Supporting Information

Porous CoP Nanosheets Converted from Layered Double

Hydroxides with Superior Electrochemical Activity for Hydrogen

Evolution Reaction at Wide pH Range

YiFan Zeng¹, Yanyong Wang¹, Gen Huang¹, Chen Chen¹, Liangliang Huang¹, Ru Chen^{1*}, Shuangyin Wang^{1,2,3*}

¹ State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R.China.

² Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R.China.

³ Shenzhen Research Institute of Hunan University, Shenzhen, 518057, P. R.China.

**Corresponding author E-mail: chenru@hnu.edu.cn; shuangyinwang@hnu.edu.cn.*

Experimental section.

Preparation of CoAl-LDH/CP. In a typical procedure, $Co(NO_3)_2 \cdot 6H_2O$ (2 mmol), $Al(NO_3)_3 \cdot 6H_2O$ (2 mmol), NH_4F (8 mmol) and $CO(NH_2)_2$ (10 mmol) were dissolved in 36 mL distilled water and stirred to form a clear solution. The aqueous solution and carbon paper (CP, about $3cm \times 4cm$) were transferred to a 50 mL stainless-steel autoclave, maintained at 100 °C for 24 h, and then allowed to cool to room temperature within 15 min using cooling water. The pink thin film on the CP substrate was immersed in 5 mol L⁻¹ (5M) NaOH for 1-3 min and subsequently rinsed with distilled water and ethanol for 5 minutes with the assistance of ultrasonic, and finally dried at 80 °C for 6 h.

Preparation of mesoporous Co(OH)₂/**CP.** Immersing CoAl-LDH/CP in 5 mol·L⁻¹ NaOH solution with vigorous agitation for 10 h, rinsed several times by distilled water, and then dried at 80 °C for 6 h.

Preparation of p-CoP/CP. The mesoporous $Co(OH)_2/CP$ (1×2 cm) was placed in a porcelain boat and the other porcelain boat containing 0.30 g NaH₂PO₂ was placed at the upstream of the tube furnace. The two alumina boats were calcined at 300 °C for 2 h with a heating speed of 2 °C min⁻¹ under N₂ flow and then cooled down to room temperature naturally. Finally, the sample was rinsed several times by distilled water and dried at 80 °C for 6 h.

Electrodeposition of α **-Co(OH)** $_2$ /**CP.** The electrodeposition was performed in a three electrode cell consisting of carbon paper (2 cm×3 cm) as working electrode, a carbon paper (2 cm×3 cm) as counter electrode and saturated calomel electrode (SCE) as reference electrode at room temperature. The Co(OH)₂ was electrodeposited on carbon paper (2 cm×3 cm) in a 0.05 M Co(NO₃)₂.6H₂O aqueous electrolyte. The potential is -1.0 V (vs SCE). After 20 minutes electrodeposition, the green carbon paper was carefully rinsed with deionized water and ethanol and finally dried in air.

Preparation of CoP/CP. The α -Co(OH)₂/CP (1×2 cm) was placed in a porcelain boat and the other porcelain boat containing 0.30 g NaH₂PO₂ was placed at the upstream of the tube furnace. The two alumina boats were calcined at 300 °C for 2 h with a heating speed of 2 °C min⁻¹ under N₂ flow and then cooled down to room temperature naturally Finally, the sample was rinsed several times by distilled water and dried at 80 °C for 6 h.

Electrochemical Characterization. Electrochemical measurements were performed with CHI 760D electrochemical workstation in a standard three-electrode setup, with the use of p-CoP/CP (p-CoP loading: 5.8 mg cm⁻²), CoP/CP (CoP loading: 5.4 mg cm⁻²), Pt/C on CP and pure carbon paper as the working electrode, a graphite rod as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. Polarization curves were measured using the linear sweeping voltammetry (LSV) method with a scan rate of 5 mV s⁻¹ in 0.5 M H₂SO₄ solution (pH=0.6), 1.0 M KOH solution (pH = 13.6), and 1.0 M PBS solution (PH = 7.2) at room temperature. The potential scale with respect to reverse hydrogen electrode (RHE) was adjusted by the Nernst equation, where Evs RHE = $E_{vs SCE} + 0.0592 \times pH + 0.242$ (V). The ohmic potential drop (iR) losses from the solution resistance were applied to all initial data according to the following equation: Ecorr = Emea - iR. The potentials reported in this work were expressed versus RHE.

Physical Characterization. The morphology of the samples was investigated by scanning electron microscope (SEM, Hitachi, S-4800) and transmission electron microscope (TEM, FEI Tecnai G20). The crystal structures of the samples were characterized using powder X-ray diffraction (XRD, Bruker D8 Advance diffractometer, Cu K α 1). The nitrogen adsorption-desorption isotherms were measured at 77 K with a Quantachrom NOVA 1000e system.

Figure S1. Typical SEM images of (A) CoAl-LDH (B) SEM images of mesoporous Co(OH)₂ (C) HRTEM image of mesoporous Co(OH)₂.

Figure S2. Typical SEM images of α -Co(OH)₂.

Figure S3. XRD pattern of CoP/CP.

Figure S4. XRD pattern of CoAl-LDH/CP, mesoporous Co(OH)₂/CP, and p-CoP/CP.

Figure S5. SEM image and EDX elemental mapping of (A) CoAl-LDH/CP (B) mesoporous Co(OH)₂/CP and (C) p-CoP/CP.

Figure S6. The EDX spectrums of (A) CoAl-LDH (B) mesoporous $Co(OH)_2$ and (C) p-CoP.

Figure S7. (A) N_2 adsorption-desorption isotherms of CoP and p-CoP (B) Corresponding BJH pore size distribution.

Figure S8. Tested the electrochemical surface area (ECSA) of CoP/CP and p-CoP/CP in 1.0 M KOH solution. (A) Cyclic voltammetry curves of CoP/CP and (B) p-CoP/CP with different scanning rates. The capacitive current measured at -0.95 V vs RHE was plotting as a function of scan rate (C) CoP/CP and p-CoP/CP.

Figure S9. (A) Polarization curves recorded for p-CoP/CP, CoP/CP, Pt/C, Pure carbon paper with a scan rate of 5 mV s⁻¹ for HER and (B) Time-dependent current density curves of p-CoP at an E = -0.107 V vs RHE in 0.5 M H₂SO₄ (C) Polarization curves recorded for p-CoP/CP, CoP/CP, Pt/C, Pure carbon paper with a scan rate of 5 mV s⁻¹ for HER and (D) Time-dependent current density curves of p-CoP at an E = -0.17 V vs RHE in 1.0 M PBS.

Figure S10. (A) Tafel plots of p-CoP/CP, CoP/CP, Pt/C in 0.5 M H_2SO_4 and (B) Nyquist plots of p-CoP/CP, CoP/CP at -80 mV vs RHE.

Figure S11. Tested the electrochemical surface area (ECSA) of CoP/CP and p-CoP/CP in 0.5 M H_2SO_4 solution. (A) Cyclic voltammetry curves of CoP/CP and (B) p-CoP/CP with different scanning rates. The capacitive current measured at -0.15 V vs RHE was plotting as a function of scan rate (C) CoP/CP and p-CoP/CP.

Figure S12. (A) Tafel plots of p-CoP/CP, CoP/CP, Pt/C in 1.0 M PBS and (B) Nyquist plots of p-CoP/CP, CoP/CP at -119 mV vs RHE in 1.0 M PBS.

Figure S13. Tested the electrochemical surface area (ECSA) of CoP/CP and p-CoP/CP in 1.0 M PBS solution. (A) Cyclic voltammetry curves of CoP/CP and (B) p-CoP/CP with different scanning rates. The capacitive current measured at -0.55 V vs RHE was plotting as a function of scan rate (C) CoP/CP and p-CoP/CP.

Figure S14. The HER performance of the CoP/CP, p-CoP/CP after BET normalization in different electrolytes (A) 1.0 M KOH (B) $0.5 \text{ M H}_2\text{SO}_4$ and (C) 1.0 M PBS.

Figure S15. The HER performance for CoP/CP and p-CoP/CP after normalization of the electrochemical active area (A) 1.0 M KOH (B) $0.5 \text{ M H}_2\text{SO}_4$ and (C) 1.0 M PBS.

Table S1. The element analysis of the CoAl-LDH, mesoporous Co(OH) ₂ and p-CoP.					
	Co (atom	A1 (atom	P (atom	The element	T

	Co (atom	Al (atom	P (atom	The element	The element
Materials	percentage	percentage	percentage	mole ratio of	mole ratio of
	content, %)	content, %)	content, %)	Co/Al	Co/P
CoAl-LDH	13.06	12.48	-	1.05	-
Mesoporous	29.72	-	-	-	-
Co(OH) ₂					
p-CoP	22.32	-	19.21	-	1.16

Electrocatalyst	Electrolyte solution	Current density (mA cm ⁻²)	Overpotential at the corresponding Current density (mV)	Reference
p-CoP/CP	1M KOH	10	57	This work
CoP/CP	1M KOH	10	128	
Mn-Co-P/Ti	1М КОН	10	76	[1]
Zn _{0.08} Co _{0.92} P/TM	1М КОН	10	67	[2]
CoP/TM	1М КОН	10	99	
u–CoP/Ti	1М КОН	10	60	[3]
CoP nanoneedles on carbon cloth fibers	1M KOH	10	95	[4]
Fe-CoP/Ti	1М КОН	10	78	[5]
CoP ₂ /RGO	1М КОН	10	88	[6]
Ce-doped CoP/Ti	1М КОН	10	92	[7]
Ni–Co–P–300	1М КОН	10	150	[8]
CoP ₃ NAs/CFP	1М КОН	10	119	[9]
CoP NS/C	1М КОН	10	111	[10]

Table S2. Comparison of HER performance for p-CoP/CP with other CoP-related materials in 1.0 M KOH.

Electrocatalyst	Electrolyte	Current density	Overpotential at the	Reference	
	solution	(mA cm ⁻²)	corresponding Current		
			density (mV)		
p-CoP/CP	0.5M H ₂ SO ₄	10	38		
CoP/CP	0.5M H ₂ SO ₄	10	69	This work	
CoP nanowire/CC	0.5M H ₂ SO ₄	10	67	[11]	
CoP ₂ /RGO	0.5M H ₂ SO ₄	10	70	[6]	
CoP/Ti	0.5M H ₂ SO ₄	10	~75	[12]	
np-CoP NWs/Ti	0.5M H ₂ SO ₄	10	78	[13]	
CoP NA/Ti	0.5M H ₂ SO ₄	10	90	[14]	
Fe _{0.5} Co _{0.5} P	0.5M H ₂ SO ₄	10	130	[15]	
Zn _{0.08} Co _{0.92} P/TM	0.5M H ₂ SO ₄	10	39	[2]	
CoP/TM	0.5M H ₂ SO ₄	10	82	[2]	
Co ₂ P nanorods	0.5M H ₂ SO ₄	10	134	[16]	
CoP/rGO	0.5M H ₂ SO ₄	10	105	[17]	
CoP nanosheets	0.5M H ₂ SO ₄	10	56	[18]	

Table S3. Comparison of HER performance for p-CoP/CP with other CoP-related materials in 0.5 M H₂SO₄.

Table S4. Comparison of HER performance for p-CoP/CP with other non-noble-metal HER electrocatalysts in 1.0 M PBS.

Electrocatalyst	Electrolyte	Current density	Overpotential at the	Reference	
	solution	$(mA \text{ cm}^{-2})$	corresponding Current		
	Solution		density (mV)		
			density (III v)		
p-CoP/CP	1.0M PBS	10	60	This work	
CoP/CP	1.0M PBS	10	136	I nis work	
CoP nanowire/CC	1.0M PBS	10	106	[11]	
Mn-Co-P/Ti	1.0M PBS	10	86	[1]	
np-CoP NWs/Ti	1.0M PBS	10	178	[13]	
CoP NA /Ti	0.2M PBS	10	149	[14]	
MoP2 NS/CC	1.0M PBS	10	85	[19]	
NiS2/CC	1.0M PBS	10	243	[20]	
Ni3S2/Ni foam	1.0M PBS	10	170	[21]	
MoS2/Ti plate	1.0M PBS	10	200	[22]	
Co9S8/CC	1.0M PBS	10	175	[23]	
WP/CC	1.0M PBS	10	200	[24]	

References:

- 1. T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun and L. Chen, Acs Catalysis, 2017, 7.
- T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du and A. M. Asiri, Advanced Energy Materials, 2017, 7, 1700020.
- D. Zhou, L. He, W. Zhu, X. Hou, K. Wang, G. Du, C. Zheng, X. Sun and A. M. Asiri, Journal of Materials Chemistry A, 2016, 4.
- 4. P. Wang, F. Song, R. Amal, Y. H. Ng and X. Hu, Chemsuschem, 2016, 9, 472.
- 5. C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, Advanced Materials, 2017, 29.
- 6. J. Wang, W. Yang and J. Liu, Journal of Materials Chemistry A, 2016, 4, 4686-4690.
- W. Gao, M. Yan, H. Y. Cheung, Z. Xia, X. Zhou, Y. Qin, C. Y. Wong, J. C. Ho, C. R. Chang and Y. Qu, Nano Energy, 2017.
- 8. Y. Feng, X.-Y. Yu and U. Paik, Chemical Communications, 2016, 52, 1633-1636.
- 9. T. Wu, M. Pi, D. Zhang and S. Chen, Journal of Materials Chemistry A, 2016, 4, 14539-14544.
- 10. J. Chang, L. Liang, C. Li, M. Wang, J. Ge, C. Liu and W. Xing, Green Chemistry, 2016, 18, 2287-2295.
- 11. J. Tian, Q. Liu, A. M. Asiri and X. Sun, Journal of the American Chemical Society, 2014, 136, 7587-7590.
- E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Angewandte Chemie, 2014, 126, 5531-5534.
- 13. S. Gu, H. Du, A. M. Asiri, X. Sun and C. M. Li, Physical Chemistry Chemical Physics, 2014, 16, 16909.
- 14. Z. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid and X. Sun, Chemistry of Materials, 2014, 26, 4326-4329.
- 15. J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen and T. F. Jaramillo, Energy & Environmental Science, 2015, 8, 3022-3029.
- 16. Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey and C. Zhang, Nano Energy, 2014, 9, 373-382.
- 17. L. Jiao, Y.-X. Zhou and H.-L. Jiang, Chemical Science, 2016, 7, 1690-1695.
- 18. C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo and B. Zhang, Chemical Science, 2017, 8, 2769-2775.
- W. Zhu, C. Tang, D. Liu, J. Wang, A. M. Asiri and X. Sun, Journal of Materials Chemistry A, 2016, 4, 7169-7173.
- 20. C. Tang, Z. Pu, Q. Liu, A. M. Asiri and X. Sun, Electrochimica Acta, 2015, 153, 508-514.
- 21. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc, 2015, 137, 14023-14026.
- 22. J. Shi and J. Hu, Electrochimica Acta, 2015, 168, 256-260.
- L.-L. Feng, M. Fan, Y. Wu, Y. Liu, G.-D. Li, H. Chen, W. Chen, D. Wang and X. Zou, Journal of Materials Chemistry A, 2016, 4, 6860-6867.
- 24. Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS applied materials & interfaces, 2014, 6, 21874-21879.