Supporting Information

Pd/Cu Dual Catalysis: Highly Enantioselective Access to α-Substituted α-Amino Acids and α-Amino Amides

Xiaohong Huo,^{a,†} Jingke Fu,^{a,†} Xiaobo He,^a Jianzhong Chen,^a Fang Xie,^a and Wanbin Zhang*^{ab}

 ^a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
^b School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

CONTENTS

1.	General Experimental Details	S 2
2.	Preparation of Starting Materials	S 2
3.	Pd/Cu Dual Catalysis for the Asymmetric Allylation of Glycine Derivatives	. S2
4.	Synthetic Transformation	S18
5.	References	S19
6	NMR and HPLC Spectra	S20

1. General Experimental Details

All reactions were performed in flame-dried glassware under an atmosphere of dry nitrogen, and the workup was carried out in air, unless otherwise noted. Toluene, dichloromethane (CH_2Cl_2), triethylamine (Et₃N) and N,N-dimethylformamide (DMF) were dried and distilled from calcium hydride. Ether (Et₂O), tetrahydrofuran (THF) and 1.4-dioxane were dried and distilled from metal sodium and benzophenone. Acetone was dried and distilled from potassium carbonate. Column chromatographic purification of products was carried out using basic silica gel or neutral Al₂O₃ (100~200 mesh). Commercially available reagents were used without further purification. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 100 MHz, ¹³C) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard tetramethylsilane. The ee values were determined by HPLC using a Daicel chiral column. Mass spectrometry analysis was carried out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Melting points were measured with SGW X-4 micro melting point apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50-mm path-length cell at 589 nm. IR was measured on a PerkinElmer Spectrum 100 FT-IR Spectrometer. The racemic samples were prepared by running reactions with a racemic catalyst. The absolute configuration of products was assigned by comparison with the literature's results.

2. Preparation of Starting Materials

Reagents were purchased from Sigma-Aldrich, TCI, or Alfa Aesar and used as received unless otherwise stated. Diphenylimino glycinate **1** was purchased from Energy Chemical. $[(S,S_p)-(L1-L8)]$,^[1] allylic acetates,^[2] and glycine amide derivatives (**5a** and **5b**)^[3] were prepared according to literature procedures. The racemic samples were prepared by running reactions with a racemic catalyst.

3. Pd/Cu Dual Catalysis for the Asymmetric Alkylation of Glycine

Derivatives

3.1 General Procedure

The preparation of Pd catalyst: $[Pd(\eta^3-allyl)Cl]_2$ (2.5 mol%, 2.25 mg), L (5.0 mol%) were stirred in THF (1 mL) in a Schlenk flask under a nitrogen atmosphere at room temperature for 40 min.

The preparation of Cu catalyst: $Cu(OTf)_2$ (5.0 mol%, 4.5 mg), L (5.0 mol%) were stirred in THF (1 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 40 min.

To a Schlenk flask was added glycine derivatives **1** (0.25 mmol, 73.8 mg) and Cs_2CO_3 (81.5 mg, 0.25 mmol), and the flask was degassed via an alternating vacuum/evacuation N₂ backfill. Cu catalyst (1 mL) and Pd catalyst (1 mL) was then added, and the mixture was cooled to -10 °C. Cinnamyl acetate **2a** (0.30 mmol, 52.8 mg) was then injected in one portion. After completion, the reaction mixture was filtered and concentrated under reduced pressure. Purification of the residue by flash chromatography with basic silica gel or neutral Al₂O₃ (100~200 mesh) afforded the desired product. The ee was determined by chiral HPLC.

3.2 The Details for Optimizing the Reaction Conditions

3.2.1 Creation of the Chiral Catalyst Library and High Throughput Evaluation of the Library

Various chiral metal complexes (Pd/L* and Cu/L*) were first prepared by the combination of chiral P,N-ligands (L1-L8) and metal precursors (Pd and Cu). A larger structurally diverse and efficient dual-catalyst system library involving two chiral metal catalysts was then set up by the random combination of any two of the in situ-prepared chiral metal complexes. These chiral metal complexes simultaneously activate cinnamyl acetate and diphenylimino glycinate. After completion, the reaction mixture was filtered and concentrated under reduced pressure. The crude products were submitted for NMR and HPLC analysis for the determination of yields and enantiomeric excesses (ee). The enantiomeric excesses were determined by using the same HPLC analytical system on Chiralcel OD-H column: eluent hexane/2-propanol (95:5); flow rate 1.0 mL/min; UV detection at $\lambda = 254$ nm; retention time = 4.3 min (*S* enantiomer), 4.8 min (*R* enantiomer). The results of the primary screening of the dual-catalyst system library are summarized in *Table S1* and *Figure S1*.

Ρ	h ₂ C=N	O <i>t-</i> Bu +	Ph		2.5 mol% [P 5 mol% Cu(0 5 mol% L_m +	d(η ³ -allyl)Cl] ₂ OTf) ₂ + 5 mol% L_n	Ph ₂ C		Bu	
					K ₂ CO ₃ , THF, RT, 4 h		Ph	Ph		
	1		2a	I				3a		
PdL CuL	PPh ₃	L1	L2	L3	L4	L5	L6	L7	L8	
PPh ₃	0	60	81	59	88	55	64	80	70	
L1	74	76	84	84	86	83	83	86	90	
L2	88	65	94	92 ^[b]	91	91	91	92	92	
L3	73	85	70	88	92	86	90	89	90	
L4	89	90	92	91	94	88	91	91	91	
L5	52	75	88	82	75	75	86	80	86	
L6	51	86	89	89	92	89	92	88	90	
L7	63	86	89	85	92	82	90	80	86	
L8	46	87	88	86	89	88	90	85	84	

Table S1 Optimization of the reaction conditions through the screening of a chiral metal complex library (the ee of products)^[a]

[a] Conditions: **1** (0.25 M), **2a** (1.2 equiv), CuL* (5 mol%), PdL* (5 mol%), K₂CO₃ (1.0 equiv), THF (2 mL); [b] All the reaction gave the desired product in >95% yields, except the reaction using (Cu/L2+Pd/L3); [c] The ee values were determined by HPLC using chiral columns.

Metal		Chiral metallocene-based P,N ligands				
Cu	PPh ₂					
Pd	Ra	Fe		N N N N N		
	L1 : <i>i</i> -Pr; L2 : <i>t</i> -Bu	L3 : <i>i</i> -Pr; L4 : <i>t</i> -Bu	L5 : <i>i</i> -Pr; L6 : <i>t</i> -Bu	L7 : <i>i</i> -Pr; L8 : <i>t</i> -Bu		

Figure S1. High throughput screening of chiral dual-catalyst system library (ee of the products)

3.2.2 Further Optimizing the Reaction Conditions

	Ph ₂ C=N)t-Bu + Ph∕	OAc	2.5 mol% $[Pd(\eta^3-allyl)Cl]_2$ 5 mol% Cu(OTf)_2 5 mol% L + 5 mol% L base, THF Ph_2C=N O'Bu			
	1		2a			3a	
Entry	Pd/L*	Cu/L*	Base	Temp (°C)	t (h)	Yield (%) ^[b]	Ee (%) ^[c]
1	L2	L2	K_2CO_3	20	4	93	94 (<i>S</i>)
2	L4	L4	K_2CO_3	20	4	93	94 (<i>S</i>)
3	L2	L2	K_2CO_3	-10	12	NR	ND
4	L4	L4	K_2CO_3	-10	12	NR	ND
5	L2	L2	Cs_2CO_3	-10	12	96	97 (<i>S</i>)
6	L4	L4	Cs_2CO_3	-10	12	25	ND
7	no Pd	L2	Cs_2CO_3	-10	12	NR	NR
8	L2	no Cu	Cs_2CO_3	-10	12	18	ND
9	L2	ent-L2	Cs_2CO_3	-10	12	86	5 (<i>R</i>)
10	ent-L2	L2	Cs_2CO_3	-10	12	88	4 (<i>S</i>)

Table S2 Further optimization of the reaction conditions^[a]

[a] Condition: **1** (0.25 M), **2a** (1.2 equiv), CuL* (5 mol%), PdL* (5 mol%), base (1.0 equiv), THF (2 mL); [b] The yields were calculated from ¹H NMR spectra; [c] The ee values were determined by HPLC using chiral columns. NR = not reaction, ND = not determined.

3.3 The Data of Characterization

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-phenylpent-4-enoate (3a)^[4]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J* = 6.8 Hz, 2H), 7.52 – 7.17 (m, 13H), 6.48 (d, *J* = 16.0 Hz, 1H), 6.16 (dt, *J* = 15.2, 7.2 Hz, 1H), 4.17 (dd, *J* = 7.6, 5.2 Hz, 1H), 2.99 – 2.76 (m, 2H), 1.51 (s, 10H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.1, 170.5, 139.9, 137.8, 136.9, 132.7, 130.4, 129.0, 128.7, 128.7, 128.6, 128.2, 128.2, 127.2, 126.8, 126.3, 81.3, 66.5, 37.5, 28.3; IR (v/cm⁻¹) 3445, 2922, 1732, 1622, 1446, 1367, 1148, 966, 744, 694 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 4.7 min (minor), t_{R2} = 5.2 min (major)]; ee = 97%, [α]_D²⁰ = -38.2 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(o-tolyl)pent-4-enoate (3b)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (d, *J* = 6.8 Hz, 2H), 7.53 – 7.29 (m, 8H), 7.20 – 7.05 (m, 4H), 6.65 (d, *J* = 14.4 Hz, 1H), 6.07 – 5.92 (m, 1H), 4.17 – 4.09 (m, 1H), 2.94 – 2.74 (m, 2H), 2.28 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.5, 153.2, 141.7, 139.9, 136.9, 130.4, 129.0, 128.7, 128.6, 128.5, 128.2, 128.1, 125.7, 121.2, 117.2, 111.3, 106.7, 81.3, 66.4, 37.3, 28.3, 19.6; IR (v/cm⁻¹) 2977, 1732, 1622, 1367, 1279, 1150, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 4.1 min (major), t_{R2} = 4.4 min (minor)]; ee = 99.1%, [α]_D²⁰ = -42.6 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(2-fluoro phenyl)pent-4-enoate (3c)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.70 - 7.63$ (m, 2H), 7.46 - 7.27 (m, 7H), 7.19 - 7.10 (m, 3H), 7.08 - 6.94 (m, 2H), 6.58 (d, J = 16.0 Hz, 1H), 6.25 - 6.12 (m, 1H), 4.15 - 4.10 (m, 1H), 2.94 - 2.74 (m, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.0$, 170.6, 160.2 (J = 247.1 Hz), 139.9, 132.6, 130.5, 130.3, 129.6 (J = 4.0 Hz), 129.1, 128.8, 128.7, 128.5 (J = 7.8 Hz), 128.2, 128.1, 127.4 (J = 3.0 Hz), 125.1 (J = 2.4 Hz), 124.2 (J = 2.0 Hz), 115.8 (J = 22.0 Hz), 81.4, 66.3, 38.0, 28.3; IR (v/cm⁻¹) 2977, 1732, 1487, 1150, 968, 754, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 98/2, 254 nm, 1.0 mL/min; t_{R1} = 4.1 min (minor), t_{R2} = 4.8 min (major)]; ee = 99.3%, [α]_D²⁵ = -40.8 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 5-(2-chlorophenyl)-2-((diphenylmethylene) amino)pent-4-enoate (3d)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.88 – 7.80 (m, 1H), 7.73 – 7.66 (m, 2H), 7.53 –

7.28 (m, 8H), 7.22 – 7.08 (m, 3H), 6.84 (d, J = 16.0 Hz, 1H), 6.22 – 6.09 (m, 1H), 4.22 – 4.05 (m, 1H), 2.94 – 2.74 (m, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.0$, 170.7, 139.9, 136.9, 135.8, 132.9, 130.5, 130.3, 129.8, 129.1, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, 128.1, 127.0, 81.5, 66.2, 37.7, 28.3; IR (v/cm⁻¹) 2977, 1470, 1623, 1445, 1096, 966, 751, 699 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min; t_{R1} = 4.7 min (major), t_{R2} = 5.4 min (minor)]; ee = 99%, [α]_D²⁰ = -35.1 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(m-tolyl) pent-4-enoate (3e)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.04 - 7.94$ (m, 2H), 7.88 - 7.61 (m, 6H), 7.60 - 7.28 (m, 6H), 6.73 (d, J = 16.0 Hz, 1H), 6.48 - 6.36 (m, 1H), 4.50 - 4.42 (m, 1H), 3.23 - 3.05 (m, 2H), 2.66 (s, 3H), 1.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.2$, 170.5, 139.9, 138.2, 137.7, 136.9, 132.7, 130.4, 129.1, 128.8, 128.6, 128.2, 128.1, 127.1, 126.5, 123.4, 81.3, 66.5, 37.6, 28.4, 21.7; IR (v/cm⁻¹) 2976, 1732, 1622, 1367, 1149, 965, 776, 695 cm⁻¹; HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 4.0 min (minor), t_{R2} = 4.6 min (major)]; ee = 97%, [α]_D²⁰ = -31.5 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(3-fluoro phenyl)pent-4-enoate (3f)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.75 - 7.67$ (m, 2H), 7.54 - 7.15 (m, 9H), 7.12 - 6.97 (m, 2H), 6.92-6.86 (m, 1H), 6.42 (d, J = 16.0 Hz, 1H), 6.24 - 6.09 (m, 1H), 4.17 - 4.12 (m, 1H), 2.93 - 2.71 (m, 2H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.9$, 170.5, 163.3 (J = 243.4 Hz), 140.2 (J = 8.0 Hz), 139.9, 136.9, 131.7, 130.5, 130.2 (J = 7.3 Hz), 129.1, 128.8, 128.7, 128.4, 128.3, 128.1, 122.2, 114.1 (J = 20.2 Hz), 112.7 (J = 22.5 Hz), 81.4, 66.3, 37.5, 28.4; IR (v/cm⁻¹) 3027, 1732, 1582, 1276, 1149, 969, 779, 702 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min. t_{R1} = 4.2 min (major), t_{R2} = 4.9 min (minor)]; ee = 96%, [α]_D²⁰ = -30.2 (c 1.0, CHCl₃).

(E)-Tert-butyl 5-(3-chlorophenyl)-2-((diphenylmethylene) amino)pent-4-enoate (3g)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.75 – 7.67 (m, 2H), 7.50 – 7.30 (m, 8H), 7.25 – 7.16 (m, 4H), 6.41 (d, *J* = 16.0 Hz, 1H), 6.24 – 6.08 (m, 1H), 4.19-4.13 (m, 1H), 2.94 – 2.76 (m, 2H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.6, 139.9, 139.6, 136.9, 134.7, 131.4, 130.6, 130.0, 129.1, 128.9, 128.7, 128.5, 128.3, 128.2, 127.3, 126.2, 124.5, 81.5, 66.3, 37.5, 28.4; IR (v/cm⁻¹) 2977, 1732, 1621, 1367, 1149, 964, 777, 695 cm⁻¹; HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 4.7 min (minor), t_{R2} = 5.2 min (major)]; ee = 97%, [α]_D²⁰ = -35.8 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(p-tolyl) pent-4-enoate (3h)^[5]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 – 7.69 (m, 2H), 7.56 – 7.33 (m, 6H), 7.37 – 7.11 (m, 6H), 6.46 (d, *J* = 16.0 Hz, 1H), 6.19 – 6.02 (m, 1H), 4.20 – 4.15 (m, 1H), 2.96 – 2.78 (m, 2H), 2.38 (s, 3H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.2, 170.5, 140.0, 137.0, 135.0, 132.6, 130.5, 129.5, 129.4, 129.1, 128.8, 128.7, 128.3, 128.2, 126.2, 125.7, 81.3, 66.6, 37.6, 28.4, 21.5; IR (v/cm⁻¹) 2976, 1724, 1623, 1446, 968, 702, 638 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min. t_{R1} = 4.6 min (major), t_{R2} = 5.2 min (minor)]; ee = 94%, [α]_D²⁰ = -32.6 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(4-methoxyphenyl)pent-4-enoate (3i)^[5]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.75 - 7.60$ (m, 2H), 7.45 - 7.35 (m, 4H), 7.34 - 7.28 (m, 2H), 7.23 - 7.18 (m, 2H), 7.15 - 7.10 (m, 2H), 6.81 (d, J = 8.8 Hz, 2H), 6.42 - 6.28 (m, 1H), 5.98 - 5.84 (m, 1H), 4.15 - 4.02 (m, 1H), 3.79 (s, 3H), 2.90 - 2.65 (m, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 171.2$, 170.5, 156.6, 140.0, 136.9, 130.4, 129.1, 128.7, 128.6, 128.2, 127.5, 127.4, 126.9, 126.8, 120.8, 111.0, 81.3, 66.5, 55.6, 38.0, 28.3; IR (v/cm⁻¹) 2977, 1733, 1510, 1248, 1149, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min, t_{R1} = 5.1 min (major), t_{R2} = 5.9 min (minor)]; ee = 98%, [α]_D²⁰ = -38.7 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(4-fluoro phenyl)pent-4-enoate (3j)^[5]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.67-7.61 (m, 2H), 7.45 – 7.36 (m, 4H), 7.34 – 7.30 (m, 2H), 7.25 – 7.20 (m, 2H), 7.15 – 7.09 (m, 2H), 6.99 – 6.92 (m, 2H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.06 – 5.95 (m, 1H), 4.12-4.04 (m, 1H), 2.87 – 2.69 (m, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.5, 162.2 (*J* = 244.4 Hz), 133.9, 132.6, 131.5, 130.4 (*J* = 23.4 Hz), 129.1, 128.8, 128.6, 128.5, 128.2, 128.1, 127.7 (*J* = 8.0 Hz), 126.5, 115.6 (*J* = 11.4 Hz), 81.4, 66.3, 37.4, 28.3; IR (v/cm⁻¹) 2978, 1732, 1554, 1227, 1123, 967, 845, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min. t_{R1} = 4.3 min (major), t_{R2} = 5.0 min (minor)]; ee = 97%, [α]_D²⁰ = -42.8 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 5-(4-chlorophenyl)-2-((diphenylmethylene) amino)pent-4-enoate (3k)^[5]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.70 – 7.64 (m, 2H), 7.45 – 7.30 (m, 6H), 7.27 – 7.20 (m, 4H), 7.18 – 7.12 (m, 2H), 6.38 (d, *J* = 16.0 Hz, 1H), 6.17 – 6.03 (m, 1H), 4.11 (dd, *J* =

7.2, 5.2 Hz, 1H), 2.88 – 2.73 (m, 2H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.5, 139.9, 136.9, 136.2, 132.9, 131.5, 130.5, 129.1, 128.9, 128.7, 128.5, 128.3, 128.1, 127.6, 127.5, 81.4, 66.3, 37.5, 28.3; IR (v/cm⁻¹) 2976, 1736, 1623, 1150, 749, 699 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min. t_{R1} = 4.2 min (major), t_{R2} = 4.9 min (minor)]; ee = 98%, [α]_D²⁰ = -27.9 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(4-(trifluoromethyl)phenyl)pent-4-enoate (31)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.66 (d, *J* = 7.2 Hz, 2H), 7.54 – 7.44 (m, 2H), 7.46 – 7.29 (m, 8H), 7.16 – 7.10 (m, 2H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.29 – 6.15 (m, 1H), 4.15 – 4.08 (m, 1H), 2.93 – 2.74 (m, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.7, 170.5, 140.9, 139.6, 136.5, 132.4, 131.2, 130.2 (*J* = 27 Hz), 129.5, 128.8, 128.6, 128.5, 128.1, 127.9, 126.9 (*J* = 281 Hz), 126.2, 81.3, 65.9, 37.3, 28.1; IR (v/cm⁻¹) 2975, 1732, 1134, 967, 845, 698 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min. t_{R1} = 4.0 min (major), t_{R2} = 5.0 min (minor)]; ee = 97%, [α]_D²⁰ = -23.7 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 5-(2,4-dimethylphenyl)-2-((diphenylmethylene)amino)pent-4-enoate (3m)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.88 – 7.80 (m, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.47 – 7.30 (m, 6H), 7.19 – 7.12 (m, 2H), 7.10 – 7.00 (m, 2H), 6.38 (d, *J* = 15.6 Hz, 1H), 6.09 – 5.97 (m, 1H), 4.11 (dd, *J* = 7.6, 5.2 Hz, 1H), 2.92 – 2.66 (m, 2H), 2.25 (s, 6H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.1, 170.4, 136.7, 135.7, 135.4, 132.6, 130.4, 130.3, 129.9, 129.1, 128.6, 128.5, 128.2, 127.6, 125.4, 123.7, 81.3, 66.5, 37.5, 28.3, 20.0, 19.7; IR (v/cm⁻¹) 2976, 1733, 1446, 1277, 1150, 967, 701 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min. t_{R1} = 4.5 min (major), t_{R2} = 5.1 min (minor)]; ee = 96%, [α]_D²⁵ = -41.0 (*c* 1.0, CHCl₃); HRMS (Q–TOF Premier) calcd for C₃₀H₃₄NO₂ (M+2H)²⁺: 440.2578; found: 440.2590.

(E)-Tert-butyl 5-(2,4-dichlorophenyl)-2-((diphenylmethylene)amino)pent-4-enoate (3n)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.6 Hz, 1H), 7.69 – 7.57 (m, 2H), 7.50 – 7.28 (m, 8H), 7.17 – 7.09 (m, 2H), 6.74 (d, *J* = 15.6 Hz, 1H), 6.21 – 6.05 (m, 1H), 4.10 (t, *J* = 6.4 Hz, 1H), 2.82 (t, *J* = 6.4 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.7, 170.5, 139.6, 136.6, 134.1, 133.1, 132.4, 130.6, 130.1, 128.9, 128.5, 128.0, 127.8, 127.7, 127.4, 127.1, 81.3, 65.8, 37.5, 28.1; IR (v/cm⁻¹) 2977, 1732, 1623, 1470, 1155, 967, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min; t_{R1} = 4.3 min (minor), t_{R2} = 5.5 min (major)]; ee = 99%, [α]_D²⁵ = -32.3 (*c* 1.0, CHCl₃); HRMS (Q–TOF Premier) calcd for C₂₈H₂₈NO₂Cl₂ (M+2H)²⁺: 480.1498; found: 480.1497.

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(naphthalen-1-yl)pent-4-enoate (30)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.87 - 7.56$ (m, 3H), 7.52 - 7.27 (m, 8H), 7.21 - 7.04 (m, 6H), 6.29 (d, J = 16.0 Hz, 1H), 6.18 - 6.08 (m, 1H), 4.11 (dd, J = 7.6, 5.2 Hz, 1H), 2.86 - 2.70 (m, 2H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.8, 170.7, 140.7, 139.7, 136.8, 135.2, 132.6, 130.6, 130.3, 130.3, 129.0, 128.9, 128.7, 128.5, 128.3, 128.1, 127.1, 124.6, 81.5, 66.0, 37.4, 28.3; IR (v/cm⁻¹) 2977, 1732, 1622, 1367, 1277, 1150, 967, 777, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK AD-H, hexane/$ *i* $-PrOH = 97/3, 254 nm, 1.0 mL/min, t_{R1} = 5.1 min (minor), t_{R2} = 6.0 min (major)]; ee = 94%, [<math>\alpha$]_D²⁰ = -41.4 (*c* 1.0, CHCl₃); HRMS (Q-TOF Premier) calcd for C₃₂H₃₂NO₂ (M+2H)²⁺: 462.2431; found: 462.2433.

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(naphthalen-2-yl) pent-4-enoate (3p)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.05 - 8.00$ (m, 1H), 7.86 - 7.78 (m, 2H), 7.76 - 7.67 (m, 2H), 7.53 - 7.45 (m, 3H), 7.43 - 7.30 (m, 6H), 7.21 - 7.18 (m, 1H), 7.14 (m, 2H), 6.18 - 6.10 (m, 1H), 4.18 (dd, J = 7.2, 5.6 Hz, 1H), 2.98 - 2.88 (m, 2H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.6$, 170.5, 140.5, 139.5, 136.5, 135.0, 132.4, 130.4, 130.1, 130.0, 129.9, 128.8, 128.7, 128.5, 128.3, 128.1, 127.9, 126.8, 124.4, 81.3, 65.8, 37.2, 28.1; IR (v/cm⁻¹) 2977, 1732, 1366, 1150, 967, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min; t_{R1} = 4.3 min (major), t_{R2} = 7.2 min (minor)]; ee = 98%, [α]_D²⁵ = -32.4 (*c* 1.0, CHCl₃); HRMS (Q-TOF Premier) calcd for C₃₂H₃₂NO₂ (M+2H)²⁺: 462.2431; found: 462.2433.

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(furan-2-yl) pent-4-enoate (3q)

COO^tBu O N=CPh₂ (S)-3q

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.68 – 7.59 (m, 2H), 7.48 – 7.27 (m, 7H), 7.21 – 7.08 (m, 2H), 6.34 – 6.30 (m, 1H), 6.22 (d, *J* = 15.6 Hz, 1H), 6.11 (d, *J* = 3.2 Hz, 1H), 6.07 – 5.94 (m, 1H), 4.06 (dd, *J* = 7.6, 5.2 Hz, 1H), 2.85 – 2.64 (m, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.5, 153.2, 141.7, 139.9, 136.9, 130.4, 129.0, 128.7, 128.6, 128.2, 128.1, 125.7, 121.2, 111.2, 106.7, 81.3, 66.4, 37.3, 28.3; IR (v/cm⁻¹) 2977, 2921, 1732, 1660, 1367, 1277, 1150, 962, 701 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min; t_{R1} = 4.6 min (major), t_{R2} = 5.1 min (minor)]; ee = 95%, [α]_D²⁰ = -33.9 (*c* 1.0, CHCl₃); HRMS (Q–TOF Premier) calcd for C₂₆H₂₈NO₃ (M+2H)²⁺: 402.2069; found: 402.2065.

(E)-Tert-butyl 2-((diphenylmethylene)amino)-5-(thiophen-2-yl)pent-4-enoate (3r)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.69 – 7.60 (m, 2H), 7.47 – 7.34 (m, 6H), 7.22 – 7.12 (m, 2H), 7.10 – 7.06 (m, 1H), 6.93 – 6.88 (m, 1H), 6.85 – 6.80 (m, 1H), 6.53 (d, *J* = 15.6 Hz,

1H), 5.97 - 5.80 (m, 1H), 4.06 (dd, J = 8.2, 5.2 Hz, 1H), 2.83 - 2.66 (m, 2H), 1.45 (s, 9H); 13 C NMR (100 MHz, CDCl₃) $\delta = 171.0$, 170.6, 142.9, 139.9, 136.9, 130.4, 129.0, 128.7, 128.6, 128.2, 128.1, 127.4, 126.7, 125.8, 124.8, 123.6, 81.3, 66.3, 37.3, 28.3; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 97/3, 254 nm, 1.0 mL/min. $t_{R1} = 5.1$ min (major), $t_{R2} = 5.8$ min (minor)]; ee = 97%, $[\alpha]_D{}^{20} = -32.1$ (*c* 1.0, CHCl₃); HRMS (Q–TOF Premier) calcd for C₂₆H₂₈NO₂S (M+2H)²⁺: 418.1841; found: 418.1848.

Tert-butyl 2-((diphenylmethylene)amino)pent-4-enoate (3s)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.71 – 7.62 (m, 2H), 7.47 – 7.42 (m, 3H), 7.42 – 7.28 (m, 3H), 7.22 – 7.16 (m, 2H), 5.80 – 5.68 (m, 1H), 5.08 (dd, *J* = 0.4, 20.0 Hz, 1H), 5.03 (dd, *J* = 0.5, 8.0 Hz, 1H), 4.03 (dd, *J* = 7.2, 5.2 Hz, 1H), 2.72 – 2.58 (m, 2H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.1, 170.3, 139.9, 136.9, 134.9, 130.4, 130.3, 129.0, 128.7, 128.6, 128.2, 117.5, 81.2, 66.1, 38.4, 28.3; IR (v/cm⁻¹) 2977, 1732, 1624, 1367, 1152, 780, 696 cm⁻¹; HPLC [DAICEL CHIRALPAK OD-H, hexane/*i*-PrOH = 99/1, 254 nm, 1.0 mL/min. t_{R1} = 5.2 min (major), t_{R2} = 5.7 min (minor)]; ee = 98%, [α]_D²⁰ = –1.0 (*c* 1.0, CHCl₃).

Tert-butyl (S)-2-((diphenylmethylene)amino)-5-methylhex-4-enoate (3t)^[6]

Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 – 7.78 (m, 1H), 7.61 (dd, J = 21.6, 7.5 Hz, 2H), 7.52 – 7.28 (m, 5H), 7.19 – 7.12 (m, 2H), 5.02 (t, J = 7.7 Hz, 1H), 3.95 (dd, J = 7.7, 5.4 Hz, 1H), 2.55 (hept, J = 8.0 Hz, 2H), 1.65 (s, 3H), 1.56 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 169.8, 140.0, 136.9, 134.1, 132.7, 130.3, 129.0, 128.6, 128.5, 128.2, 120.4, 81.0, 66.6, 32.6, 28.3, 26.0, 18.2. HPLC [DAICEL CHIRALPAK IC-3, hexane/*i*-PrOH = 95/5, 254 nm, 0.5 mL/min. t_{R1} = 7.4 min (major), t_{R2} = 7.9 min (minor)]; ee = 90%, [α]_D²⁰ = -2.9 (*c* 1.0, CHCl₃).

(E)-Tert-butyl 2-((diphenylmethylene)amino)-3,5-diphenylpent-4 -enoate (4)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.91 – 7.80 (m, 1H), 7.74 – 7.65 (m, 2H), 7.55 – 7.14 (m, 15H), 6.94 – 6.85 (m, 2H), 6.70 – 6.53 (m, 2H), 4.45 – 4.36 (m, 1H), 4.36 – 4.27 (m, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.1, 170.2, 141.7, 139.9, 137.8, 136.9, 132.7, 132.5, 130.5, 130.3, 129.9, 129.2, 128.9, 128.7, 128.5, 128.2, 128.1, 127.4, 126.8, 126.6, 81.4, 71.5, 53.3, 28.2; HPLC [DAICEL CHIRAL PAK IE, hexane/*i*-PrOH = 99/1, 254 nm, 1.0 mL/min. t_{R1} = 7.3 min (minor), t_{R2} = 8.3 min (major)]; ee = 98%.

(S,E)-N-Benzyl-2-((diphenylmethylene)amino)-5-phenylpent-4-enamide [6a]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 93% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 0.8 mL/min; t_{R1} = 19.4 min (major), t_{R2} = 28.5 min (minor)]; $[\alpha]_D^{20}$ = -7.4 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ = 7.69 – 7.63 (m, 2H), 7.49 – 7.42 (m, 4H), 7.41 – 7.35 (m, 2H), 7.34 – 7.30 (m, 6H), 7.30 – 7.25 (m, 4H), 7.13 – 7.07 (m, 2H), 6.44 (d, *J* = 15.8 Hz, 1H), 6.23 – 6.02 (m, 1H), 4.78 (dd, *J* = 15.1, 7.1 Hz, 1H), 4.40 (dd, *J* = 15.1, 5.2 Hz, 1H), 4.31 (dd, *J* = 6.6, 4.6 Hz, 1H), 2.91 – 2.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.8, 170.0, 139.2, 138.5, 137.4, 135.8, 132.9, 130.7, 128.9, 128.7, 128.7, 128.5, 128.2, 127.8, 127.5, 127.3, 127.2, 126.2, 125.8, 66.0, 42.9, 39.2. IR (v/cm⁻¹) 3056, 3025, 2927, 1733, 1484, 1437, 1374, 1259, 1181, 1119, 747, 721, 695, 541 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₁H₂₉N₂O (M+H)⁺: 445.2280; found: 445.2285.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-phenylpent-4-enamide [6b]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (124.8 mg, 96% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 35.6 min (minor), t_{R2} = 40.5 min (major)]; $[\alpha]_D^{20}$ = 0.38 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 1H), 7.68 – 7.62 (m, 2H), 7.49 – 7.41 (m, 4H), 7.40 – 7.22 (m, 16H), 7.11 – 7.05 (m, 2H), 6.47 – 6.35 (m, 2H), 6.15 (ddd, *J* = 15.4, 8.4, 6.5 Hz, 1H), 4.29 (dd, *J* = 6.6, 4.4 Hz, 1H), 2.81 (dt, *J* = 14.7, 7.8 Hz, 1H), 2.76 – 2.68 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 170.0, 141.8, 141.7, 139.2, 137.3, 135.8, 133.0, 132.4, 130.7, 130.1, 128.9, 128.7, 128.7, 128.6, 128.6, 128.5, 128.3, 128.3, 127.7, 127.4, 127.3, 127.3, 127.2, 126.2, 125.6, 65.9, 56.3, 39.1. IR (v/cm⁻¹) 3311, 3059, 3027, 1651, 1505, 1447, 1317, 1278, 967, 919, 742, 695, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₁H₂₉N₂O (M+H)⁺: 445.2280; found: 445.2285.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(2-methoxyphenyl)pent-4-enamide [6c]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 43.9 min (minor), t_{R2} = 45.6 min (major)]; $[\alpha]_D{}^{20}$ = -0.35 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.9 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.48 – 7.41 (m, 4H), 7.40 – 7.37 (m, 2H), 7.37 – 7.23 (m, 11H), 7.09 (dt, *J* = 7.7, 2.7 Hz, 2H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 6.77 (d, *J* = 15.9 Hz, 1H), 6.38 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 15.9 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.12 (ddd, *J* = 16.9 Hz, 1H), 6.88 (d, *J* = 16

15.4, 8.2, 6.5 Hz, 1H), 4.28 (dd, J = 6.8, 4.3 Hz, 1H), 3.77 (s, 3H), 2.92 – 2.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 169.9, 156.5, 141.8, 141.8, 139.3, 135.9, 130.6, 128.8, 128.7, 128.7, 128.6, 128.6, 128.2, 128.1, 127.8, 127.7, 127.4, 127.4, 127.3, 127.3, 126.6, 126.5, 126.2, 120.6, 110.8, 66.0, 56.3, 55.3, 39.5. IR (v/cm⁻¹) 3308, 3060, 3028, 2917, 1659, 1598, 1494, 1447, 1317, 1278, 1244, 1028, 754, 699, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₈H₃₅N₂O₂ (M+H)⁺: 551.2693; found: 551.2701.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(2-fluorophenyl)pent-4-enamide [6d]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 38.5 min (minor), t_{R2} = 43.0 min (major)]; $[\alpha]_D^{20}$ = 0.50 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 12.3, 7.8 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.49 – 7.42 (m, 4H), 7.41 – 7.37 (m, 2H), 7.37 – 7.23 (m, 11H), 7.14 – 7.01 (m, 4H), 6.58 (d, *J* = 16.0 Hz, 1H), 6.37 (d, *J* = 8.6 Hz, 1H), 6.23 (ddd, *J* = 15.6, 8.2, 6.6 Hz, 1H), 4.29 (dd, *J* = 6.6, 4.5 Hz, 1H), 2.87 – 7.78 (m, 1H), 2.77 – 7.68 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 170.1, 160.0 (*J* = 247.5 Hz), 141.7 (*J* = 2.5 Hz), 139.2, 135.8, 130.7, 130.1, 128.9, 128.7, 128.7, 128.6, 128.4, 128.4, 128.4, 128.3, 128.3, 127.7, 127.4, 127.3, 127.3, 125.3 (*J* = 3.5 Hz), 125.0 (*J* = 12.2 Hz), 124.0 (*J* = 3.6 Hz), 115.7 (*J* = 22.0 Hz), 65.8, 56.3, 39.5. IR (v/cm⁻¹) cm⁻¹. 3304, 3061, 2926, 1659, 1598, 1494, 1447, 1318, 1278, 941, 762, 701, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₇H₃₂FN₂O (M+H)⁺: 539.2493; found: 539.2501.

(*S*,*E*)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(*m*-tolyl)pent-4-enamide [6e]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 20.3 min (minor), t_{R2} = 24.1 min (major)]; $[\alpha]_D^{20}$ = 0.31 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 1H), 7.66 – 7.61 (m, 2H), 7.48 – 7.42 (m, 4H), 7.40 – 7.31 (m, 4H), 7.30 – 7.22 (m, 8H), 7.13 – 7.05 (m, 5H), 6.43 – 6.33 (m, 2H), 6.11 (ddd, *J* = 15.5, 8.4, 6.5 Hz, 1H), 4.27 (dd, *J* = 6.7, 4.4 Hz, 1H), 2.84 – 2.66 (m, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 170.0, 141.8, 141.7, 139.2, 137.9, 137.3, 135.8, 133.0, 130.7, 130.1, 128.9, 128.7, 128.6, 128.6, 128.4, 128.3, 128.3, 127.9, 127.7, 127.4, 127.3, 127.0, 125.3, 123.3, 65.9, 56.3, 39.2, 21.5. IR (v/cm⁻¹) 3307, 3060, 3028, 2921, 1651, 1505, 1446, 1317, 941, 919, 762, 703, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₈H₃₅N₂O (M+H)⁺: 535.2744; found: 535.2746.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(3-methoxyphenyl)pent-4-enamide [6f]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 26.0 min (minor), t_{R2} = 30.5 min (major)]; [α]_D²⁰ = 0.39 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.6 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.48 – 7.41 (m, 4H), 7.40 – 7.31 (m, 4H), 7.30 – 7.23 (m, 8H), 7.11 – 7.04 (m, 2H), 6.91 (dt, *J* = 7.7, 1.2 Hz, 1H), 6.86 – 6.79 (m, 2H), 6.46 – 6.29 (m, 2H), 6.13 (ddd, *J* = 15.5, 8.4, 6.4 Hz, 1H), 4.27 (dd, *J* = 6.7, 4.4 Hz, 1H), 3.82 (s, 3H), 2.86 – 2.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 170.1, 159.8, 141.8, 141.7, 139.2, 138.8, 135.8, 132.9, 130.7, 129.5, 128.9, 128.7, 128.6, 128.6, 128.3, 128.3, 127.7, 127.4, 127.3, 127.3, 125.9, 118.8, 112.7, 119.7, 65.9, 56.4, 55.2, 39.1. IR (v/cm⁻¹) 3307, 3060, 3028, 2931, 1651, 1505, 1447, 1317, 1277, 1155, 763, 702, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₈H₃₅N₂O₂ (M+H)⁺: 551.2693; found: 551.2704.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(3-fluorophenyl)pent-4-enamide [6g]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 30.4 min (major), t_{R2} = 33.1 min (minor)]; [α] $_{D}^{20}$ = 0.62 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.81 (m, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.46 (dt, *J* = 5.4, 2.5 Hz, 4H), 7.43 – 7.32 (m, 4H), 7.32 – 7.24 (m, 8H), 7.12 – 6.91 (m, 5H), 6.39 (dd, *J* = 12.5, 3.6 Hz, 2H), 6.16 (ddd, *J* = 15.4, 8.3, 6.5 Hz, 1H), 4.30 (dd, *J* = 6.4, 4.4 Hz, 1H), 2.87 – 2.76 (m, 1H), 2.76 – 2.65 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 170.2, 163.1 (*J* = 243.3 Hz), 141.7 (*J* = 3.1 Hz), 139.7 (*J* = 7.6 Hz), 139.1, 135.8, 131.9 (*J* = 2.5 Hz), 130.8, 130.1, 129.9, 129.9, 128.9, 128.8, 128.7, 128.7, 128.6, 128.3, 127.7, 127.4, 127.4, 127.3, 127.1, 122.2 (*J* = 2.6 Hz), 114.0 (*J* = 21.2 Hz), 112.5 (*J* = 21.5 Hz), 65.7, 56.3, 39.0. IR (v/cm⁻¹) 3372, 3061, 3028, 2924, 1682, 1505, 1447, 1278, 1227, 1157, 696, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₇H₃₁FN₂O (M+H)⁺: 539.2493; found: 539.2496.

(S,E)-N-Benzhydryl-5-(3-chlorophenyl)-2-((diphenylmethylene)amino)pent-4-enamide [6h]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 32.3 min (major), t_{R2} = 34.1 min (minor)]; $[\alpha]_D^{20}$ = 0.38 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.79 (m, 1H), 7.66 – 7.60 (m, 2H), 7.48 – 7.42 (m, 4H), 7.40 – 7.36 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.23 (m, 9H), 7.21 – 7.17 (m, 2H), 7.08 – 7.03

(m, 2H), 6.40 - 6.30 (m, 2H), 6.09 (ddd, J = 15.5, 8.4, 6.5 Hz, 1H), 4.26 (dd, J = 6.5, 4.5 Hz, 1H), 2.82 - 2.73 (m, 1H), 2.72 - 2.62 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 170.1, 141.7, 141.7, 139.1, 135.8, 135.7, 132.7, 131.7, 130.7, 130.0, 128.9, 128.7, 128.7, 128.6, 128.6, 128.5, 128.5, 128.2, 127.6, 127.4, 127.3, 127.3, 127.3, 127.2, 126.3, 65.7, 56.3, 39.0. IR (v/cm⁻¹) 3307, 3061, 2923, 1651, 1505, 1317, 1177, 919, 763, 702, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₇H₃₂ClN₂O (M+H)⁺: 555.2198; found: 555.2208.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(4-methoxyphenyl)pent-4-enamide [6i]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 48.9 min (minor), t_{R2} = 54.7 min (major)]; $[\alpha]_D^{20}$ = 0.56 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.6 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.48 – 7.41 (m, 4H), 7.40 – 7.31 (m, 4H), 7.31 – 7.21 (m, 10H), 7.10 – 7.04 (m, 2H), 6.96 – 6.83 (m, 2H), 6.43 – 6.30 (m, 2H), 5.98 (ddd, *J* = 15.5, 8.4, 6.6 Hz, 1H), 4.26 (dd, *J* = 6.7, 4.4 Hz, 1H), 3.85 (s, 3H), 2.86 – 2.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 169.9, 158.9, 141.8, 139.2, 135.8, 132.3, 130.6, 130.2, 128.8, 128.7, 128.6, 128.6, 128.2, 127.7, 127.4, 127.3, 127.3, 123.3, 113.9, 66.0, 56.3, 55.3, 39.2. IR (v/cm⁻¹) 3308, 3060, 3029, 2931, 1651, 1599, 1506, 1447, 1317, 1249, 1177, 1030, 941, 763, 702, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₈H₃₅N₂O₂ (M+H)⁺: 551.2693; found: 551.2699.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(4-fluorophenyl)pent-4-enamide [6j]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 51.3 min (major), t_{R2} = 55.2 min (minor)]; $[\alpha]_D^{20}$ = 0.44 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.7 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.49 – 7.42 (m, 4H), 7.41 – 7.38 (m, 1H), 7.37 – 7.31 (m, 3H), 7.27 (tdd, *J* = 8.6, 5.3, 2.8 Hz, 9H), 7.11 – 7.06 (m, 2H), 7.04 – 6.98 (m, 2H), 6.37 (dd, *J* = 12.3, 3.6 Hz, 2H), 6.05 (ddd, *J* = 15.5, 8.4, 6.5 Hz, 1H), 4.27 (dd, *J* = 6.5, 4.4 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.72 – 2.64 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 170.1, 162.1 (*J* = 244.6 Hz), 141.7 (*J* = 4.7 Hz), 139.1, 135.8, 133.5 (*J* = 3.3 Hz), 131.7, 130.7, 128.9, 128.7, 128.7, 128.6, 128.6, 128.3, 127.7, 127.6, 127.4, 127.3, 127.3, 125.3 (*J* = 2.2 Hz), 115.4 (*J* = 21.3 Hz), 65.8, 56.3, 39.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.1. IR (v/cm⁻¹) 3372, 3061, 3028, 2924, 1683, 1506, 1447, 1227, 1157, 967, 760, 696, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₇H₃₁FN₂O (M+H)⁺: 539.2493; found: 539.2505.

(S,E)-N-Benzhydryl-5-(4-chlorophenyl)-2-((diphenylmethylene)amino)pent-4-enamide [6k]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 33.1 min (major), t_{R2} = 42.2 min (minor)]; [α]_D²⁰ = 0.43 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.7 Hz, 1H), 7.64 (dd, *J* = 7.2, 1.8 Hz, 2H), 7.46 (dt, *J* = 5.3, 2.6 Hz, 4H), 7.41 – 7.22 (m, 16H), 7.13 (dt, *J* = 6.8, 2.0 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.45 – 6.28 (m, 2H), 6.14 (ddd, *J* = 15.5, 8.4, 6.4 Hz, 1H), 4.29 (dd, *J* = 6.5, 4.4 Hz, 1H), 2.84 – 2.74 (m, 1H), 2.74 – 2.65 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 170.2, 141.7, 141.7, 139.2, 139.1, 135.7, 134.4, 131.6, 130.8, 129.7, 128.9, 128.8, 128.7, 128.7, 128.7, 128.6, 128.3, 128.2, 127.7, 127.4, 127.4, 127.3, 127.1, 126.0, 124.5, 65.7, 56.3, 39.0. IR (v/cm⁻¹) 3307, 3060, 2920, 1651, 1505, 1455, 1317, 1177, 1076, 1029, 941, 919, 763, 702, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₇H₃₂ClN₂O (M+H)⁺:555.2198; found: 555.2205.

(S,E)-N-Benzhydryl-5-(3,4-dimethylphenyl)-2-((diphenylmethylene)amino)pent-4-enamide [61]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 26.0 min (minor), t_{R2} = 36.9 min (major)]; $[\alpha]_D^{20} = 0.36$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dd, *J* = 10.1, 8.0 Hz, 1H), 7.64 (d, *J* = 7.4 Hz, 2H), 7.50 - 7.42 (m, 4H), 7.41 - 7.24 (m, 11H), 7.15 - 7.03 (m, 5H), 6.44 - 6.30 (m, 2H), 6.05 (ddd, *J* = 15.3, 8.2, 6.5 Hz, 1H), 4.28 (dd, *J* = 6.6, 4.5 Hz, 1H), 2.77 (tq, *J* = 15.0, 8.2, 7.4 Hz, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 169.9, 141.8, 141.8, 139.2, 136.5, 135.9, 135.6, 135.0, 132.9, 130.6, 129.8, 128.8, 128.7, 128.7, 128.7, 128.7, 128.6, 128.3, 127.8, 127.6, 127.4, 127.4, 127.3, 127.3, 124.4, 123.7, 66.0, 56.4, 39.2, 19.9, 19.5. IR (v/cm⁻¹) 3307, 3060, 3027, 2919, 1660, 1576, 1495, 1277, 698, 638 cm⁻¹. HRMS (Q-TOF Premier) calcd for C₃₉H₃₇N₂O (M+H)⁺: 549.2901; found: 549.2906.

(*S*,*E*)-N-Benzhydryl-5-(benzo[d][1,3]dioxol-5-yl)-2-((diphenylmethylene)amino)pent-4-enamide [6m]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). >99% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, 254 nm, 1.0 mL/min; t_{R1} = 34.7 min (minor), t_{R2} = 47.9 min (major)]; [α]_D²⁰ = 0.50 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.79 (m, 1H), 7.66 – 7.59 (m, 2H), 7.45 (dt, *J* = 4.9, 2.3 Hz, 4H), 7.40 – 7.37 (m, 2H), 7.36 – 7.24 (m, 11H), 7.13 – 7.04 (m, 2H), 6.84 (d, *J* = 1.6 Hz,

1H), 6.77 (d, J = 8.0 Hz, 1H), 6.72 (dd, J = 8.0, 1.6 Hz, 1H), 6.40 – 6.28 (m, 2H), 6.03 – 5.89 (m, 3H), 4.26 (dd, J = 6.6, 4.4 Hz, 1H), 2.81 – 2.71 (m, 1H), 2.71 – 2.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 169.9, 147.9, 146.9, 141.8, 141.8, 139.2, 135.8, 132.5, 131.9, 130.7, 130.1, 128.9, 128.7, 128.7, 128.7, 128.6, 128.3, 127.7, 127.4, 127.3, 127.3, 123.7, 120.8, 108.2, 105.5, 101.0, 65.9, 56.3, 39.0. IR (v/cm⁻¹) 3307, 3060, 3028, 2898, 1651, 1599, 1505, 1446, 1317, 1250, 1038, 921, 762, 698, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₈H₃₃N₂O₃ (M+H)⁺: 565.2486; found: 565.2491.

(*S*,*E*)-N-Benzhydryl-2-((diphenylmethylene)amino)pent-4-enamide [6n]

(S)-6n N=CPh₂

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 98% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 27.6 min (major), t_{R2} = 47.5 min (minor)]; $[\alpha]_D^{20}$ = 0.094 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.6 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.49 – 7.43 (m, 4H), 7.40 – 7.36 (d, *J* = 7.6 Hz, 3H), 7.36 – 7.30 (m, 5H), 7.27 (m, 3H), 7.16 – 7.05 (m, 2H), 6.35 (d, *J* = 8.6 Hz, 1H), 5.79 – 5.66 (m, 1H), 5.13 – 4.96 (m, 2H), 4.17 (dd, *J* = 6.8, 4.9 Hz, 1H), 2.70 – 2.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 169.9, 141.8, 141.8, 139.2, 135.7, 133.9, 130.6, 130.1, 128.9, 128.7, 128.7, 128.6, 128.6, 128.2, 127.8, 127.4, 127.4, 127.3, 117.9, 65.8, 56.3, 39.9. IR (v/cm⁻¹) 3316, 3061, 3028, 2922, 1659, 1598, 1495, 1447, 1317, 1277, 941, 919, 762, 699, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₁H₂₉N₂O (M+H)⁺: 445.2275; found: 445.2281.

(S,E)-N-Benzhydryl-2-((diphenylmethylene)amino)-5-(furan-2-yl)pent-4-enamide [60]

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1) afforded the product as a colorless oil (57.4 mg, 88% yield). 98% ee, HPLC [DAICEL CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 53.1 min (major), t_{R2} = 58.4 min (minor)]; $[\alpha]_D^{20}$ = 0.32 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.45 (q, *J* = 5.9, 5.1 Hz, 4H), 7.41 – 7.35 (m, 4H), 7.34 – 7.24 (m, 10H), 7.13 – 7.06 (m, 2H), 6.43 – 6.31 (m, 2H), 6.24 (d, *J* = 15.8 Hz, 1H), 6.17 – 6.06 (m, 2H), 4.24 (dd, *J* = 6.5, 4.5 Hz, 1H), 2.71 (dtt, *J* = 18.6, 13.5, 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 170.2, 152.9, 141.8, 141.7, 141.6, 139.1, 135.7, 130.7, 128.9, 128.7, 128.6, 128.6, 128.3, 127.7, 127.4, 127.4, 127.3, 127.3, 124.5, 121.5, 111.2, 106.9, 65.9, 56.4, 38.9. IR (v/cm⁻¹) 3306, 3060, 3029, 2925, 1651, 1505, 1447, 1318, 1278, 742, 702, 638 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₃₅H₃₁N₂O₂ (M+H)⁺: 511.2380; found: 511.2386.

4. Synthetic Transformation

To a solution of **3s** (226 mg, 0.675 mmol) in THF (10 mL) was added a 15% citric acid solution (5 mL) at room temperature and the mixture was stirred for 12 h. After being washed with ether, the mixture was neutralized with solid K_2CO_3 and extracted with EtOAc. The combined extracts were dried over Na₂SO₄ and concentrated in vacuo. To a solution of the residue in THF (9 mL) were added Et₃N (102 mg, 1.05 mmol) and benzoyl chloride (105 mg, 0.75 mmol) at 0 °C. After being stirred for 5 h, the mixture was quenched with a saturated NH₄Cl solution and extracted with EtOAc. The combined extracts were washed with saturated NaHCO₃ and brine, dried over MgSO₄, and then concentrated in vacuo. The residue was purified by preparative TLC on silica gel.

(S)-Tert-butyl 2-benzamidopent-4-enoate (5)^[8]

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 7.2, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 6.75 (d, *J* = 6.8 Hz, 1H), 5.85 – 5.66 (m, 1H), 5.17 – 5.13 (m, 1H), 5.12 (s, 1H), 4.80 – 4.72 (m, 1H), 2.77 – 2.66 (m, 1H), 2.66 – 2.55 (m, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.2, 167.0, 134.4, 132.5, 131.8, 128.8, 127.2, 119.3, 82.7, 52.6, 37.0, 28.3; HPLC [DAICEL CHIRAL PAK OD-H, hexane/*i*-PrOH = 95/5, 254 nm, 1.0 mL/min; t_{R1} = 5.3 min (major), t_{R2} = 11.6 min (minor)]; ee = 97%.

5. References

- (1) (a) Liu, D.; Xie, F.; Zhang, W. *Tetrahedron Lett.* 2007, 48, 585. (b) Schaarschmidt, D.; Lang, H. *Organometallics*, 2013, 32, 5668.
- (2) (a) Watson, I. D. G.; Styler, S. A.; Yudin, A. K. J. Am. Chem. Soc., 2004, 126, 5086. (b) Chu, J. C. K.; Dalton, D. M.; Rovis, T. J. Am. Chem. Soc., 2015, 137, 4445. (c) Jautze, S.; Peters, R. Angew. Chem. Int. Ed. 2008, 47, 9284. (d) Liu, X.; Xu, X.; Pan, L.; Zhang, Q.; Liu, Q. Org. Biomol. Chem., 2013, 11, 6703.
- (3) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.
- (4) Jew, S.-S.; Jeong, B.-S.; Yoo, M.-S.; Huh, H.; Park, H.-G. Chem. Commun. 2001, 1244.
- (5) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
- (6) Siebum, A. H. G.; Woo, W. S.; Raap, J.; Lugtenburg, J. Eur. J. Org. Chem. 2004, 2905.
- (7) (a) Matagne, A.; Dubus, A.; Galleni, M.; Frère, J.-M. Nat. Prod. Rep. 1999, 16, 1; (b) J. Marchand-Brynaert, L. Ghosez, Non β-lactam analogues of penicillins and cephalosporins, Lukacs, G.; Ohno, M., Eds.; Springer-Verlag: Berlin, 1990, 727-794.
- (8) H.-g. Park, M.-J. Kim, M.-K. Park, H.-J. Jung, J. Lee, S.-h. Choi, Y.-J. Lee, B.-S. Jeong, J.-H. Lee, M.-S. Yoo, J.-M. Ku, S.-s. Jew J. Org. Chem. 2005, 70, 1904.

6. NMR and HPLC spectra

S25

S29

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.157	10211670	1507705	98.031	98.419
2	4.847	205088	24225	1.969	1.581
Total		10416759	1531929	100.000	100.000

			PeakTable							
	Detector A Ch1 254nm									
Peak# Ret. Time		Area	Height	Area %	Height %					
	1	4.706	55391	6536	1.681	1.764				
	2	5.168	3238855	363952	98.319	98.236				
	Total		3294246	370487	100.000	100.000				

Second in China 25 min					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.302	8963748	1118776	98.498	98.668
2	4.961	136731	15100	1.502	1.332
Total		9100479	1133876	100.000	100.000

S41

S43

α		\mathbf{n}
~		u
N	4	J

Delector A Chi 254hhh						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	4.338	6904900	973865	98.781	99.306
	2	7.151	85235	6803	1.219	0.694
	Total		6990135	980668	100.000	100.000

(S)-3s

S57

S	62
~	~

S76

