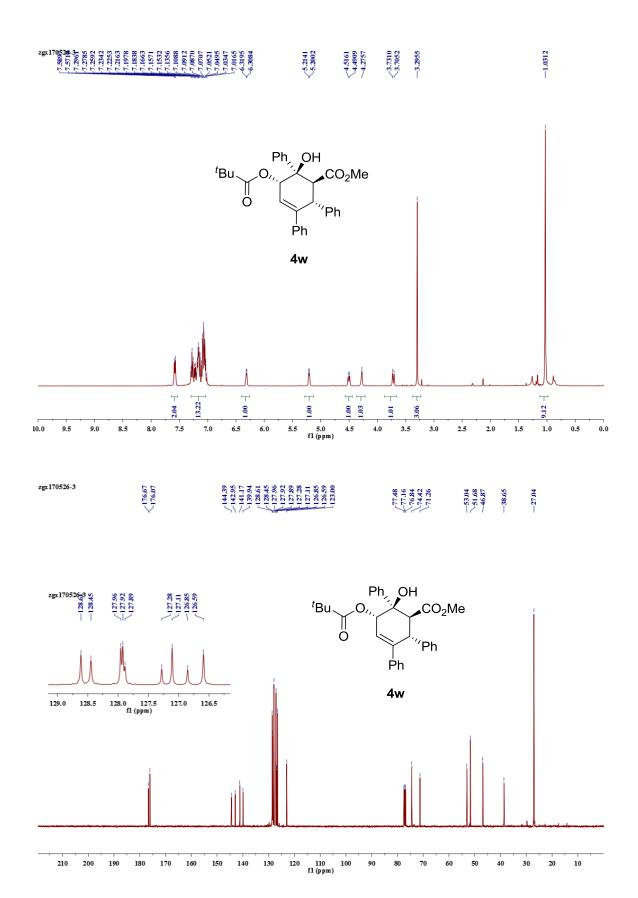


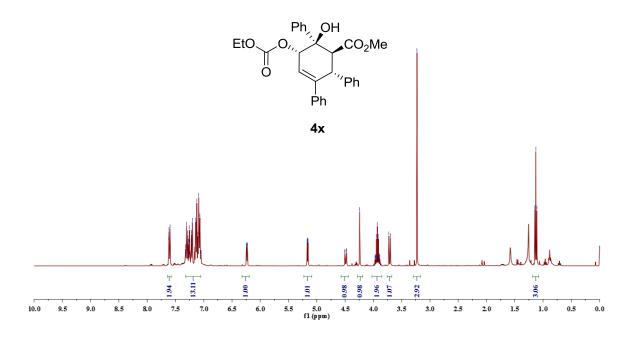


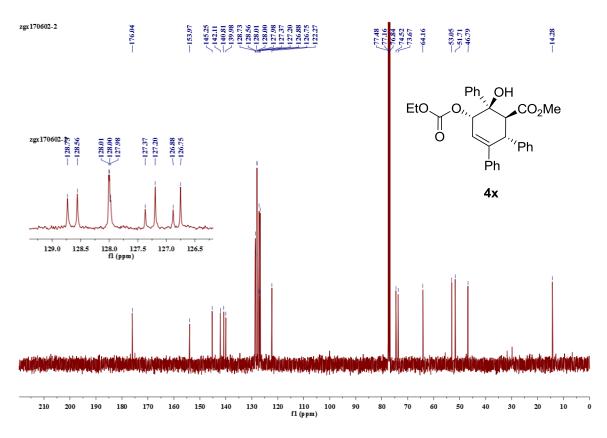


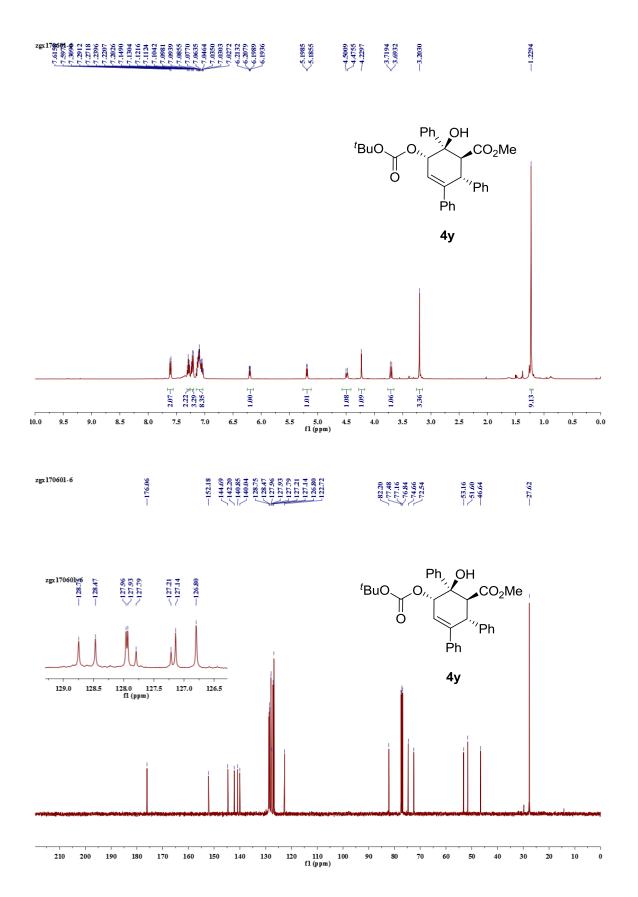


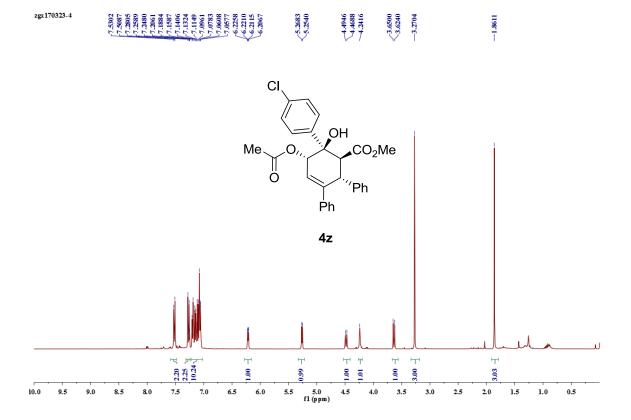


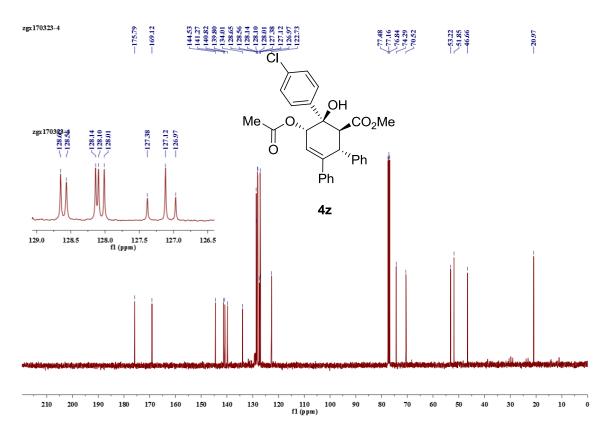


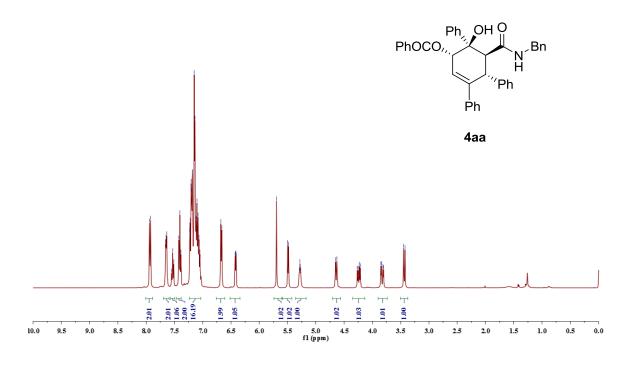

7.88.28.77.79.89.89.77.28.99.77.28.97.28.97.28.9

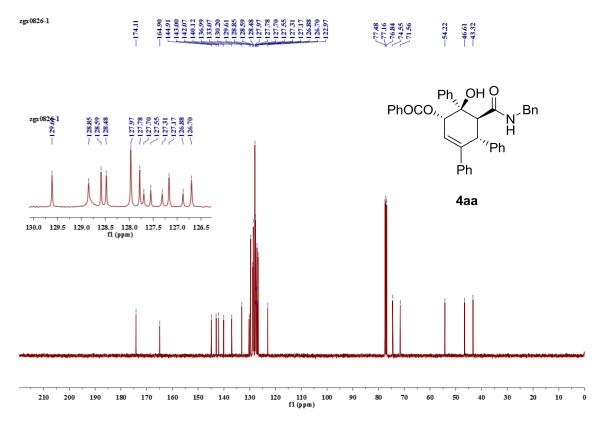


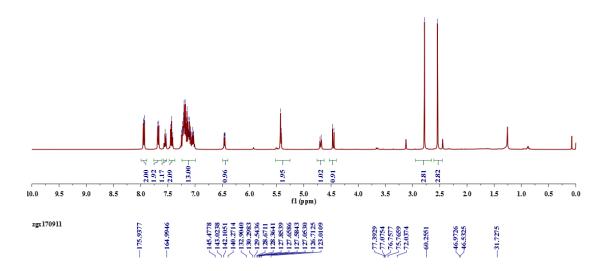


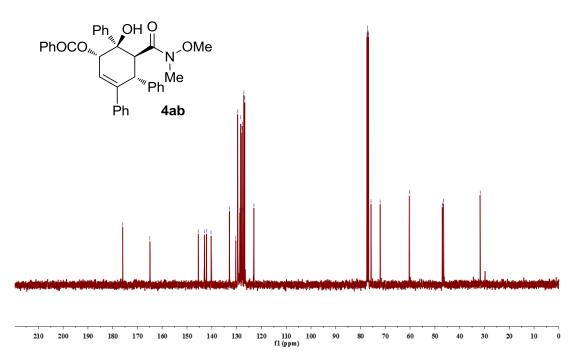


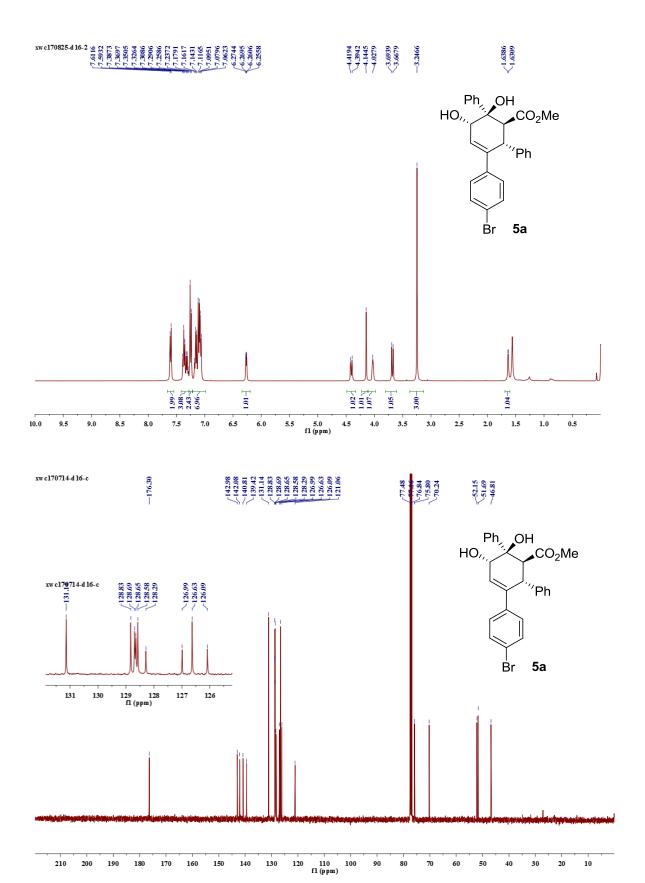


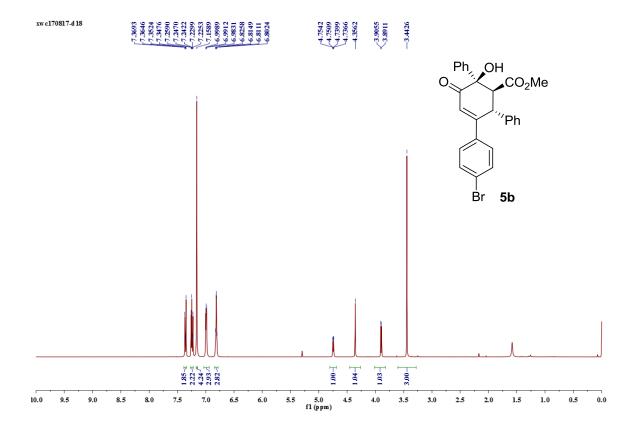


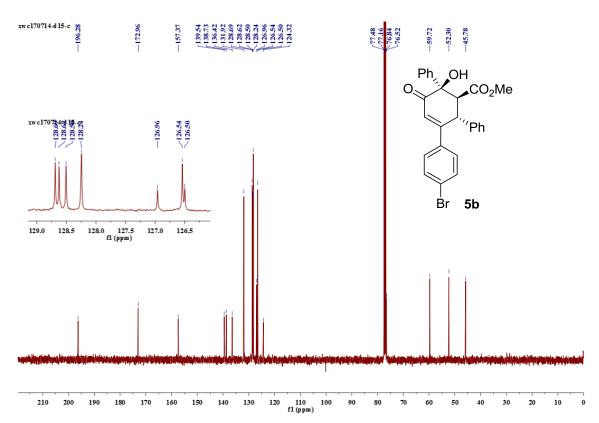


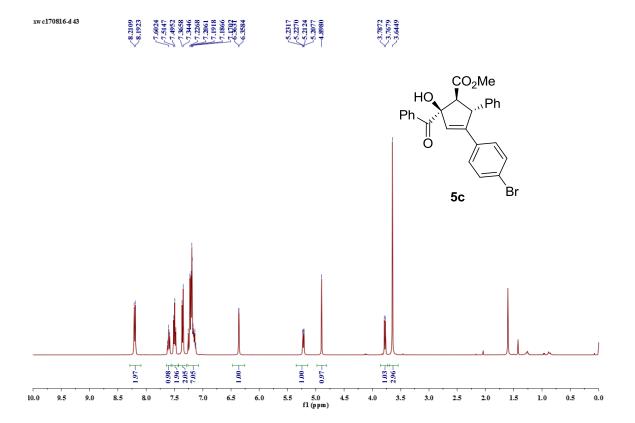


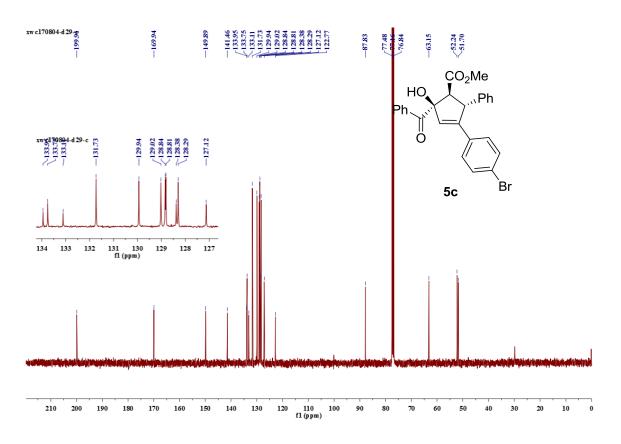


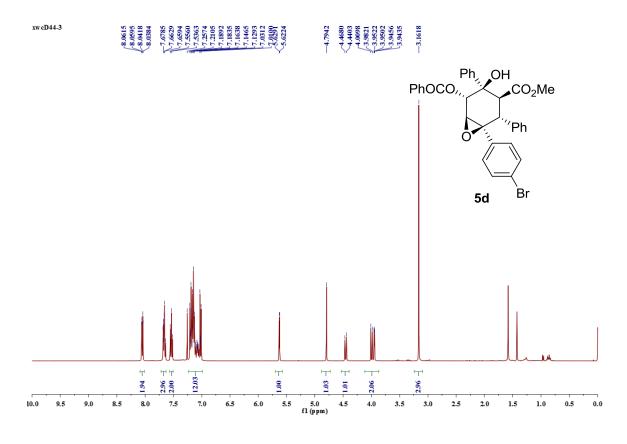

7.94466 7.666 7.7666 7.7666 7.7666 7.7666 7.7666 7.7666 7.7666 7.7667 7.

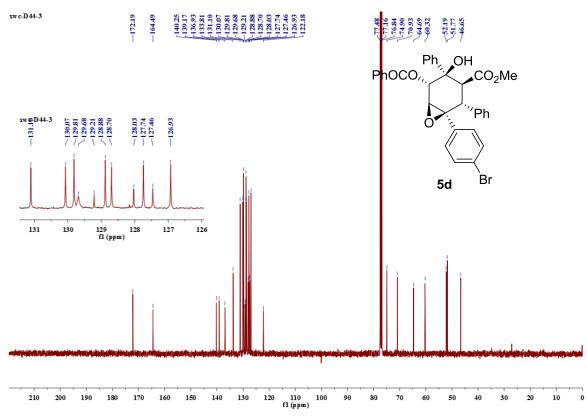


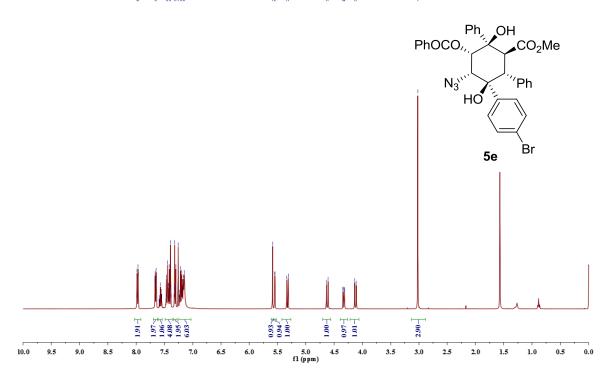


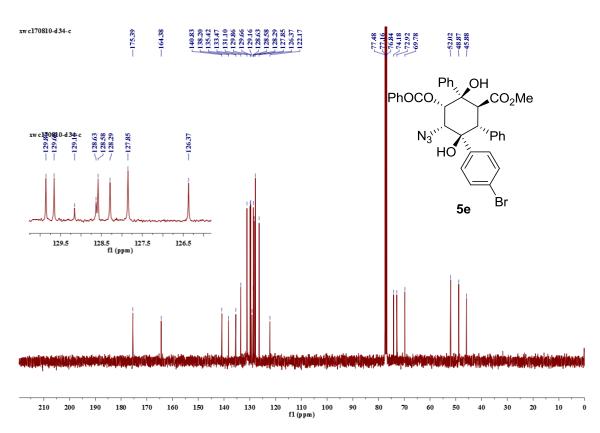


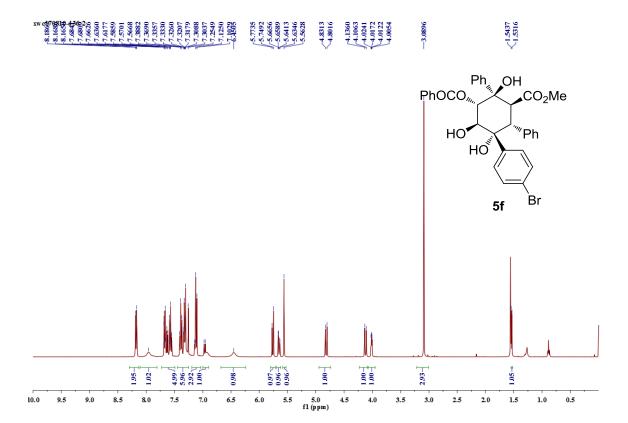


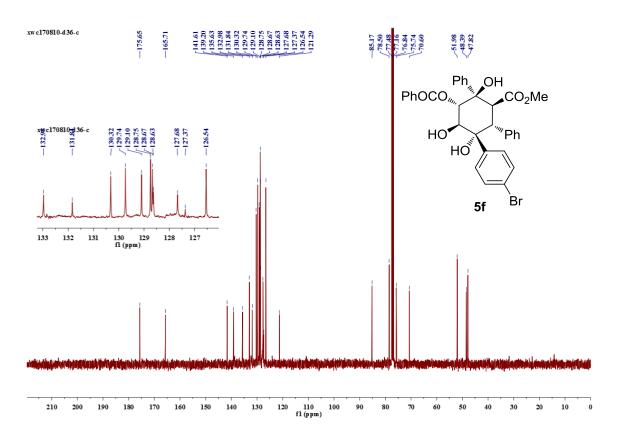


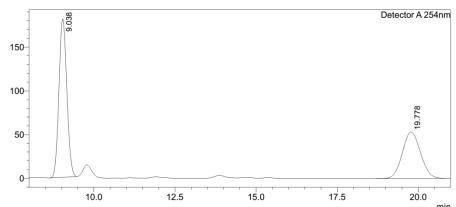








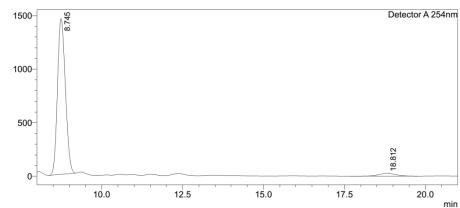




VII. HPLC Spectra for ee Determination.

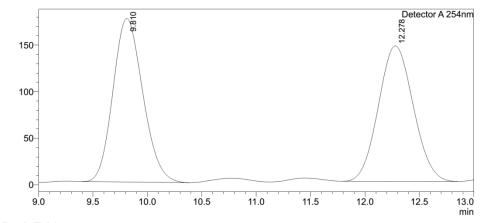
<Chromatogram>

mV



<Peak Table>

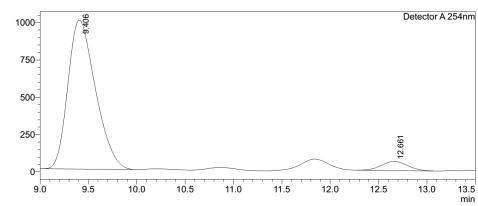
Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.038	3053209	180957	59.779			
2	19.778	2054258	53057	40.221			
Total		5107467	234014				


<Chromatogram>

mV

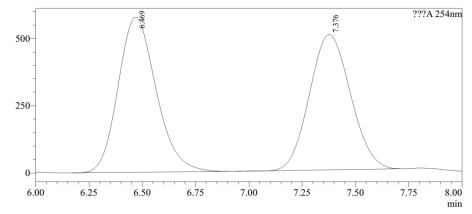
Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.745	24689773	1455745	96.241			
2	18.812	964419	25945	3.759			
Total		25654192	1481690				

mV



<Peak Table>

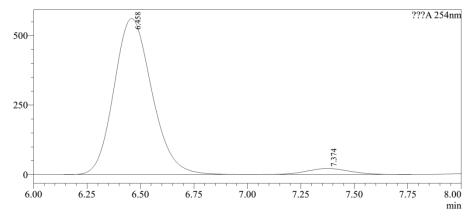
De	tect	or A 254nm						
Pe	ak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	9.810	3352897	175603	50.822			
	2	12.278	3244447	145494	49.178			
٦	otal		6597344	321097				


<Chromatogram>

mV

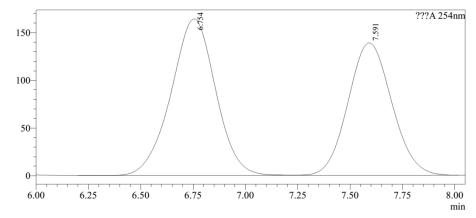
Detect	<u>or A 254nm</u>						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.406	19775597	997273	94.526			
2	12.661	1145108	60966	5.474			
Total		20920705	1058239				

 $\, mV \,$


<Peak Table>

???A 254nm

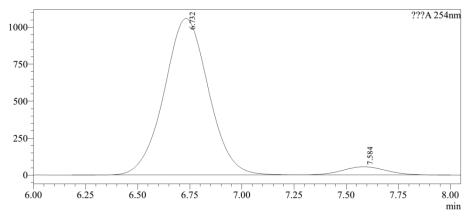
:::A 2.) 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.469	7163572	576989	51.450			
2	7.376	6759884	503521	48.550			
Total		13923456	1080510				


<Chromatogram>

 $\, mV \,$

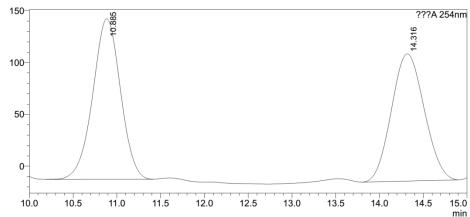
IIIAZ	34nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.458	6917436	561570	95.639			
2	7.374	315417	21806	4.361		V	
Total		7232853	583376				

mV



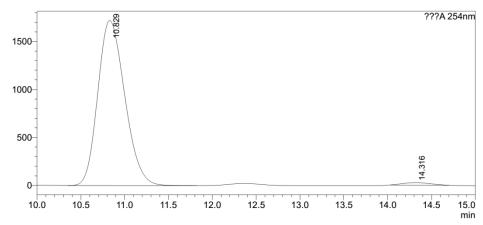
<Peak Table>

???A 2	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.754	2433275	164080	54.617			
2	7.591	2021865	138965	45.383		V	
Total		4455139	303045				


<Chromatogram>

mV

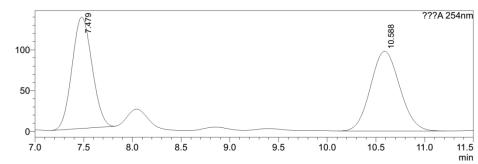
???A 25	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.732	15727346	1059611	94.948			
2	7.584	836814	56396	5.052		V	
Total		16564160	1116007				


<Peak Table>

22A	254	nm

:::M2	.5411111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.885	3411542	154929	51.645			
2	14.316	3194237	122751	48.355			
Total		6605779	277680				

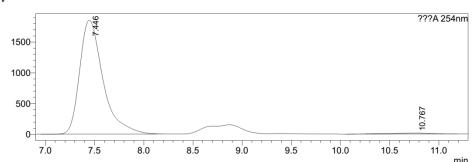
<Chromatogram>


mV

<Peak Table>

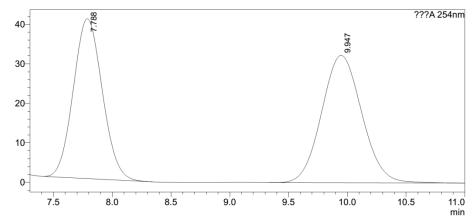
:::/\ 4	JTIIII						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.829	36761386	1719228	98.441			
2	14.316	582165	26029	1.559		М	
Total		37343552	1745256				

mV



<Peak Table>

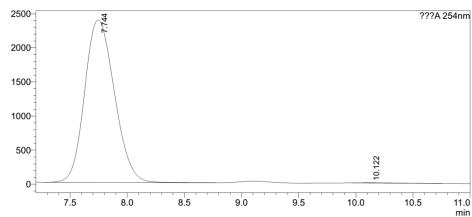
???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.479	1954330	136293	48.902			
2	10.588	2042129	97593	51.098			
Tota	I	3996459	233886				


<Chromatogram>

mV

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.446	30642298	1853182	98.543			
2	10.767	452933	14577	1.457			
Total		31095231	1867759				

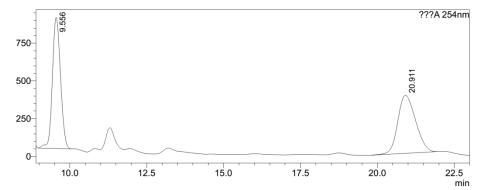
mV



<Peak Table>

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.788	694518	40426	47.559			
2	9.947	765797	32209	52.441			
Tota		1460315	72635				

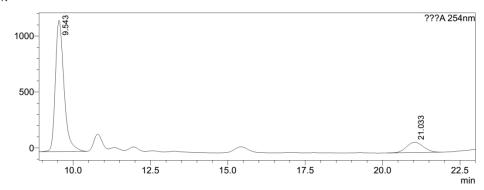
<Chromatogram>


mV

<Peak Table>

P	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	7.744	43284870	2383657	99.688			
	2	10.122	135364	5284	0.312		M	
	Total		43420234	2388941				

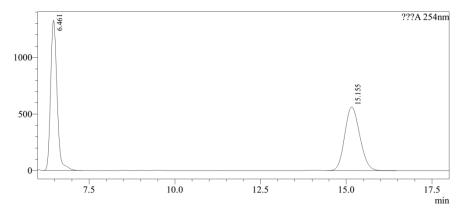
mV


<Peak Table>

???A 254nm

:::A2	23411111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.556	15951277	868013	50.718			
2	20.911	15499589	384946	49.282			
Total	l	31450867	1252960				

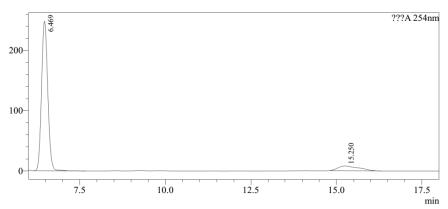
<Chromatogram>


mV

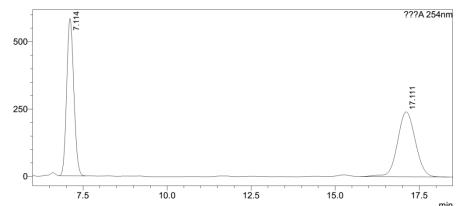
<Peak Table>

:::M2	23411111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.543	22745042	1171281	86.682			
2	21.033	3494455	92057	13.318			
Total		26239497	1263338				

mV

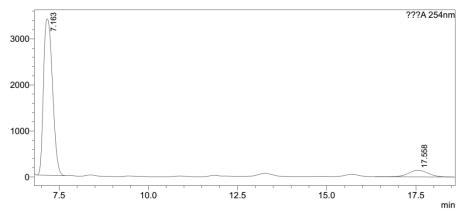


<Peak Table>


!!!A 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	6.461	17357676	1329588	50.274				
2	15.155	17168570	561866	49.726				
Total		34526246	1891455					

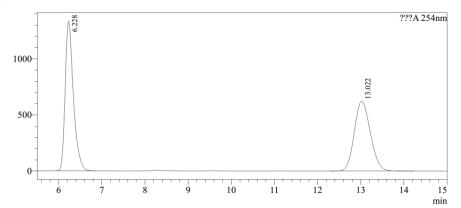
<Chromatogram>

mV


???A 25	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.469	3135973	248392	90.357		S	
2	15.250	334693	7903	9.643		M	
Total		3470666	256295				

<Peak Table>

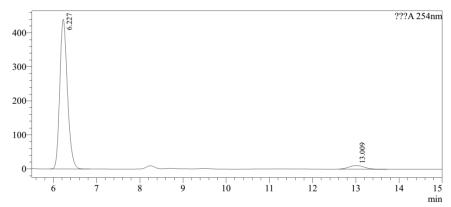
???	4 254nm						
Pea	k# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	7.114	8620216	583471	49.154			
	2 17.111	8916880	241108	50.846			
To	tal	17537096	824579				


<Chromatogram>

<Peak Table>

:::// 2	.J 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.163	59557686	3396172	91.648			
2	17.558	5427227	142433	8.352			
Total		64984913	3538606				

mV

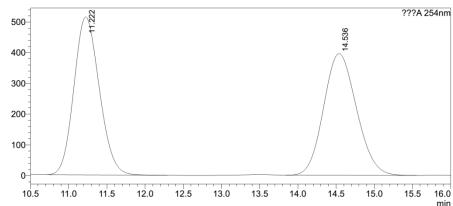

<Peak Table>

)	9	9	1	١	254nm	

IIIAZ.) 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.228	17563599	1332319	52.167			
2	13.022	16104164	622888	47.833			
Total		33667763	1955207				

<Chromatogram>

mV

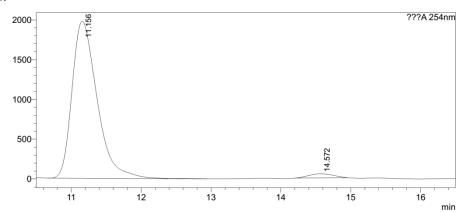


<Peak Table>

222 A 254nm

???A Z:	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.227	5418917	440136	95.353			
2	13.009	264107	10839	4.647		M	
Total		5683023	450975				

mV



<Peak Table>

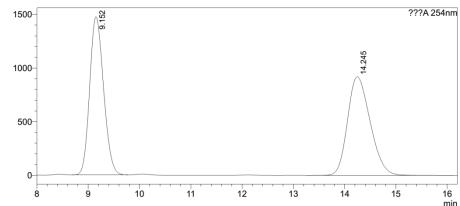
1	???A2	254nm						
F	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	11.222	11897415	513582	50.098			
	2	14.536	11850704	395339	49.902			
	Tota		23748119	908921				

<Chromatogram>

 mV

<Peak Table>

 27?A 254nm

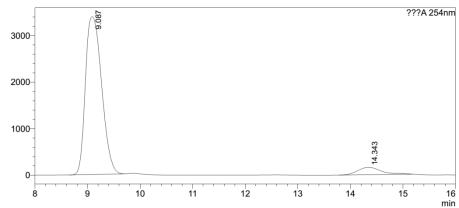

 Peak# Ret. Time
 Area
 Height
 Conc.
 Unit
 Mark
 Name

 1
 11.156
 49282819
 1974784
 97.508

 2
 14.572
 1259504
 51479
 2.492
 M

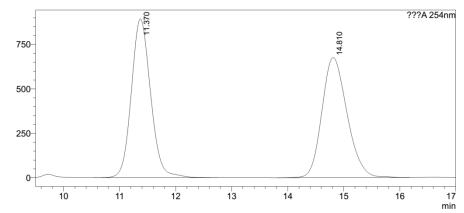
 Total
 50542323
 2026264

mV



<Peak Table>

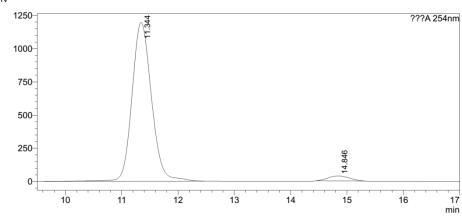
???A	254nm						
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.152	27782848	1472000	49.659			
2	14.245	28164597	917943	50.341			
Tota	al	55947445	2389943				


<Chromatogram>

mV

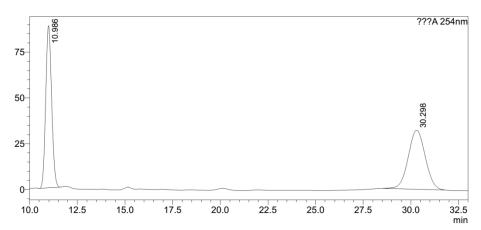
???A	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.087	72711251	3392496	93.602			
2	14.343	4969691	159584	6.398		М	
Tota	I	77680942	3552080				

mV



<Peak Table>

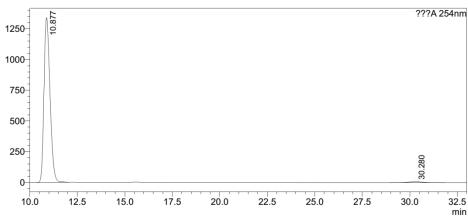
???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.370	21344935	891660	50.295			
2	14.810	21094669	675729	49.705			
Total		42439604	1567389				


<Chromatogram>

mV

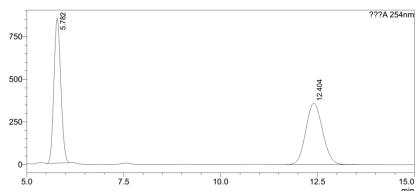
!!!A Z	:54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.344	28715975	1196266	96.699			
2	14.846	980303	37024	3.301		М	
Total		29696278	1233290				

mV



<Peak Table>

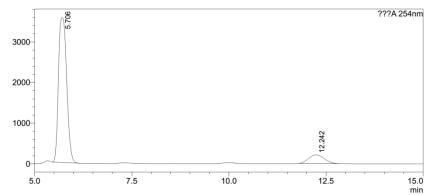
???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.986	1908655	88516	48.791			
2	30.298	2003215	32229	51.209		M	
Total		3911870	120744				


<Chromatogram>

mV

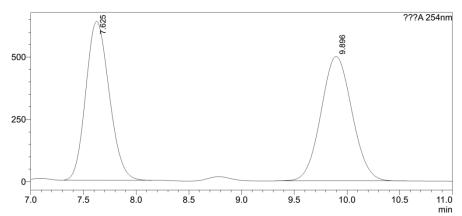
???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.877	29541931	1340365	98.749			
2	30.280	374109	6141	1.251			
Total		29916040	1346506				

mV



<Peak Table>

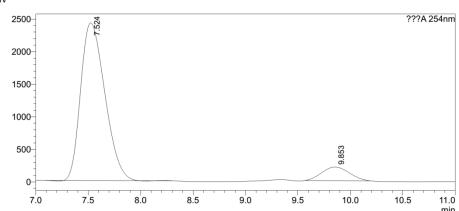
???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.782	10528318	848673	49.310			
2	12.404	10823118	360126	50.690			
Total		21351436	1208799				


<Chromatogram>

mV

<Peak Table>

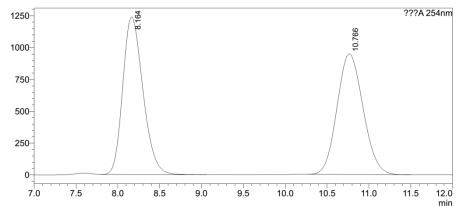
mV


<Peak Table>

???A 254nm

: :	: ^ 4	.5411111						
Pe	ak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	7.625	9864701	636622	49.086			
	2	9.896	10231964	498819	50.914		М	
	Total		20096665	1135441				

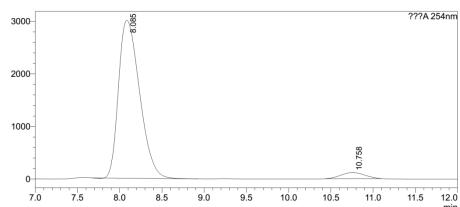
<Chromatogram>


mV

<Peak Table>

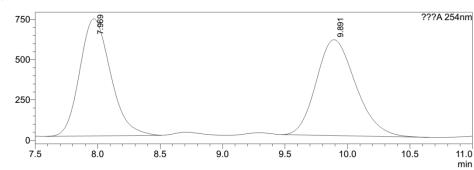
???A 254nm Peak# Ret. Time 1 7.524 Height 2419481 209493 2628974 Area 38825233 3807656 Conc. 91.069 Unit Mark Name M M 8.931 Total 42632889

mV



<Peak Table>

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.164	20768938	1236230	50.327			
2	10.766	20498650	947504	49.673			
Total		41267588	2183734				


<Chromatogram>

mV

?	??A2	254nm						
P	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
Г	1	8.085	52184107	3002106	95.863		М	
	2	10.758	2252036	115759	4.137		М	
	Total		54436143	3117864				

mV

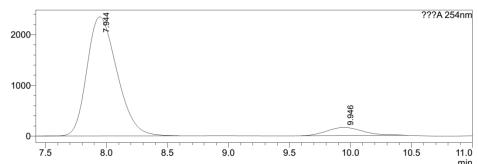
<Peak Table>

 ???A 254nm

 Peak# Ret. Time
 Area
 Height
 Conc.
 Unit
 Mark
 Name

 1
 7.969
 12495109
 726599
 48.833

 2
 9.891
 13092431
 594627
 51.167


1321226

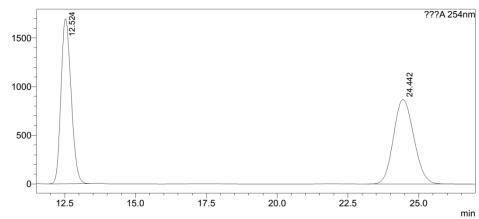
<Chromatogram>

25587540

 mV

Total

<Peak Table>

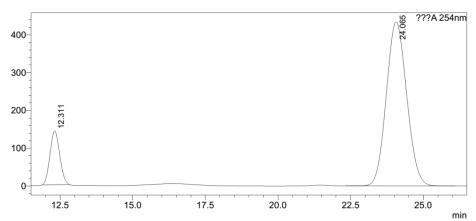

 ???A 254nm

 Peak# Ret. Time
 Area
 Height
 Conc.
 Unit
 Mark
 Name

 1
 7.944
 40280865
 2348087
 92.502
 92.502
 99.946
 3265300
 158311
 7.498
 M

 Total
 43546165
 2506399
 99.946
 3265300
 158311
 7.498
 M

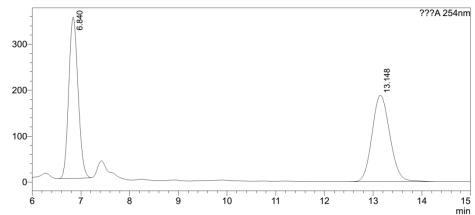
mV


<Peak Table>

???A 254nm

!!!AZ	:5 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.524	42286392	1697968	49.325			
2	24.442	43443330	869408	50.675			
Total		85729722	2567377				

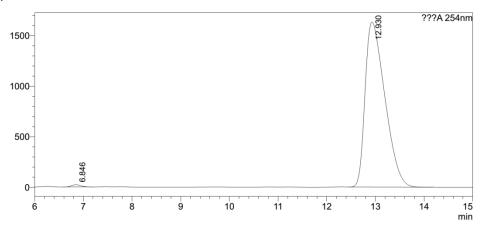
<Chromatogram>


mV

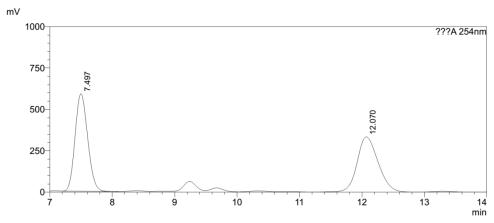
<Peak Table>

???A 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.311	3318510	142326	13.508		М	
2	24.065	21248603	434423	86.492		M	
Total		24567113	576750				



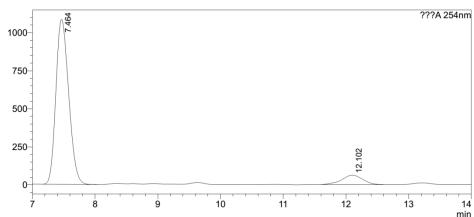
<Peak Table>


(((A	254nm						
Peak	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.840	4680892	350647	49.409			
2	13.148	4792929	188057	50.591			
Tota	al	9473822	538704				

<Chromatogram>

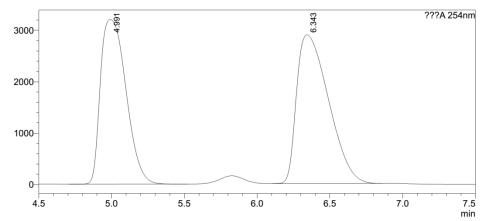
mV

!!!A	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.846	301299	22396	0.650			
2	12.930	46034411	1632546	99.350			
Total		46335710	1654942				



<Peak Table>

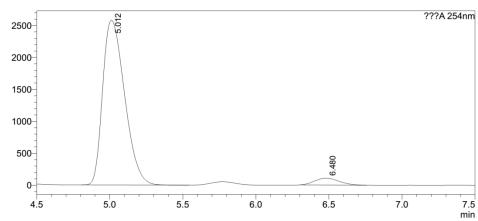
???A 2	:54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.497	8270916	589150	51.452			
2	12.070	7804101	333633	48.548			
Total		16075017	922783				


<Chromatogram>

m۷

1	???A 2	254nm						
F	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	7.464	15371473	1083728	91.423			
	2	12.102	1442175	61771	8.577		М	
	Total		16813648	1145500				

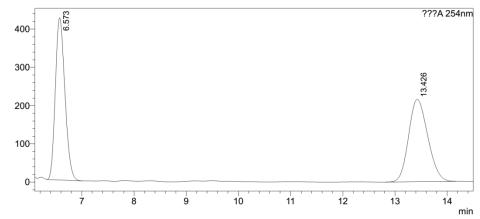
mV



<Peak Table>

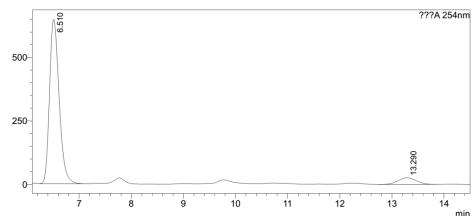
?	??A 2	254nm						
F	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	4.991	39172094	3205366	47.008			
Г	2	6.343	44159313	2894480	52.992			
Г	Total		83331406	6099846				

<Chromatogram>


mV

<Peak Table>

???A 254nm


:::/\2	. 						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.012	26948920	2579762	95.559		V	
2	6.480	1252428	108061	4.441		М	
Total		28201348	2687823				

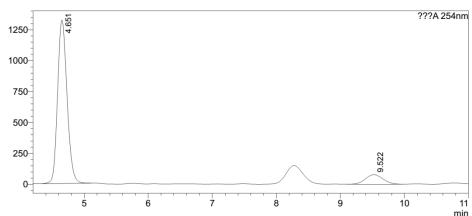
<Peak Table>

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.573	5420582	424622	49.681			
2	13.426	5490131	215263	50.319			
Total		10910713	639885				

<Chromatogram>

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.510	8269243	646352	92.950			
2	13.290	627161	25889	7.050			
Total		8896404	672241				

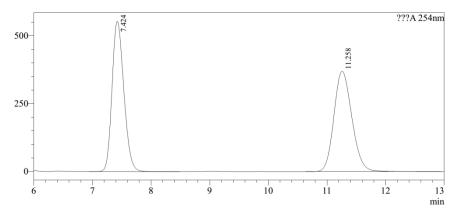
mV



<Peak Table>

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.804	3304418	324296	50.169			
2	10.046	3282143	162860	49.831			
Total		6586561	487156				

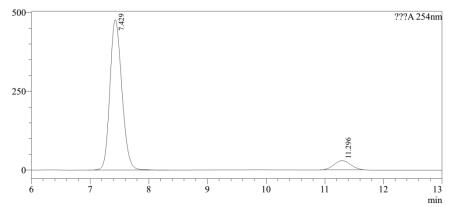
<Chromatogram>


mV

???A 2	254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.651	13591824	1322833	90.389			
2	9.522	1445198	76653	9.611			
Total		15037022	1399486				

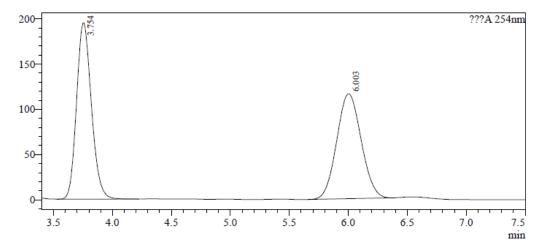
4z

mV


<Peak Table>

222 A 254nm

IIIAZ.	2 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.424	7772533	555050	49.549			
2	11.258	7914028	370551	50.451			
Total		15686561	925600				


<Chromatogram>

mV

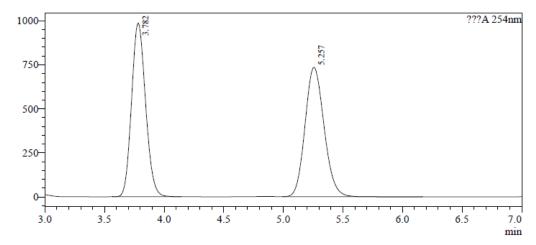
???A 25	???A 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name					
1	7.429	6790164	477069	92.092								
2	11.296	583041	29203	7.908		M						
Total		7373205	506273									

mV

<Peak Table>

???A 254nm

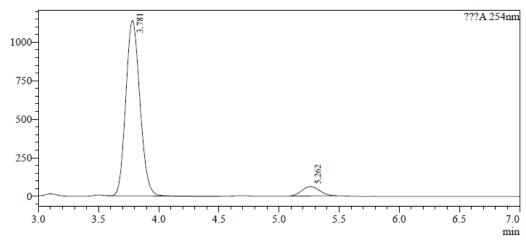
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	3.754	1704254	194730	50.485		S	
2	6.003	1671540	115967	49.515			
Total		3375793	310697				


<Chromatogram>

mV

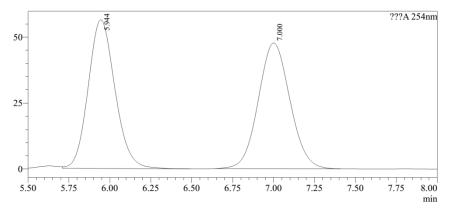
???A 2:	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	3.732	13446214	1465904	94.762			
2	5.984	743257	54813	5.238		M	
Total		14189472	1520717				

mV


<Peak Table>

222 A 254m

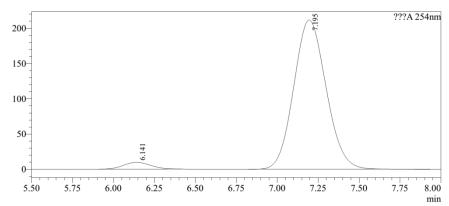
???A 2:	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	3.782	8055804	986940	49.698			
2	5.257	8153677	734602	50.302		S	
Total		16209481	1721542				


<Chromatogram>

mV

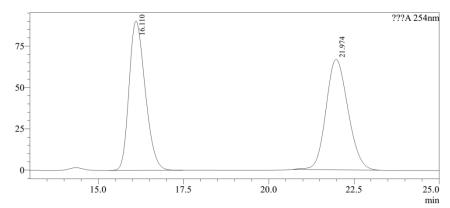
???A 2:	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	3.781	9279434	1139138	93.748		M	
2	5.262	618842	60227	6.252		M	
Total		9898275	1199366				

mV



<Peak Table>

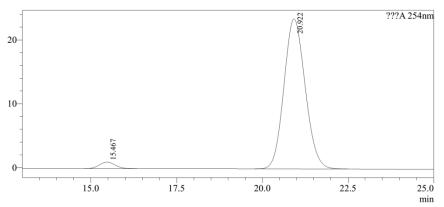
???A 2:	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.944	642326	56339	50.052		M	
2	7.000	640985	47676	49.948		M	
Total		1283311	104014				


<Chromatogram>

mV

???A 25	54nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	6.141	109450	9680	3.620		M	
2	7.195	2914409	211898	96.380		M	
Total		3023858	221578				

mV

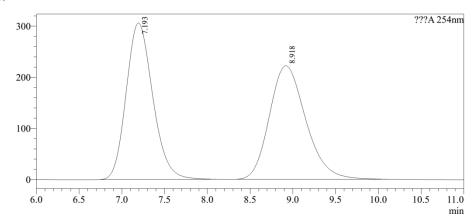

<Peak Table>

???A 254nm

IIIAZ.							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.110	2976889	90334	49.828			
2	21.974	2997443	66742	50.172		M	
Total		5974331	157075				

<Chromatogram>

mV

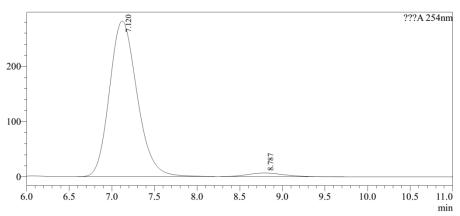


<Peak Table>

222 A 254nm

???A 23	94nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.467	32456	1019	3.103			
2	20.922	1013503	23507	96.897			
Total		1045959	24526				

mV

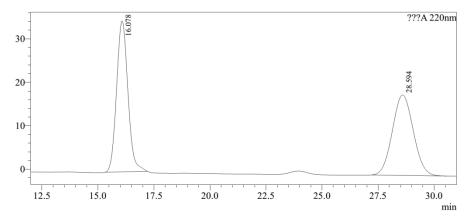

<Peak Table>

222 A	254nm	

:::A Z.) 4 11111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.193	6618941	306083	50.190		M	
2	8.918	6568872	222042	49.810		M	
Total		13187813	528125				

<Chromatogram>

mV

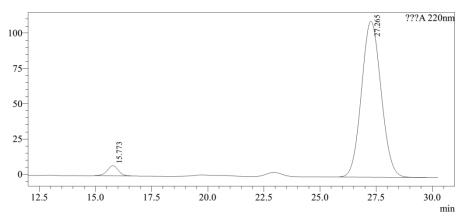


<Peak Table>

???A 254nm

???A 2	???A 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	7.120	6342553	281556	97.086		M					
2	8.787	190384	6496	2.914		M					
Total		6532938	288052								

mV



<Peak Table>

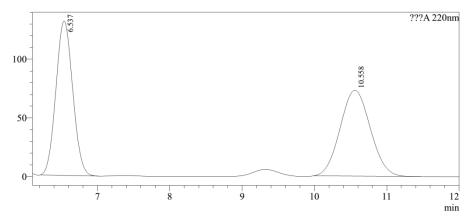
???A 220nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	16.078	1223907	34739	50.446		M		
2	28.594	1202268	18527	49.554		M		
Total		2426176	53266					

<Chromatogram>

mV

<Peak Table>

 ???A 220nm


 Peak#
 Ret. Time
 Area
 Height
 Conc.
 Unit
 Mark
 Name

 1
 15.773
 242982
 7133
 3.490
 M

 2
 27.265
 6718930
 110503
 96.510
 M

 Total
 6961912
 117635
 M

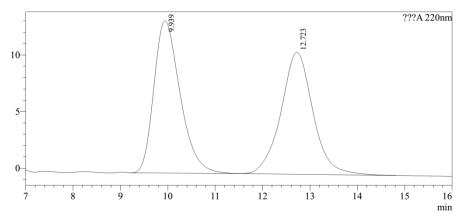
mV

<Peak Table>

???A 220nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	6.537	2128445	131579	50.052		M		
2	10.558	2124041	73110	49.948		M		
Total		4252486	204689					

<Chromatogram>

 $\, mV \,$



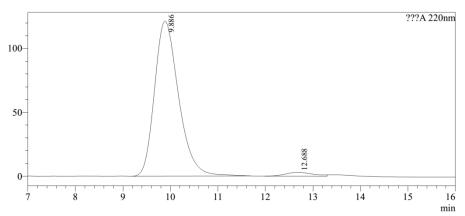
 Peak
 ...

 2??A 220nm
 Peak# Ret. Time

 1
 6.512

 2
 10.537
 Height 11985 176486 188470 Mark M M Name Area 198948 Conc. 3.707 96.293 Unit 5168416 5367365 Total

mV



<Peak Table>

???A 220nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name		
1	9.939	517713	13445	50.588					
2	12.723	505681	10771	49.412					
Total		1023394	24216						

<Chromatogram>

mV

<Peak Table>

???A 220nm
Peak# Ret. Time
1 9.886 Area 4278927 123812 4402739 Height 121274 Conc. 97.188 Mark M Unit Name 3044 124319 12.688 2.812 M Total