Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

IBX as a Catalyst for Dehydration of Hydroperoxides: Green Entry to α,β-Unsaturated Ketones via Oxygenative Allylic Transposition

Tetsuya Kuga, Yusuke Sasano, and Yoshiharu Iwabuchi

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University,

6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

General Methods and Materials	S2
Optimization of Reaction Conditions	S3
Preparation of Substrates	S4
General Procedure and Characterization	S21
Mechanistic Studies	S30
Computational Details	S35
References	S43
¹ H and ¹³ C spectra	S44

General Methods and Materials

All reactions were carried out with dehydrated solvents under argon atmosphere, unless otherwise noted. Dehydrated THF and CH₂Cl₂ were purchased from Kanto Chemical Co.,Inc. Other solvents were dehydrated and distilled according to standard prorocols. Reagents were obtained from commercial suppliers and used without further purification, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (Merck Kieselgel 60 F₂₅₄). Open column chromatography was performed on Silica gel 60 N (Kanto Chemical Co.,Inc., spherical, neutral, 63-210 µm) and flash column chromatography was performed on Silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, 40-50 µm). All melting points were determined with Yazawa Micro Melting Point BY-2 and are reported uncorrected. Optical rotations were measured on a JASCO P-2200 Polarimeter at rt, using the sodium D line. IR spectra were recorded on a JASCO FT/IR-410 Fourier Transform Infrared Spectrophitimeter. ¹H-NMR (400 MHz) and ¹³C-NMR spectra (100 MHz) were recorded on JEOL JNM-AL-400 spectrometers, respectively. For ¹H-NMR spectra, chemical shifts (δ) are given from TMS (0.00 ppm) in CDCl₃ as an internal standard. Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet; br d, broad doublet; dd, double doublet; dt, double triplet). For ¹³C-NMR spectra, chemical shifts (δ) are given from ¹³CDCl₃ (77.0 ppm) as an internal standard. Mass spectra were recorded on JEOL JMS-DX303, JEOL JNM-AL500, JEOL JMS-700 and Thermo Scientific Exactive Mass Spectrometers.

1. Optimization of Reaction Conditions

Table S1. Optimization of Reaction Conditions

* Reactions ran at room temperature.

Yield was determined by ¹H-NMR analysis using mesitylene as an internal standard.

2. Preparation of Substrates

· 3-Hydroperoxycyclohex-1-ene (5a)

To a solution of cyclohexene (**1a**) (1.63 g, 19.8 mmol) in CH₂Cl₂ (30 mL) was added TPP (21 mg, 36 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 24 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (CH₂Cl₂) to afford **5a** (829 mg, 7.27 mmol, 37%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 7.86 (m, 1H), 6.02 (m, 1H), 5.76 (m, 1H), 4.50 (m, 1H), 2.11-1.91 (m, 3H), 1.80-1.55 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 134.4, 124.0, 78.4, 26.3, 25.3, 18.3; IR (neat, cm⁻¹): 3373, 3032; MS (EI): *m*/*z* 114 (M⁺), 81 (100%); HRMS (EI): calcd. for C₆H₁₀O₂ (M⁺) 114.0681, found 114.0676.

• 3-Hydroperoxy-2-methylenebutyl benzoate (5b)

(E)-2-Methylbut-2-en-1-yl benzoate (1b)

To a suspension of LiAlH₄ (460 mg, 12.1 mmol) in Et₂O (20 mL) was added a solution of ethyl tiglate (**10**) (1.28 g, 10.0 mmol) in Et₂O (10 mL) dropwise at 0 °C. After stirring for 30 min at room temperature, the mixture was quenched with 28% aqueous NH₄OH at 0 °C and filtered through Celite[®]. Solvent was removed under reduced pressure, and the residue was used in the next reaction without further purification.

To a solution of the residue in CH_2Cl_2 (20 mL) was added Et_3N (1.7 mL, 12 mmol), DMAP (24 mg, 0.20 mmol) and BzCl (1.3 mL, 11 mmol) at 0 °C. The mixture was gradually warmed up to room

temperature. After stirring for 50 min, the mixture was quenched with saturated aqueous NaHCO₃ at 0 °C and extracted with CH₂Cl₂. The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 15 : 1) provided **1b** (2.00 g, 10.5 mmol, quant.) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.6 Hz, 2 H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.43 (dd, *J* = 7.6, 7.5 Hz, 2H), 5.65 (q, *J* = 6.6 Hz, 1H), 4.71 (s, 2H), 1.74 (s, 3H), 1.67 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.5, 132.8, 130.9, 130.5, 129.6, 128.3, 124.0, 70.6, 13.7, 13.2; IR (neat, cm⁻¹): 1719, 1272, 1114, 711; MS (EI): *m*/*z* 190 (M⁺), 105 (100%); HRMS (EI): calcd. for C₁₂H₁₄O₂ (M⁺) 190.0994, found 190.0992.

3-Hydroperoxy-2-methylenebutyl benzoate (5b)

To a solution of **1b** (573 mg, 3.01 mmol) in CH₂Cl₂ (6 mL) was added TPP (3.0 mg, 4.9 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 4.5 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 10 : 1 to 4 : 1) to afford **5b** (281 mg, 1.26 mmol, 42%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 8.07 (d, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.46 (dd, *J* = 7.5, 7.5 Hz, 2H), 5.36 (s, 1H), 5.32 (s, 1H), 5.04 (d, *J* = 13.5 Hz, 1H), 4.82 (d, *J* = 13.5 Hz, 1H), 4.68 (q, *J* = 6.6 Hz, 1H), 1.34 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.7, 143.8, 133.3, 129.9, 129.7, 128.5, 115.9, 82.9, 63.6, 17.2; IR (neat, cm⁻¹): 3396, 1720, 1277, 711; MS (EI): *m*/*z* 221 (M⁺-H), 105 (100%); HRMS (EI): calcd. for C₁₂H₁₃O₄ (M⁺-H) 221.0814, found 221.0823.

· 3-Hydroperoxy-2-methylenebutyl 4-cyanobenzoate (5c)

(E)-2-Methylbut-2-en-1-yl 4-cyanobenzoate (1c)

To a suspension of LiAlH₄ (460 mg, 12.1 mmol) in Et₂O (20 mL) was added a solution of ethyl tiglate (**10**) (1.28 g, 10.0 mmol) in Et₂O (10 mL) dropwise at 0 °C. After stirring for 1.5 h at room temperature, the mixture was quenched with 28% aqueous NH₄OH at 0 °C and filtered through Celite[®]. Solvent was removed under reduced pressure, and the residue was used in the next reaction without further purification.

To a solution of the residue in CH₂Cl₂ (20 mL) was added 4-cyanobenzoic acid (1.00 g, 6.80 mmol), DCC (1.8 g, 8.7 mmol) and DMAP (16 mg, 0.13 mmol) at 0 °C. After stirring for 2 h at room temperature, the mixture was quenched with H₂O and extracted with CH₂Cl₂. The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 30 : 1 to 10 : 1) provided **1c** (1.15 g, 5.35 mmol, 79%) as a white solid.

Colorless needle (hexane): mp 50-51 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 5.66 (q, *J* = 6.7 Hz, 1H), 4.74 (s, 2H), 1.74 (s, 3H), 1.68 (d, *J* = 6.7 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.8, 134.3, 132.2, 130.3, 130.1, 125.0, 118.0, 116.3, 71.3, 13.7, 13.3; IR (neat, cm⁻¹): 1723, 1274; MS (EI): *m*/*z* 215 (M⁺), 130 (100%); HRMS (EI): calcd. for C₁₃H₁₃NO₂ (M⁺) 215.0946, found 215.0945.

3-Hydroperoxy-2-methylenebutyl 4-cyanobenzoate (5c)

To a solution of **1c** (919 mg, 4.27 mmol) in CH₂Cl₂ (8 mL) was added TPP (7.9 mg, 13 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 8 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 4 : 1) to afford **5c** (337 mg, 1.36 mmol, 32%) as a white solid.

Colorless crystal (benzene-hexane): mp 54-55 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.60 (br, 1H),

8.17 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 5.35 (s, 2H), 5.05 (d, J = 13.8 Hz, 1H), 4.88 (d, J = 13.8 Hz, 1H), 4.68 (q, J = 6.8 Hz, 1H) 1.35 (d, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 165.0, 143.2, 133.7, 132.3, 130.2, 117.8, 116.8, 116.4, 82.7, 64.3, 17.2; IR (neat, cm⁻¹): 3410, 2232, 1726, 1277, 1108; MS (EI): m/z 229 (M⁺-H₂O), 130 (100%); HRMS (EI): calcd. for C₁₃H₁₁NO₃ (M⁺-H₂O) 229.0739, found 229.0743.

· 3-Hydroperoxy-2-methylenebutyl 4-(1,3-dioxoisoindolin-2-yl)benzoate (5d)

(E)-2-Methylbut-2-en-1-yl 4-(1,3-dioxoisoindolin-2-yl)benzoate (1d)

To a solution of (*E*)-2-methylbut-2-en-1-ol³ (**11**) (272 mg, 3.16 mmol) in CH₂Cl₂ (10 mL) was added 4-phthalimidobenzoic acid⁴ (1.0 g, 3.7 mmol), DMF (5 mL), DCC (850 mg, 4.1 mmol) and DMAP (19 mg, 0.16 mmol) at 0 °C. After stirring for 3 h at room temperature, the mixture was quenched with H₂O at 0 °C and extracted with Et₂O. The combined organics were washed with brine and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 4 : 1 to 2 : 1) provide **1d** (553 mg, 1.65 mmol, 52%) as a white solid.

Colorless crystal (CH₂Cl₂-hexane): mp 110-112 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 8.7 Hz, 2H), 7.97 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.81 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 5.66 (q, *J* = 6.6 Hz, 1H), 4.74 (s, 2H), 1.74 (s, 3H), 1.68 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.8, 165.7, 135.8, 134.6, 131.7, 130.8, 130.4, 129.7, 125.9, 124.2, 123.9, 70.9, 13.7, 13.3; IR (neat, cm⁻¹): 1716, 1376, 1273; MS (EI): *m*/*z* 335 (M⁺), 250 (100%); HRMS (EI): calcd. for C₂₀H₁₇NO₄ (M⁺) 335.1157, found 335.1117.

3-Hydroperoxy-2-methylenebutyl 4-(1,3-dioxoisoindolin-2-yl)benzoate (5d)

To a solution of **1d** (553 mg, 1.65 mmol) in CH_2Cl_2 (3 mL) was added TPP (2.9 mg, 4.7 µmol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 7 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 4 : 1 to 2 : 1) to afford **5d** (185 mg, 0.505 mmol, 31%) as a white solid.

Colorless crystal (CH₂Cl₂-hexane): mp 117-118 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.84 (s, 1H), 8.21 (d, J = 8.2 Hz, 2H), 7.98 (br s, 2H), 7.82 (br s, 2H), 7.63 (d, J = 8.2 Hz, 2H), 5.37 (s, 1H), 5.34 (s, 1H), 5.05 (d, J = 13.5 Hz, 1H), 4.86 (d, J = 13.5 Hz, 1H), 4.68 (q, J = 6.4 Hz, 1H), 1.36 (d, J = 6.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.7, 165.9, 143.7, 136.3, 134.7, 131.6, 130.5, 129.0, 126.0, 124.0, 116.0, 82.9, 63.5, 17.2; IR (neat, cm⁻¹): 1717, 1373, 1274; MS (EI): m/z 349 (M⁺-H₂O), 250 (100%); HRMS (EI): calcd. for C₂₀H₁₅NO₅ (M⁺-H₂O) 349.0950, found 349.0956.

· 3-Hydroperoxy-2-methylenebutyl cinnamate (5e)

(E)-2-Methylbut-2-en-1-yl cinnamate (1e)

To a suspension of LiAlH₄ (460 mg, 12.1 mmol) in Et₂O (20 mL) was added a solution of ethyl tiglate (**10**) (1.28 g, 10.0 mmol) in Et₂O (10 mL) dropwise at 0 °C. After stirring for 1 h at room temperature, the mixture was quenched with 28% aqueous NH₄OH at 0 °C and filtered through Celite[®]. Solvent was removed under reduced pressure, and the residue was used in the next reaction without further purification.

To a solution of the residue in CH₂Cl₂ (30 mL) was added *trans*-cinnamic acid (1.48 g, 10.0 mmol), DCC (2.1 g, 10 mmol) and DMAP (120 mg, 0.98 mmol) at 0 °C. After stirring for 1 h at room temperature, the mixture was diluted with Et₂O and filtered through Celite[®]. The filtrate was washed with H₂O and brine, and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 30 : 1) provided **1e** (1.85 g, 8.56 mmol, 86%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 16.2 Hz, 1H), 7.52 (m, 2H), 7.39-7.37 (m, 3H), 6.46 (d, *J* = 16.2 Hz, 1H), 5.61 (q, *J* = 6.6 Hz, 1H), 4.60 (s, 2H), 1.71 (s, 3H), 1.66 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 168.9, 144.7, 134.5, 130.9, 130.2, 128.9, 128.1, 124.1, 118.2, 70.3, 13.7, 13.2; IR (neat, cm⁻¹): 1713, 1165; MS (EI): *m*/*z* 216 (M⁺), 131 (100%); HRMS (EI): calcd. for

 $C_{14}H_{16}O_2$ (M⁺) 216.1150, found 216.1146.

3-Hydroperoxy-2-methylenebutyl cinnamate (5e)

To a solution of **1e** (655 mg, 3.03 mmol) in CH₂Cl₂ (6 mL) was added TPP (5.9 mg, 9.6 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 8 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 10 : 1 to 8 : 1 to 4 : 1) to afford **5e** (295 mg, 1.19 mmol, 39%) as a yellow oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.98 (s, 1H), 7.75 (d, *J* = 15.9 Hz, 1H), 7.54 (m, 2H), 7.41-7.39 (m, 3H), 6.49 (d, *J* = 15.9 Hz, 1H), 5.33 (s, 1H), 5.31 (s, 1H), 4.93 (d, *J* = 13.5 Hz, 1H), 4.70 (d, *J* = 13.5 Hz, 1H), 4.65 (q, *J* = 6.8 Hz, 1H), 1.32 (d, *J* = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 167.1, 145.9, 143.9, 134.2, 130.6, 128.9, 128.2, 117.5, 115.9, 82.9, 62.8, 17.2; IR (neat, cm⁻¹): 3380, 1700, 1635, 1173; HRMS (ESI-pos): calcd. for C₁₄H₁₆O₄Na (M⁺+Na) 271.0941, found 271.0950.

· 4-Hydroperoxy-*N*,*N*,5-trimethylhex-5-enamide (5f)

N,N,5-Trimethylhex-4-enamide (1f)

To a solution of 2-methyl-3-buten-1-ol (**12**) (2.52 g, 29.3 mmol) in toluene (15 mL) was added *N*,*N*-dimethylacetamide dimethyl acetal (5.1 mL, 35 mmol) at room temperature. The mixture was heated to 180 °C in a sealed tube. After stirring for 5 h, reaction mixture was purified with column chromatography (hexane : AcOEt = 15 : 1 to 4 : 1 to 1 : 1) to afford **1f** (4.45 g, 28.6 mmol, 98%) as a yellow oil.

¹H-NMR (400 MHz, CDCl₃): δ 5.14 (br s, 1H), 3.00 (s, 3H), 2.94 (s, 3H), 2.32 (m, 4H), 1.69 (s, 3H), 1.63 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 172.7, 132.4, 123.2, 37.2, 35.3, 33.4, 25.6, 23.8, 17.6; IR (neat, cm⁻¹): 2927, 1643, 772; HRMS (ESI-pos): calcd. for C₉H₁₇NONa (M⁺+Na) 178.1202, found 178.1211.

4-Hydroperoxy-*N*,*N*,5-trimethylhex-5-enamide (5f)

To a solution of **1f** (498 mg, 3.21 mmol) in CH₂Cl₂ (6 mL)was added TPP (5.8 mg, 9.4 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 7 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 2 : 1 to 1 : 2 to 0 : 1) to afford **5f** (301 mg, 1.61 mmol, 50%) as a brown oil.

¹H-NMR (400 MHz, CDCl₃): δ 10.19 (s, 1H), 5.00 (s, 1H), 4.94 (s, 1H), 4.33 (t, *J* = 5.6 Hz, 1H), 3.02 (s, 3H), 2.99 (s, 3H), 2.46 (ddd, *J* = 16.9, 8.0, 4.3 Hz, 1H), 2.35 (ddd, *J* = 16.9, 8.0, 4.3 Hz, 1H), 2.23 (m, 1H), 2.00 (m, 1H), 1.79 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.7, 143.2, 112.8, 86.8, 37.2, 35.8, 28.2, 23.9, 19.5; IR (neat, cm⁻¹): 3253, 2938, 1626, 1403; HRMS (ESI-pos): calcd. for C₉H₁₇NO₃Na (M⁺+Na) 210.1101, found 210.1103.

· 3-Hydroperoxy-2,2,4-trimethylpent-4-en-1-yl benzoate (5g)

3-Hydroxy-2,2,4-trimethylpentyl benzoate (14)

To a solution of 2,2,4-trimethyl-1,3-pentandiol (**13**) (1.45 g, 9.92 mmol) in CH_2Cl_2 (10 mL) was added Et_3N (1.8 mL, 13 mmol), DMAP (36 mg, 0.29 mmol) and BzCl (1.4 mL, 12 mmol) at 0 °C. After stirring for 2 h, the mixture was quenched with saturated aqueous NaHCO₃, and extracted with CH_2Cl_2 . The combined organics were dried over MgSO₄. Concentration and column chromatography (hexane : AcOEt = 10 : 1) provided **14** (3.01 g, > 100%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.45 (dd, *J* = 7.5, 7.5 Hz, 2H), 4.38 (d, *J* = 10.7 HZ, 1H), 4.03 (d, *J* = 10.7 Hz, 1H), 3.37 (dd, *J* = 6.0, 2.4 Hz, 1H), 1.98 (m, 1H), 1.87 (d, *J* = 6.0 Hz, 1H), 1.07 (s, 3H), 1.05 (s, 3H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.3 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.7, 133.0, 130.3, 12.9.5, 128.4, 79.4, 71.9, 39.6, 28.8, 23.5, 22.1, 20.5, 16.8; IR (neat, cm⁻¹): 3521, 2964, 1718, 1275, 711; MS (EI): *m/z* 207 (M⁺-C₃H₇), 123 (100%); HRMS (EI): calcd. for C₁₂H₁₅O₃ (M⁺-C₃H₇) 207.1021, found 207.1027.

2,2,4-Trimethylpent-3-en-1-yl benzoate (1g)

To a solution of **14** (2.51 g, 10.0 mmol) in pyridine (20 mL) was added SOCl₂ (1.0 mL, 14 mmol) at 0 °C. After stirring for 3 h at room temperature, the mixture was quenched with H₂O and 2 M HCl, and extracted with CH₂Cl₂. The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 15 : 1 to 10 : 1) provided **1g** (750 mg, 3.23 mmol, 32%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.44 (dd, *J* = 7.3, 7.3 Hz, 2H), 5.19 (s, 1H), 4.15 (s, 2H), 1.77 (s, 3H), 1.71 (s, 3H), 1.23 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.7, 133.1, 132.8, 130.6, 130.1, 129.6, 128.3, 73.2, 36.1, 28.1, 25.9, 19.2; IR (neat, cm⁻¹): 2968, 1720, 1272, 711; MS (EI): *m*/*z* 232 (M⁺), 97 (100%); HRMS (EI): C₁₅H₂₀O₂ (M⁺) 232.1463, found 232.1455.

3-Hydroperoxy-2,2,4-trimethylpent-4-en-1-yl benzoate (5g)

To a solution of **1g** (582 mg, 2.51 mmol) in CH₂Cl₂ (5 mL) was added TPP (4.5 mg, 7.4 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 13 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 10 : 1) to afford **5g** (501 mg, 1.90 mmol, 76%) as a yellow solid.

Colorless crystal (CH₂Cl₂-hexane): mp 56-57 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 7.5 Hz, 2H), 7.98 (s, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.5, 7.5 Hz, 2H), 5.20 (s, 1H), 5.08 (s, 1H), 4.41 (s, 1H), 4.27 (d, J = 10.9 Hz, 1H), 4.08 (d, J = 10.9 Hz, 1H), 1.86 (s, 3H), 1.09 (s, 3H), 1.04 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.5, 142.3, 133.0, 130.3, 129.6, 128.4, 115.7, 92.2, 70.8, 38.7, 21.9, 21.0, 20.8; IR (neat, cm⁻¹): 3395, 2972, 1720, 1702, 1274, 712; HRMS (ESI-pos): calcd. for C₁₅H₂₀O₄Na (M⁺+Na) 287.1254, found 287.1275.

• (E)-5-Hydroperoxyoct-3-ene-1,8-diyl diacetate (5h)

Dimethyl (Z)-oct-4-enedioate (16)

To a solution of dimethyl oct-4-ynedioate⁵ (**15**) (371 mg, 1.87 mmol) in EtOH (5 mL) was added Lindlar catalyst (37 mg) at room temperature. Then the reaction flask was purged with H₂. After stirring for 1 h under H₂ atmosphere (balloon), the reaction mixture was filtered through Celite[®]. The filtrate was concentrated under reduced pressure, and the residue was purified with flash column chromatography (hexane : AcOEt = 4 : 1) to afford **16** (378 mg, 1.88 mmol, quant.) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 5.40 (m, 2H), 3.68 (s, 6H), 2.41-2.34 (m, 8H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.5, 129.0, 51.5, 34.0, 22.7; IR (neat, cm⁻¹): 1736; MS (EI): m/z 200 (M⁺), 136 (100%); HRMS (EI): calcd. for C₁₀H₁₆O₄ (M⁺) 200.1049, found 200.1030.

(Z)-Oct-4-ene-1,8-diyl diacetate (1h)

To a solution of **16** (454 mg, 2.27 mmol) in THF (11 mL) was added LiAlH₄ (206 mg, 5.4 mmol) portionwise at 0 °C. After stirring for 40 min at room temperature, the reaction mixture was quenched with 28% aqueous NH₄OH and filtered through Celite[®]. The filtrate was concentrated under reduced pressure. The residue was used next reaction without further purification.

To a solution of the residue in CH₂Cl₂ (11 mL) was added Et₃N (1.9 mL, 13.7 mmol), DMAP (14 mg, 0.12 mmol) and Ac₂O (0.86 mL, 9.1 mmol) at 0 °C. After stirring overnight at room temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ at 0 °C, and extracted with CH₂Cl₂. The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 8 : 1 to 4 : 1) provided **1h** (362 mg, 1.59 mmol, 70%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 5.40 (t, J = 4.8 Hz, 2H), 4.06 (t, J = 6.9 Hz, 4H), 2.11 (m, 4H), 2.05

(s, 6H), 1.69 (tt, J = 6.9, 6.9 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.1, 129.4, 63.9, 28.5, 23.5, 20.9; IR (neat, cm⁻¹): 1739, 1241; MS (EI): m/z 168 (M⁺-AcOH), 93 (100%); HRMS (EI): calcd. for C₁₀H₁₆O₂ (M⁺-AcOH) 168.1150, found 168.1137.

(*E*)-5-Hydroperoxyoct-3-ene-1,8-diyl diacetate (5h)

To a solution of **1h** (324 mg, 1.42 mmol) in CH₂Cl₂ (3 mL) was added TPP (2.8 mg, 4.6 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 6 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 8 : 1 to 4 : 1 to 2 : 1) to afford **5h** (314 mg, 1.21 mmol, 85%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 7.96 (s, 1H), 5.78 (dt, *J* = 15.2, 7.0 Hz, 1H), 5.50 (br dd, *J* = 15.2, 7.8 Hz, 1H), 4.32 (m, 1H), 4.16 (t, *J* = 6.6 Hz, 2H), 4.08 (t, *J* = 6.0 Hz, 2H), 2.42 (dt, *J* = 6.6, 6.0 Hz, 2H), 2.05 (s, 6H), 1.75-1.68 (m, 3H), 1.55 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.2, 171.1, 131.7, 131.1, 85.8, 64.1, 63.3, 31.8, 28.9, 24.6, 20.9; IR (neat, cm⁻¹): 3402, 2959, 1737, 1241; MS (EI): *m*/*z* 243 (M⁺-OH), 107 (100%); HRMS (EI): calcd. for C₁₂H₁₉O₅ (M⁺-OH) 243.1232, found 243.1239.

• (4-Hydroperoxycyclopent-2-ene-1,1-diyl)bis(methylene) dibenzoate (5i)

To a solution of cyclopent-3-ene-1,1-diylbis(methylene) dibenzoate⁶ (**1i**) in MeOH (6 mL) was added rose bengal (15 mg, 15 μ mol) at room temperature. The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 16 h, the reaction mixture was quenched with H₂O and extracted with Et₂O. The combined organics were washed with brine and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 4 : 1 to 2 : 1) provided **5i** (474 mg, 1.29 mmol, 42%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 8.11 (s, 1H), 8.05 (d, J = 7.3 Hz, 2H), 8.01 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.6 Hz, 2H), 7.44 (dd, J = 7.6, 7.3 Hz, 4H), 6.14 (d, J = 5.9 Hz, 1H), 6.06 (dd, J = 5.9, 2.0 Hz,

1H), 5.25 (m, 1H), 4.57 (d, J = 11.2 Hz, 1H), 4.48 (d, J = 10.7 Hz, 1H), 4.40 (d, J = 10.7 Hz, 1H), 4.33 (d, J = 11.2 Hz, 1H), 2.20 (dd, J = 14.9, 7.1 Hz, 1H), 2.13 (dd, J = 14.9, 3.2 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.6, 166.3, 139.0, 133.2, 132.1, 129.80, 129.77, 129.7, 129.6, 128.6, 128.5, 128.4, 89.4, 67.7, 67.6, 53.0, 35.0; IR (neat, cm⁻¹): 3402, 1719, 1270, 710; HRMS (ESI-pos): calcd. for. C₂₁H₂₀O₆Na (M⁺+Na) 391.1152, found 391.1177.

(1*S**,3a*R**,4*S**,7*R**,7a*S**)-1-Hydroperoxy-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoindene (5j)

To a solution of dicyclopentadiene (**1j**) (1.32 g, 10.0 mmol) in CH_2Cl_2 (20 mL) was added TPP (20 mg, 0.033 mmol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 18 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : $CH_2Cl_2 = 2 : 1$ to 0 : 1) to afford **5j** (1.07 g, 6.49 mmol, 65%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H), 5.98-5.94 (m, 2H), 5.85 (m, 1H), 5.61 (m, 1H), 4.46 (br s, 1H), 3.38 (m, 1H), 3.04 (br s, 1 H), 2.84 (br s, 1H), 2.72 (m, 1H), 1.59 (d, *J* = 9.3 Hz, 1H), 1.44 (d, *J* = 9.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 141.4, 135.4, 132.3, 129.6, 92.8, 54.4, 51.1, 48.1, 44.8, 44.6; IR (neat, cm⁻¹): 3378, 2967, 1339, 731; MS (EI): *m/z* 146 (M⁺-H₂O), 66 (100%); HRMS (EI): calcd. for C₁₀H₁₀O (M⁺-H₂O) 146.0732, found 146.0726.

• (1*S*,3*R*,5*S*)-3-Hydroperoxy-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane (5k)

To a solution of α -pinene (**1k**) (1.36 g, 10.0 mmol) in CH₂Cl₂ (20 mL) was added TPP (10 mg, 0.016 mmol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 10 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 15 : 1

to 10:1) to afford **5k** (1.12 g, 6.44 mmol, 66%) as a colorless oil.

[α]_D²⁹ = -23.3 (c = 0.51, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): δ 7.90 (s, 1H), 5.14 (s, 1H), 5.01 (s, 1H), 4.62 (d, J = 8.3 Hz, 1H), 2.50 (t, J = 5.4 Hz, 1H), 2.35 (m, 1H), 2.24 (m, 1H), 1.98-1.91 (m, 2H), 1.52 (d, J = 10.2 Hz, 1H), 1.28 (s, 3H), 0.69 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 148.5, 115.0, 80.7, 50.5, 41.2, 39.4, 30.7, 27.6, 26.0, 21.9; IR (neat, cm⁻¹): 3393, 2921, 903, 774; MS (EI): m/z 150 (M⁺-H₂O), 108 (100%); HRMS (EI): calcd. for C₁₀H₁₄O (M⁺-H₂O) 150.1045, found 150.041.

• (Z)-3-Hydroperoxycyclooct-1-ene (5l)

To a solution of cyclooctene (**1**) (1.11 g, 10.1 mmol) in CH₂Cl₂ (20 mL) was added TPP (20 mg, 0.033 mmol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 8 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : CH₂Cl₂ = 2 : 1 to hexane : AcOEt = 10 : 1 to 8 : 1) to afford **51** (449 mg, 3.16 mmol, 31%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.44 (br, 1H), 5.74 (ddt, *J* = 10.1, 1.4, 9.0 Hz, 1H), 5.61 (dd, *J* = 10.1, 7.2 Hz, 1H), 4.94 (m, 1H), 2.24-2.08 (m, 2H), 1.95 (m, 1H), 1.70-1.31 (m, 7H); ¹³C-NMR (100 MHz, CDCl₃): δ 131.3, 130.4, 83.2, 32.7, 28.7, 26.3, 26.1, 23.4; IR (neat, cm⁻¹): 3374, 2928; MS (EI): *m*/*z* 124 (M⁺-H₂O), 81 (100%); HRMS (EI): calcd. for C₈H₁₂O (M⁺-H₂O) 124.0888, found 124.0867.

• (1*R*,5*S*)-2-(Hydroperoxymethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene (5m)

To a solution of β-pinene (1m) (1.36 g, 10.0 mmol) in CH₂Cl₂ (20 mL) was added TPP (10 mg,

0.016 mmol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 12 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 15 : 1 to 10 : 1) to afford **5m** (596 mg, 3.54 mmol, 35%) as a colorless oil.

 $[\alpha]_{D}^{28} = -30.8 \ (c = 0.597, CHCl_3); (^{1}H-NMR (400 MHz, CDCl_3): \delta 7.76 (s, 1H), 5.65 (m, 1H), 4.40 (dd, <math>J = 12.1, 1.2 \text{ Hz}, 1H$), 4.35 (dd, J = 12.1, 1.5 Hz, 1H), 2.43 (ddd, J = 8.5, 5.6, 5.6 Hz, 1H), 2.33 (br s, 1H), 2.30 (br s, 1H), 2.25 (m, 1H), 2.13 (m, 1H), 1.31 (s, 3H), 1.18 (d, J = 8.8 Hz, 1H), 0.86 (s, 3H); ^{13}C -NMR (100 MHz, CDCl_3): δ 143.3, 123.9, 80.3, 43.7, 40.7, 38.0, 31.6, 31.4, 26.1, 21.1; IR (neat, cm⁻¹): 3401, 2916; MS (EI): m/z 168 (M⁺), 79 (100%); HRMS (EI): calcd. for C₁₀H₁₆O₂ (M⁺) 168.1150, found 168.1164.

• *tert*-Butyl((2-hydroperoxy-1-methylcyclohex-3-en-1-yl)methoxy)diphenylsilane (5n)

To a solution of tert-butyl((1-methylcyclohex-2-en-1-yl)methoxy)diphenylsilane⁷ (**1n**) (601 mg, 1.65 mmol) in CH₂Cl₂ (3 mL) was added TPP (3.1 mg, 5.0 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 55 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 15 : 1) to afford **5n** (169 mg, 0.426 mmol, 26%, dr 3:2) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 9.95 (m, 0.6H), 8.89 (m, 0.4H), 7.71-7.64 (m, 4H), 7.45-7.39 (m, 6H), 5.94 (br d, J = 9.8 Hz, 0.6H), 5.82-5.78 (m, 1H), 5.71 (br d, J = 10.2 Hz, 0.4H), 4.67 (br s, 0.4H), 4.17 (br d, J = 2.9Hz, 0.6H), 3.66 (br s, 1.2H), 3.60 (d, J = 9.8 Hz, 0.4H), 3.52 (d, J = 9.8Hz, 0.4H), 2.07-1.96 (m, 2H), 1.78 (m, 0.6H), 1.65-1.60 (m, 1H), 1.32 (m, 0.4H), 1.09 (s, 9H), 0.87 (s, 1.2H), 0.85 (s, 1.8H); ¹³C-NMR (100 MHz, CDCl₃): δ 135.81, 135.76, 135.7, 133.3, 133.2, 132.9, 132.8, 132.2, 129.9, 129.8, 129.74, 129.67, 127.8, 127.7, 125.4, 123.8, 84.6, 84.3, 70.9, 69.9, 38.8, 38.7, 29.8, 27.2, 27.0, 22.3, 22.2, 20.7, 19.4, 15.2; IR (neat, cm⁻¹): 3411, 2930, 2857, 1111, 702; MS

(EI): m/z 321 (M⁺-C₄H₉-H₂O), 81 (100%); HRMS (EI): calcd. for C₂₀H₂₁O₂Si (M⁺-C₄H₉-H₂O) 321.1311, found 321.1303.

·(5aR*,9aS*)-7-Hydroperoxy-3,3-dimethyl-1,5,5a,6,7,9a-hexahydrobenzo[e][1,3]dioxepine (50)

(5a*R**,9a*S**)-3,3-Dimethyl-1,5,5a,6,9,9a-hexahydrobenzo[*e*][1,3]dioxepine (10)

To a solution of $((1R^*, 2S^*)$ -cyclohex-4-ene-1,2-diyl)dimethanol⁸ (**17**) (430 mg, 3.02 mmol) in DMF (7 mL) was added 2,2-dimethoxypropane (1.85 mL, 15 mmol) and *p*-TsOH·H₂O (57 mg, 0.30 mmol) at room temperature. After stirring for 2 h, the mixture was quenched with solid K₂CO₃ and H₂O at 0 °C, and extracted with Et₂O. The combined organics were washed with H₂O and brine, and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 8 : 1) provided **10** (465 mg, 2.55 mmol, 84%) as a yellow oil.

¹H-NMR (400 MHz, CDCl₃): δ 5.60 (s, 2H), 3.62 (dd, J = 11.5, 6.3 Hz, 2H), 3.56 (br d, J = 11.5 Hz, 2H), 2.14 (m, 4H), 1.96 (br s, 2H), 1.34 (s, 3H), 1.32 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 124.9, 100.9, 64.6, 36.5, 25.22, 25.16, 25.1; IR (neat, cm⁻¹): 2938, 1218; MS (EI): m/z 182 (M⁺), 79 (100%); HRMS (EI): calcd. for C₁₁H₁₈O₂ (M⁺) 182.1307, found 182.1285.

(5a*R**,9a*S**)-7-Hydroperoxy-3,3-dimethyl-1,5,5a,6,7,9a-hexahydrobenzo[*e*][1,3]dioxepine (50)

To a solution of **1o** (366 mg, 2.01 mmol) in CH₂Cl₂ (4 mL) was added TPP (3.8 mg, 6.1 μ mol). The mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 11 h, the solvent was removed under reduced pressure and the residue was purified with flash column chromatography (hexane : AcOEt = 4 : 1) to afford **5o** (356 mg, 1.66 mmol, 83%, dr 4:1) as a yellow oil.

¹H-NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 1H), 5.89-5.83 (m, 1.8H), 5.73 (m, 0.2H), 4.60 (m, 0.2H), 4.51 (m, 0.8H), 3.98 (d, *J* = 12.1 Hz, 0.8H), .3.90 (d, *J* = 12.6 Hz, 0.2H), 3.66-3.47 (m, 3H), 2.46-2.42 (m, 1H), 2.05-1.92 (m, 3H), 1.34 (s, 3H), 1.31 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ

133.9, 125.1, 101.80, 101.75, 77.6, 77.2, 64.8, 64.6, 62.4, 61.4, 40.7, 40.6, 35.7, 32.5, 26.8, 26.1, 24.7, 24.6; IR (neat, cm⁻¹): 3330, 2941, 1372, 1219; HRMS (ESI-posi): calcd. for C₁₁H₁₈O₄Na (M⁺+Na) 237.1097, found 237.1093.

• (3aR*,7aS*)-2-Tosyl-2,3,3a,4,7,7a-hexahydro-1H-isoindole (1q)

To a solution of *cis*-1,2,3,6-tetrahydrophthalimide (**18**) (1.00 g, 6.62 mmol) in THF (20 mL) was added LiAlH₄ (1.1 g, 28 mmol) at 0 °C. The mixture was refluxed for 3 h. Then the mixture was quenched with 28% aqueous NH₄OH at 0 °C, and filtered through Celite[®]. The filtrate was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was used in the next reaction without further purification.

To a solution of the residue in CH_2Cl_2 (15 mL) was added Et_3N (1.8 mL, 13 mmol) and TsCl (1.3 g, 6.6 mmol) at 0 °C. After stirring for 1 h at room temperature, the mixture was quenched with saturated aqueous NaHCO₃ and extracted with CH_2Cl_2 . The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 8 : 1) provided a brown oil. The oil was solidified from Et_2O -hexane to afford **1q** (1.07 g, 3.87 mmol, 58%) as a light brown solid.

Colorless crystal (Et₂O-hexane): mp 69-70 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 5.31 (s, 2H), 3.38 (dd, *J* = 9.4, 6.5 Hz, 2H), 3.07 (dd, *J* = 9.4, 5.6 Hz, 2H), 2.43 (s, 3H), 2.20 (m, 2H), 2.10 (m, 2H), 1.66 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.1, 134.8, 129.8, 127.3, 124.0, 52.7, 34.3, 24.2, 21.5; IR (neat, cm⁻¹): 2887, 1340, 1160, 662; MS (EI): *m/z* 277 (M⁺, 100%); HRMS (EI): calcd. for C₁₅H₁₉NO₂S (M⁺) 277.1137, found 277.1121.

• ((1S*,2S*)-Cyclohex-4-ene-1,2-diyl)bis(methylene) dibenzoate (1r),

Cyclohept-4-en-1-yl benzoate (1t)

and Cyclohept-4-ene-1,1-diylbis(methylene) dibenzoate (1u)

These compounds were synthesized according to the literature's procedure.⁶

• (1*S**,2*S**,*Z*)-Cyclooct-5-ene-1,2-diyl dibenzoate (1v)

To a solution of $(1S^*, 2S^*, Z)$ -cyclooct-5-ene-1,2-diol⁹ (**19**) (379 mg, 2.66 mmol) in CH₂Cl₂ (10 mL) was added Et₃N (1.5 mL, 10.8 mmol), BzCl (0.77 mL, 6.7 mmol) and DMAP (10 mg, 0.082 mmol) at 0 °C. After stirring for 24 h at room temperature, the mixture was quenched with H₂O, and extracted with CH₂Cl₂. The combined organics were dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 15 : 1) provided **1v** (789 mg, 2.25 mmol, 85%) as a white solid.

Colorless crystal (CHCl₃-hexane): mp 105-106 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.0 Hz, 4H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.23 (dd, *J* = 8.0, 7.6 Hz, 4H), 5.76 (t, *J* = 4.3 Hz, 2H), 5.55 (t, *J* = 3.9 Hz, 2H), 2.55 (m, 2H), 2.34-2.18 (m, 4H), 2.04 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 165.8, 132.7, 130.1, 129.5, 129.0, 128.1, 74.3, 30.3, 22.9; IR (neat, cm⁻¹): 2939, 1719, 1281, 1115, 710; MS (EI): *m/z* 350 (M⁺), 105 (100%); HRMS (EI): calcd. for C₂₂H₂₂O₄ (M⁺) 350.1518, found 350.1514.

• 1-Tosyl-2,3,6,7-tetrahydro-1*H*-azepine (1w)

N,N-Di(but-3-en-1-yl)-4-methylbenzenesulfonamide (20)

To a solution of *p*-toluenesulfonamide (1.71 g, 10 mmol) in DMF (30 mL) was added K₂CO₃ (4.2 g, 30 mmol) and 4-bromo-1-butene (2.4 mL, 24 mmol) at room temperature. After stirring for 2

days at 60 °C, the mixture was quenched with H₂O and extracted with Et₂O. The combined organics were washed with H₂O and brine, and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 8 : 1 to 4 : 1) provided **20** (857 mg, 3.07 mmol, 31%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 5.72 (ddt, J = 17.2, 10.3, 6.9 Hz, 2H), 5.08-5.02 (m, 4H), 3.19 (t, J = 7.5 Hz, 4H), 2.42 (s, 3H), 2.30 (dt, J = 6.9, 7.5 Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.1. 137.1. 134.7. 129.6. 127.1. 117.0. 47.8. 33.2. 21.4; IR (neat, cm⁻¹): 1339, 1157; MS (EI): m/z 279 (M⁺), 238 (100%); HRMS (EI): calcd. for C₁₅H₂₁NO₂S (M⁺) 279.1293, found 279.1287.

1-Tosyl-2,3,6,7-tetrahydro-1*H*-azepine (1w)

To a solution of **20** (706 mg, 2.53 mmol) in degassed DCE (20 mL) was added Grubbs 1st catalyst (20 mg, 24 µmol) at room temperature. After stirring for 3 days at 50 °C, the mixture was concentrated under reduced pressure. The residue was purified with flash column chromatography (hexane : AcOEt = 15 : 1 to 10 : 1) to afford **1w** (567 mg, 2.26 mmol, 89%) as a white solid. Colorless needle (CH₂Cl₂-hexane): mp 65-66 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.75 (t, *J* = 3.1 Hz, 2H), 3.28 (t, *J* = 5.3 Hz, 4H), 2.42 (s, 3H), 2.31 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.0, 136.3, 130.1, 129.6, 127.0, 48.2, 29.8, 21.4; IR (neat, cm⁻¹): 1332, 1160; MS (EI): *m/z* 251 (M⁺, 100%); HRMS (EI): calcd. for C₁₃H₁₇NO₂S

(M⁺) 251.0980, found 251.0971.

3. General Procedure and Characterization

General procedure for Scheme 5

To a solution of **5b** (111 mg, 0.500 mmol) in DMSO (1 mL) was added *p*-TsOH·H₂O (9.5 mg, 0.050 mmol) and IBX (14.3 mg, 0.051 mmol) at room temperature. After stirring for 24 h at same temperature, the reaction mixture was quenched with H₂O and extracted with Et₂O. The combined organics were washed with H₂O and brine, and dried over MgSO₄. Concentration and flash column chromatography (hexane : AcOEt = 10 : 1) provided **4b** (88.8 mg, 0.435 mmol, 87%) as a white solid.

2-Methylene-3-oxobutyl benzoate (4b)

Colorless plate (Et₂O-hexane): mp 37-38 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.45 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.23 (s, 1H), 6.10 (s, 1H), 5.08 (s, 2H), 2.40 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 197.9, 165.9, 143.3, 133.1, 129.9, 129.6, 128.4, 126.4, 62.3, 25.8; IR (neat, cm⁻¹): 1723, 1676, 1273, 711; MS (EI): *m*/*z* 204 (M⁺), 105 (100%); HRMS (EI): calcd. for C₁₂H₁₂O₃ (M⁺) 204.0786, found 204.0772.

2-Methylene-3-oxobutyl 4-cyanobenzoate (4c)

Coloeless crystal (Et₂O-hexane): mp 56-57 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.0 HZ, 2H), 7.75 (d, J = 8.0 Hz, 2H), 6.27 (s, 1H), 6.12 (s, 1H), 5.10 (s, 2H), 2.42 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 197.7, 164.3, 142.9, 133.7, 132.2, 130.1, 127.2, 117.8, 116.5, 63.1, 25.7; IR (neat, cm⁻¹): 2235, 1719, 1664, 1278; MS (EI): m/z 229 (M⁺), 130 (100%); HRMS (EI): calcd. for

2-Methylene-3-oxobutyl 4-(1,3-dioxoisoindolin-2-yl)benzoate (4d)

Colorless crystal (CHCl₃-hexane): mp 155-156 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.21 (d, *J* = 8.8 Hz, 2H), 7.98 (dd, *J* = 5.5, 3.3 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.3 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2 H), 6.25 (s, 1H), 6.11 (s, 1H), 5.11 (s, 2H), 2.42 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 197.9, 166.7, 165.2, 143.3, 136.1, 134.7, 131.6, 130.5, 129.0, 126.5, 126.0, 123.9, 62.3, 25.8; IR (neat, cm⁻¹): 1714, 1669, 1384; MS (EI): *m/z* 349 (M⁺), 250 (100%); HRMS (EI): calcd. for C₂₀H₁₅NO₅ (M⁺) 349.0950, found 349.0916.

2-Methylene-3-oxobutyl cinnamate (4e)

Colorless crystal (Et₂O-hexane): mp 53-54 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 15.9 Hz, 1H), 7.53 (m, 2H), 7.40-7.38 (m, 3H), 6.48 (d, *J* = 15.9 Hz, 1H), 6.22 (s, 1H), 6.07 (s, 1H), 4.96 (s, 2H), 2.39 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.0, 166.3, 145.3, 143.4, 134.2, 130.4, 128.9, 128.1, 126.5, 117.5, 62.0, 25.8; IR (neat, cm⁻¹): 1715, 1676, 1636, 1169; HRMS (ESI-pos): calcd. for C₁₄H₁₄O₃Na (M⁺+Na) 253.0835, found 253.0845.

N,N,5-Trimethyl-4-oxohex-5-enamide (4f)

Yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 6.07 (s, 1H), 5.78 (s, 1H), 3.08-3.05 (m, 5H), 2.95 (s, 3H), 2.64 (t, J = 6.5 Hz, 2H), 1.89 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.7, 171.8, 144.2, 124.7, 37.1, 35.5, 32.6, 27.2, 17.6; IR (neat, cm⁻¹): 2930, 1702, 1634; HRMS (ESI-pos): calcd. for

C₉H₁₅NO₂Na (M⁺+Na) 192.0995, found 192.0992.

2,2,4-Trimethyl-3-oxopent-4-en-1-yl benzoate (4g)

Colorless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* =7.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.43 (dd, *J* = 7.5, 7.5 Hz, 2H), 5.43 (m, 2H), 4.45 (s, 2H), 1.92 (s, 3H), 1.36 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 208.5, 166.2, 144.0, 133.1, 129.9, 129.5, 128.4, 118.3, 71.0, 47.8, 23.0, 21.0; IR (neat, cm⁻¹): 1722, 1687, 1272, 1113, 712; MS (EI): *m/z* 246 (M⁺), 105 (100%); HRMS (EI): calcd. for C₁₅H₁₈O₃ (M⁺), 246.1256, found 246.1240.

(E)-5-Oxooct-3-ene-1,8-diyl diacetate (4h)

Colorless oil; ¹H-NMR (400 MHz, CDCl₃): δ 6.80 (dt, J = 15.9, 6.7 Hz, 1H), 6.18 (d, J = 15.9 Hz, 1H), 4.20 (t, J = 6.4 Hz, 2H), 4.10 (t, J = 6.5 Hz, 2H), 2.64 (t, J = 6.9 Hz, 2H), 2.56 (dt, J = 6.7, 6.4 Hz, 2H), 2.06 (s, 3H), 2.05 (s, 3H), 1.97 (tt, J = 6.9, 6.5 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.7, 171.0, 170.9, 142.1, 131.9, 63.7, 62.2, 36.5, 31.6, 23.0, 20.9, 20.8; IR (neat, cm⁻¹): 1739, 1239, 1039; MS (EI): m/z 242 (M⁺), 99 (100%); HRMS (EI): calcd. for C₁₂H₁₈O₅ (M⁺) 242.1154, found 242.1125.

(4-Oxocyclopent-2-ene-1,1-diyl)bis(methylene) dibenzoate (4i)

Colorless crystal (CH₂Cl₂-hexane): mp 82-83 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.2 Hz, 4H), 7.64 (d, *J* = 5.8 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.45 (dd, *J* = 7.4, 7.2 Hz, 4 H), 6.35 (d, *J* = 5.8 Hz, 1H), 4.60 (d, *J* = 11.1 Hz, 2H), 4.46 (d, *J* = 11.1 Hz, 2H), 2.55 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 206.3, 166.0, 163.2, 136.2, 133.4, 129.6, 129.3, 128.6, 66.3, 49.7, 41.6; IR (neat, cm⁻¹): 1719, 1269, 1111, 710; HRMS (ESI-pos): calcd. for C₂₁H₁₈O₅Na (M⁺+Na) 373.1046, found 373.1072.

(3aR*,4S*,7R*,7aS*)-3a,4,7,7a-Tetrahydro-1*H*-4,7-methanoinden-1-one (4j)

Colorless crystal (Et₂O-hexane): mp 45-46 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.37 (dd, J = 5.7, 2.7 Hz, 1H), 5.97-5.93 (m, 2H), 5.78 (dd, J = 5.7, 2.9 Hz, 1H), 3.41 (m, 1H), 3.23 (br s, 1H), 2.97 (br s, 1H), 2.80 (dd, J = 5.1, 5.1 Hz, 1H), 1.76 (br d, J = 8.3 Hz, 1H), 1.62 (br d, J = 8.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 210.6, 164.5, 136.9, 132.5, 132.3, 52.7, 50.2, 48.2, 45.0, 44.0; IR (neat, cm⁻¹): 2977, 1696; MS (EI): m/z 146 (M⁺, 100%); HRMS (EI): calcd. for C₁₀H₁₀O (M⁺) 146.0732, found 146.0713.

1-(Cyclohex-2-en-1-ylidene)-2-(2,4-dinitrophenyl)hydrazine (4a')

Red plate (CH₂Cl₂-hexane): mp 163-164 °C; ¹H-NMR (400 MHz, CDCl₃): δ 11.24 (br, 1H), 9.13 (d, J = 2.4 Hz, 1H), 8.31 (dd, J = 9.7, 2.4 Hz, 1H), 8.00 (d, J = 9.7 Hz, 1H), 6.45 (dt, J = 9.8, 4.7 Hz, 1H), 6.35 (d, J = 9.8 Hz, 1H), 2.61 (t, J = 6.4 Hz, 2H), 2.30 (m, 2H), 1.96 (tt, J = 6.4, 6.4 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 154.1, 144.7, 138.9, 137.8, 129.9, 129.3, 127.2, 123.4, 116.4, 24.8, 24.2, 21.0; IR (neat, cm⁻¹): 1616, 1591, 1334, 1311, 1287; MS (EI): m/z 276 (M⁺, 100%); HRMS (EI): calcd. for C₁₂H₁₂N₄O₄ (M⁺) 276.0856, found 276.0854.

(15,55)-6,6-Dimethyl-2-methylenebicyclo[3.1.1]heptan-3-one (4k)

 $[\alpha]_D{}^{29} = -50.6 \ (c = 0.577, \text{CHCl}_3) \ [lit. [\alpha]_D{}^{20} = -60.0 \ (c = 2, \text{CHCl}_3), \text{ J. Karolak-Wojciechowska et}$ al. Tetrahedron Asymm. **2006**, 17, 434.]; ¹H-NMR (400 MHz, CDCl₃): δ 5.97 (d, J = 1.5 Hz, 1H), 5.02 (d, J = 1.5 Hz, 1H), 2.77 (t, J = 5.9 Hz, 1H), 2.73-2.65 (m, 2H), 2.53 (dd, J = 19.0, 2.9 Hz, 1H), 2.21 (m, 1H), 1.37 (s, 3H), 1.31 (d, J = 10.4 Hz, 1H), 0.82 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.9, 149.1, 117.4, 48.3, 42.5, 40.8, 38.6, 32.4, 26.0, 21.5; IR (neat, cm⁻¹): 2929, 1707, 1626; HRMS (ESI-pos): calcd. for C₁₀H₁₄ONa (M⁺+Na) 173.0937, found 173.0961.

(Z)-Cyclooct-2-en-1-one (4l)

¹H-NMR (400 MHz, CDCl₃): δ 6.35 (dt, J = 12.6, 7.1 Hz, 1H), 6.01 (d, J = 12.6 Hz, 1H), 2.67 (t, J = 6.8 Hz, 2H), 2.52 (m, 2H), 1.83 (m, 2H), 1.67-1.55 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 206.0, 141.5, 132.3, 42.7, 28.5, 25.1, 23.1, 22.5; IR (neat, cm⁻¹): 2931, 1660; MS (EI): m/z 124 (M⁺), 80 (100%); HRMS (EI): calcd. for C₈H₁₂O (M⁺) 124.0888, found 124.0891.

(1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde (4m)

Yellow oil; $[\alpha]_D{}^{28} = -0.23$ (c = 0.565, CHCl₃) [lit. $[\alpha]_D = -10.7$ (neat), I. A. Dvornikova *et al. Russian J. Org. Chem.* **2007**, *43*, 352.]; ¹H-NMR (400 MHz, CDCl₃): δ 9.44 (s, 1H), 6.70 (br s, 1H), 2.87 (dd, J = 5.6, 5.6 Hz, 1H), 2.63-2.55 (m, 2H), 2.49 (ddd, J = 9.2, 5.6, 5.6 Hz, 1H), 2.19 (br s, 1H), 1.34 (s, 3H), 1.06 (d, J = 9.2 Hz, 1H), 0.75 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.2, 151.6, 147.6, 40.7, 38.1, 37.6, 33.0, 31.1, 25.7, 20.9; IR (neat, cm⁻¹): 2931, 1681; MS (EI): *m/z* 150 (M⁺), 79 (100%); HRMS (EI): calcd. for C₁₀H₁₄O (M⁺) 150.1045, found 150.1035.

6-(((*tert*-Butyldiphenylsilyl)oxy)methyl)-6-methylcyclohex-2-en-1-one (4n)

Yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.71-7.63 (m, 4H), 7.42-7.35 (m, 6H), 6.88 (dt, *J* = 9.3, 4.5 Hz, 1H), 5.94 (d, *J* = 9.3 Hz, 1H), 3.88 (d, *J* = 9.7 Hz, 1H), 3.49 (d, *J* = 9.7 Hz, 1H), 2.35 (m,

2H), 2.28 (dt, J = 13.4, 6.8 Hz, 1H), 1.83 (dt, J = 13.4, 5.3 Hz, 1H), 1.09 (s, 3H), 1.04 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 202.4, 149.1, 135.7, 135.6, 133.6, 133.4, 129.62, 129.59, 129.1, 127.6, 68.2, 47.2, 31.0, 26.8, 23.1, 19.4, 19.3; IR (neat, cm⁻¹): 2930, 2857, 1674, 1111, 702; MS (EI): m/z 321 (M⁺-C₄H₉), 81 (100%); HRMS (EI): calcd. for C₃₅H₃₀O₂Si (M⁺-C₄H₉) 321.1311, found 321.1347.

(5aR*,9aS*)-3,3-Dimethyl-1,5a,6,9a-tetrahydrobenzo[e][1,3]dioxepin-7(5H)-one (40)

Yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 6.79 (dd, J = 10.2, 4.2 Hz, 1H), 6.05 (dd, J = 10.2, 1.4 Hz, 1H), 3.82-3.76 (m, 2H), 3.70 (dd, J = 12.6, 2.9 Hz, 1H), 3.58 (dd, J = 12.6, 5.3 Hz, 1H), 2.72-2.65 (m, 2H), 2.46-2.39 (m, 2H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C-NMR (100MHz, CDCl₃): δ 199.1, 148.9, 130.4, 102.2, 63.3, 61.2, 41.2, 38.4, 38.0, 24.8, 24.7; IR (neat, cm⁻¹): 2938, 1678, 1218, 1090; MS (EI): m/z 181 (M⁺-CH₃), 166 (100%); HRMS (EI): calcd. for C₁₀H₁₃O₃ (M⁺-CH₃) 181.0865, found 181.0866.

General procedure for Scheme 6

To a solution of α -pinene (**1k**) (137 mg, 1.01 mmol) in CHCl₃ (2 mL) was added C₆₀ (6.9 mg, 9.6 μ mol) at room temperature. The mixture was stirred until almost all C₆₀ was dissolved. Then to the mixture was added DMSO (0.5 mL), *p*-TsOH·H₂O (19 mg, 0.099 mmol) and IBX (28 mg, 0.10 mmol). The reaction mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 10 h, the mixture was quenched with H₂O and extracted with Et₂O. The combined organics were washed with H₂O and brine, and dried over MgSO₄. Concentration and flash column chromatography (hexane : Et₂O = 12 : 1) provided **4k** (117 mg, 0.779 mmol, 77%) as a colorless oil.

1-(Cyclopent-2-en-1-ylidene)-2-(2,4-dinitrophenyl)hydrazine (4p')

Red crystal (CH₂Cl₂-hexane): mp 164-166 °C; ¹H-NMR (400 MHz, CDCl₃): δ 10.85 (s, 1H), 9.12 (d, *J* = 2.3 Hz, 1H), 8.29 (dd, *J* = 9.5, 2.3 Hz, 1H), 7.93 (d, *J* = 9.5 Hz, 1H), 6.86 (m, 1H), 6.44 (m, 1H), 2.81 (m, 2H), 2.72 (br t, *J* = 4.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 167.8, 149.5, 144.9, 137.7, 131.2, 129.9, 129.1, 123.6, 116.3, 31.3, 25.5; IR (neat, cm⁻¹): 1617, 1588, 1513, 1333, 1311; MS (EI): *m/z* 262 (M⁺, 100%); HRMS (EI): calcd. for C₁₁H₁₀N₄O₄ (M⁺) 262.0702, found 262.0675.

(3a*R**,7a*S**)-2-Tosyl-1,2,3,3a,4,7a-hexahydro-5*H*-isoindol-5-one (4q)

Colorless needle (CH₂Cl₂-hexane): mp 126-127 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 6.52 (dd, *J* = 10.3, 3.4 Hz, 1H), 5.89 (dd, *J* = 10.3, 1.7 Hz, 1H), 3.61 (dd, *J* = 10.3, 7.7 Hz, 1H), 3.50 (dd, *J* = 10.0, 7.7 Hz, 1H), 3.37 (dd, *J* = 10.3, 4.6 Hz, 1H), 3.06 (dd, *J* = 10.0, 7.5 Hz, 1H), 2.96 (m, 1H), 2.79 (m, 1H), 2.50 (dd, *J* = 17.0, 5.6 Hz, 1H), 2.44 (s, 3H), 2.29 (dd, *J* = 17.0, 6.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 196.4, 147.7, 143.8, 138.8, 130.3, 129.8, 127.4, 52.6, 51.3, 38.3, 37.3, 37.2, 21.5; IR (neat, cm⁻¹): 1678, 1342, 1160, 667; MS (EI): *m*/*z* 291 (M⁺), 136 (100%); HRMS (EI): calcd. for C₁₅H₁₇NO₃S (M⁺) 291.0929, found 291.0923.

((1*S**,2*S**)-5-Oxocyclohex-3-ene-1,2-diyl)bis(methylene) dibenzoate (4r)

Colorless crystal (Et₂O-hexane): mp 85-86 °C; ¹H-NMR (400 MHz, CDCl₃): δ 8.01-7.98 (m, 4H), 7.59-7.55 (m, 2H), 7.45-7.41 (m, 4H), 6.96 (dd, *J* = 10.1, 2.9 Hz, 1H), 6.17 (dd, *J* = 10.1, 2.4 Hz, 1H), 4.63 (dd, *J* = 11.5, 5.1 Hz, 1H), 4.76 (dd, *J* = 11.5, 5.3 Hz, 1H), 4.53 (dd, *J* = 11.6, 5.3 Hz, 1H),

4.42 (dd, J = 11.6, 4.8 Hz, 1H), 2.99 (m, 1H), 2.76 (dd, J = 15.8, 4.1 Hz, 1H), 2.70 (m, 1H), 2.56 (dd, J = 15.8, 10.1 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 197.5, 166.22, 166.19, 149.2, 133.34, 133.25, 130.7, 129.63, 129.58, 129.5, 128.50, 128.47, 65.8, 64.7, 39.7, 38.4, 36.5; IR (neat, cm⁻¹): 1718, 1682, 1271, 1112, 710; MS (EI): m/z 242 (M⁺-BzOH), 105 (100%); HRMS (EI): calcd. for C₁₅H₁₄O₃ (M⁺-BzOH) 242.0943, found 242.0950.

1-(Cyclohept-2-en-1-ylidene)-2-(2,4-dinitrophenyl)hydrazine (4s')

Orange plate (CH₂Cl₂-hexane): mp 137-139 °C; ¹H-NMR (400 MHz, CDCl₃): δ 11.20 (s, 0.5H), 11.17 (s, 0.5H), 9.13 (m, 1H), 8.31 (m, 1H), 8.01 (d, *J* = 9.7 Hz, 0.5 H), 7.98 (d, *J* = 11.1 Hz, 0.5H), 6.84 (dt, *J* = 12.2, 5.6 Hz, 0.5H), 6.35 (d, *J* = 12.2 Hz, 0.5H), 6.32 (d, *J* = 12.2 Hz, 0.5H), 6.14 (dt, *J* = 12.2, 5.0 Hz, 0.5H), 2.71 (t, *J* = 6.0 Hz, 2H), 2.43 (m, 2H), 1.95-1.75 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 158.0, 157.7, 144.8, 144.6, 138.1, 129.9, 129.8, 128.9, 123.5, 123.4, 120.7, 116.6, 116.5, 36.2, 31.3, 30.3, 29.7, 26.4, 26.3, 26.2, 23.3; IR (neat, cm⁻¹): 1615, 1591, 1333, 1305; MS (EI): *m/z* 290 (M⁺, 100%); HRMS (EI): calcd. for C₁₃H₁₄N₄O₄ (M⁺) 290.1015, found 290.1002.

5-Oxocyclohept-3-en-1-yl benzoate (4t)

Yellow oil; ¹H-NMR (400MHz, CDCl₃): δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.44 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.47 (dt, *J* = 12.1, 5.9 Hz, 1H), 6.13 (d, *J* = 12.1 Hz, 1H), 5.44 (m, 1H), 2.91-2.75 (m, 3H), 2.65 (ddd, *J* = 16.7, 8.9, 3.7 Hz, 1H), 2.28 (m, 1H), 2.14 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 202.4, 165.6, 139.9, 133.4, 133.1, 130.0, 129.5, 128.4, 71.6, 38.8, 34.7, 27.5; IR (neat, cm⁻¹): 1715, 1670, 1273, 1112, 711; MS (EI): *m*/*z* 230 (M⁺), 105 (100%); HRMS (EI): calcd. for C₁₄H₁₄O₃ (M⁺) 230.0943, found 230.0943.

(5-Oxocyclohept-3-ene-1,1-diyl)bis(methylene) dibenzoate (4u)

Yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 7.6 Hz, 4H), 7.58 (t, *J* = 7.6 Hz, 2H), 7.44 (dd, *J* = 7.6, 7.6 Hz, 4H), 6.65 (dt, *J* = 11.3, 7.1 Hz, 1H), 6.16 (d, *J* = 11.3 Hz, 1H), 4.37 (d, *J* = 11.1 Hz, 2H), 4.34 (d, *J* = 11.1 Hz, 2H), 2.68 (t, *J* = 5.7 Hz, 2H), 2.57 (d, *J* = 7.1 Hz, 2H), 1.90 (t, *J* = 5.7 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 202.8, 166.1, 141.8, 134.1, 133.1, 129.5, 129.4, 128.4, 67.6, 41.4, 38.6, 30.9, 25.7; IR (neat, cm⁻¹): 1719, 1670, 1269, 710; MS (EI): *m/z* 256 (M⁺-BzOH), 105 (100%); HRMS (EI): calcd. for C₁₆H₁₆O₃ (M⁺-BzOH) 256.1099, found 256.1094.

(1S*,2S*,Z)-6-Oxocyclooct-4-ene-1,2-diyl dibenzoate (4v)

Yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.95-7.51 (m, 4H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.38-7.34 (m, 4H), 6.40 (dt, *J* = 12.6, 7.2 Hz, 1H), 6.15 (d, *J* = 12.6 Hz, 1H), 5.55 (dt, *J* = 8.2, 3.1 Hz, 1H), 5.48 (dt, *J* = 8.2, 3.1 Hz, 1H), 3.05-2.90 (m, 3H), 2.73 (m, 1H), 2.38 (m, 1H), 2.24 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 202.5, 165.6, 165.5, 136.2, 133.23, 133.17, 132.8, 129.7, 129.64, 129.56, 129.5, 128.4, 128.3, 74.1, 72.1, 39.0, 31.8, 25.3; IR (neat, cm⁻¹): 1718, 1667, 1177, 711; MS (EI): *m*/*z* 242 (M⁺-BzOH), 105 (100%); HRMS (EI): calcd. for C₁₅H₁₄O₄ (M⁺-BzOH) 242.0943, found 2242.0950.

1-Tosyl-1,2,3,7-tetrahydro-4*H*-azepin-4-one (4w)

Colorless crystal (CH₂Cl₂-hexane): mp 92-93 °C; ¹H-NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.29 (dt, J = 13.0, 3.7 Hz, 1H), 6.02 (br d, J = 13.0 Hz, 1H), 4.11 (m, 2H), 3.44 (t, J = 5.8 Hz, 2H), 2.82 (t, J = 5.8 Hz, 2H), 2.44 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.6, 143.9, 139.2, 134.9, 130.9, 129.9, 127.0, 50.9, 44.2, 42.7, 21.3; IR (neat, cm⁻¹): 1660, 1337, 1159; MS (EI): m/z 265 (M⁺), 110 (100%); HRMS (EI): calcd. for C₁₃H₁₅NO₃S (M⁺) 265.0773, found 265.0771.0

4. Mechanistic Studies

4-1. Quenching Experiment of Singlet Oxygen

4-2. Trapping Experiment of Singlet Oxygen

To a solution of 9,10-dimethylanthracene (**21**) (104 mg, 0.505 mmol) in CHCl₃ (1 mL) was added C_{60} (3.9 mg, 5.2 µmol) at room temperature. The mixture was stirred until almost all C_{60} was dissolved. Then to the mixture was added DMSO (0.25 mL), *p*-TsOH·H₂O (11 mg, 0.058 mmol) and IBX (14 mg, 0.051 mmol). The reaction mixture was stirred at room temperature under O₂ atmosphere (balloon) with irradiation (100 V, 22 W fluorescent lamp). After 12 h, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (hexane : AcOEt = 8 : 1) to afford **22** with some impurities (65.3 mg, < 0.274 mmol, < 54%) as a yellow solid.

9,10-dimethyl-9,10-dihydro-9,10-epidioxyanthracene¹⁰ (22)

¹H-NMR (400 MHz, CDCl₃): δ 7.39 (m, 4H), 7.26 (m, 4H), 2.14 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 140.8, 127.4, 120.6, 79.5, 13.7; MS (EI): *m*/*z* 238 (M⁺), 209 (100%); HRMS (EI): calcd. for C₁₆H₁₄O₂ (M⁺) 238.0994, found 238.0990.

4-3. Control Experiments

These results indicated that the oxygen atom of the product **4k** should come from molecular oxygen via its incorporation into hydroperoxide **5k**. However, **5k-**¹⁶**O** or **4k-**¹⁶**O** was also detected by EI-mass spectrometry as a minor peak in all cases. We considered that contamination of ${}^{16}O_2$ in ${}^{18}O_2$ and acid catalyzed oxygen atom exchange of the enone with water (H₂¹⁶O) could generate **5k-**¹⁶**O** and **4k-**¹⁶**O**. The exchange of the oxygen atom was supported by the results shown below.

S32

5. Computational Details

All DFT calculations were performed with the Gaussian09 program.¹¹ Structure optimization and frequency calculation were carried out with the B3LYP functional¹² including Grimme's D3 dispersion correction¹³ with Becke–Johnson (BJ) damping corrections¹⁴ (abbreviated as B3LYP-D3BJ) and the def2-SVP basis set.¹⁵ Single point energy was obtained via calculation of the B3LYP-D3BJ geometries with the M06 functional¹⁶ and the def2-TZVP basis set.¹⁵ Gibbs free energy (kcal/mol) was calculated based on M06 single point energy and B3LYP-D3BJ frequency. Solvent effects were corrected by using Self-Consistent Reaction Field (SCRF) method using the Polarizable Continuum Model (PCM) model¹⁷ together with dimethyl sulfoxide (DMSO) as a solvent.

The transition state (TS) models were designed on the basis of Goddard's model for IBX-promoted alcohol oxidation (see ref. 14b in the manuscript).

Scheme S1. A six-membered transition state for the proton transfer and O–O bond cleavage step

Scheme S2. A ten-membered transition state incorporating a DMSO molecule for the proton transfer and O–O bond cleavage step

01			
0	2.17968600	-1.65405900	-1.62698200
Ι	1.99486300	-0.84443700	0.01645200
0	1.45462500	0.28860600	1.92119300
С	0.75563600	1.37407600	1.76975600
0	0.28486100	2.04958700	2.67275500
С	1.06337200	0.93630200	-0.67551300
С	0.55372500	1.76188300	0.31990900
С	-0.14652000	2.90057200	-0.08797400
С	-0.30999600	3.16249300	-1.45234100
С	0.92210400	1.15073200	-2.03897500
С	0.21856900	2.29804500	-2.42227200
Н	-0.56242700	3.56007400	0.67573100
Н	-0.85983000	4.05118000	-1.76838500
Н	1.33176300	0.43970400	-2.75963600
Н	0.07925600	2.51510900	-3.48317000
С	-4.76850900	-0.50763400	-0.17981300
С	-3.96596900	0.42427200	0.68733200
С	-2.63596500	0.34976200	0.82753700
С	-1.81280500	-0.68774200	0.11753700
С	-2.64642300	-1.86649100	-0.37201000
С	-3.88400800	-1.34853500	-1.10847000
Н	-5.50385600	0.07181900	-0.76329000
Н	-5.37095000	-1.16526700	0.47566000
Н	-4.51292100	1.20395500	1.22799800
Н	-2.09493000	1.05933000	1.45909100
Н	-1.26004500	-0.23530600	-0.72224700
Н	-2.03289300	-2.51246200	-1.01668900
Н	-2.94948000	-2.46053900	0.50675000
Н	-4.45749300	-2.18996700	-1.52608900
Н	-3.56253500	-0.73041800	-1.96501500
0	-0.81919900	-1.11654400	1.09554800
0	0.14619300	-1.88489600	0.49737700

 Table S2. Cartesian coordinates (Angstroms) for INT1

Table S3. Cartesian coordinates (Angstroms) for TS1

01			
0	-0.96195800	-1.01378800	-1.49138000
Ι	0.71673700	-1.31331100	-0.66976700
		026	
0	2.59555700	-1.34149400	0.56708700
---	-------------	-------------	-------------
С	3.09259900	-0.17872300	0.89515900
0	4.07052300	-0.01369100	1.60398100
С	1.22989300	0.74540800	-0.49857700
С	2.35473800	0.99059600	0.28118600
С	2.75001900	2.32094300	0.43888900
С	2.02577600	3.33822800	-0.19423700
С	0.49077400	1.71681700	-1.15656400
С	0.90961300	3.04291800	-0.98766900
Н	3.62472900	2.53808500	1.05465200
Н	2.33835000	4.37723500	-0.07287100
Н	-0.37553200	1.44932000	-1.76361100
Н	0.35860000	3.84637500	-1.48033500
С	-4.73208500	1.09614000	0.04880300
С	-3.48667700	1.91625800	0.25298400
С	-2.29674700	1.39853400	0.59177000
С	-2.12423200	-0.08948800	0.78812400
С	-3.42361200	-0.87029600	0.98322100
С	-4.45098000	-0.40878800	-0.05556100
Н	-5.26633900	1.44888700	-0.84999400
Н	-5.42162600	1.29812000	0.89098100
Н	-3.57673200	3.00440200	0.16423800
Н	-1.41729300	2.02286400	0.75681000
Н	-1.74486200	-0.38166100	-0.30362400
Н	-3.21210100	-1.94579000	0.88011900
Н	-3.79512700	-0.70095100	2.00902800
Н	-5.38737700	-0.97734000	0.05110900
Н	-4.05825300	-0.63571500	-1.06197100
0	-1.11672500	-0.38660300	1.62158100
0	-0.09839200	-1.72562700	1.06097500

Table S4. Cartesian coordinates (Angstroms) for INT2

01			
0	-0.84640100	-0.87348400	-2.01921700
Ι	0.46206900	-1.42539100	-0.58383800
0	2.06112400	-1.64285500	0.88324400
С	2.72818200	-0.55135800	1.20054200
0	3.58362300	-0.50627800	2.06278600
С	1.36391000	0.51273300	-0.60037700

С	2.35392200	0.64731400	0.36728400
С	2.98160300	1.88941700	0.49329700
С	2.61065200	2.93871200	-0.35348200
С	0.98121100	1.52059900	-1.47119600
С	1.62620600	2.75595300	-1.33270600
Н	3.75856400	2.01086600	1.25025900
Н	3.10051200	3.90960900	-0.25681200
Н	0.21590000	1.34937500	-2.22795600
Н	1.35469900	3.57922600	-1.99651900
С	-4.49982900	0.13325600	0.03181200
С	-3.62192900	0.97383800	-0.84474700
С	-2.44940900	1.50048500	-0.43332800
С	-1.95518900	1.34273500	0.95507100
С	-2.87947700	0.62051500	1.91713500
С	-3.74262400	-0.44188300	1.23141700
Н	-4.96016700	-0.66900500	-0.56780600
Н	-5.34458400	0.76842800	0.36490200
Н	-3.97152700	1.18175600	-1.86219900
Н	-1.84585300	2.12992500	-1.09178000
Н	-1.55808800	-0.34889300	-1.59827100
Н	-2.26603200	0.19893400	2.72560600
Н	-3.52237800	1.40063000	2.36888500
Н	-4.44870700	-0.88223500	1.95159400
Н	-3.07925000	-1.24804400	0.88294200
0	-0.89333100	1.83336400	1.30678300
0	-0.76828300	-1.42183800	0.77093500

 Table S5. Cartesian coordinates (Angstroms) for INT3

01			
0	2.38449800	-0.32081100	1.28304000
Ι	-1.27065500	-1.66276900	-0.60947500
0	-2.99736600	-0.29972600	-1.23083900
С	-3.30351300	0.65843800	-0.40959600
0	-4.17041900	1.50083000	-0.58893500
С	-1.46470700	-0.29460800	1.00459400
С	-2.47120300	0.65438000	0.85523000
С	-2.63774300	1.58123200	1.88771700
С	-1.79689000	1.53301100	3.00432000
С	-0.59947700	-0.37531500	2.08656600

С	-0.78133300	0.57111700	3.10084100
Н	-3.41996800	2.33595900	1.78958200
Н	-1.92549200	2.26111100	3.80780000
Н	0.21490800	-1.09983800	2.10458600
Н	-0.11863000	0.55990400	3.96844200
С	2.47788600	3.85064800	-0.49791200
С	1.02856600	3.85688500	-0.09115600
С	0.21289600	2.80450800	-0.23767500
С	0.68258600	1.50244200	-0.81697400
С	1.95723500	1.65527300	-1.63964500
С	2.98608400	2.44058900	-0.82176900
Н	3.08725500	4.30766500	0.30040800
Н	2.60079400	4.51597400	-1.37397900
Н	0.63380500	4.77833600	0.35008400
Н	-0.82831100	2.84964100	0.09093100
Н	0.85409000	0.76163000	-0.01843400
Н	2.33705100	0.66074600	-1.91626600
Н	1.71379700	2.19298700	-2.57192400
Н	3.94479500	2.49290500	-1.36069900
Н	3.16807800	1.89158800	0.11655200
0	-0.41841200	1.01194800	-1.63877800
0	-0.21904900	-0.30934600	-1.94606900
0	0.19593700	-2.57988600	0.03262300
С	3.09326800	-2.89122700	1.04441800
S	2.96846000	-1.27144600	0.22777300
С	4.75233600	-0.89267000	0.19071100
Н	2.06137000	-3.24538500	1.14954100
Н	3.67303100	-3.57663500	0.41014900
Н	3.57360800	-2.74452900	2.02208200
Н	5.27293700	-1.63277500	-0.43350500
Н	4.85766000	0.10857200	-0.24654000
Н	5.13111000	-0.90024400	1.22262100

Table S6. Cartesian coordinates (Angstroms) for TS2

01			
0	2.47102900	-0.24147000	0.88145800
Ι	-1.27230500	-1.72498100	-0.30720900
0	-2.50487600	-0.44698600	-1.79597600
С	-2.97272900	0.66925300	-1.33905800

0	-3.61556400	1.49345100	-1.97766900
С	-1.91813700	-0.03794800	0.82485500
С	-2.67063100	0.89992500	0.12985400
С	-3.09494400	2.02976100	0.83561900
С	-2.74993800	2.17875700	2.18381700
С	-1.55173000	0.06507800	2.15761600
С	-1.98117400	1.20895600	2.84226200
Н	-3.68366600	2.78289300	0.30894100
Н	-3.07935200	3.06494000	2.73016300
Н	-0.95032600	-0.71773200	2.62534100
Н	-1.71366000	1.34182000	3.89250600
С	2.74324400	3.82244800	0.01467400
С	1.38462200	3.53007300	0.59503400
С	0.65094400	2.45612100	0.26321300
С	1.14064100	1.43249500	-0.72103600
С	2.34815000	1.87397200	-1.56399300
С	3.36371200	2.60275800	-0.67857300
Н	3.41575200	4.19233800	0.80772200
Н	2.65072000	4.66289100	-0.70037500
Н	0.96793800	4.25663600	1.30126600
Н	-0.33401200	2.28720100	0.69925600
Н	1.64238000	0.62595800	0.03210200
Н	2.80089800	0.99093400	-2.04296600
Н	1.99300600	2.53629200	-2.37306800
Н	4.23987700	2.90559800	-1.27295300
Н	3.72137000	1.89902500	0.09011800
0	0.16968500	0.82593600	-1.41436800
0	0.28757800	-0.88252100	-1.19128200
0	-0.40671700	-2.56611800	1.09504800
С	2.69316500	-2.88199200	1.04507200
S	3.00728500	-1.43094400	0.02193000
С	4.80484200	-1.30282200	0.19580200
Н	1.59608000	-2.95269400	1.11593800
Н	3.11802300	-3.76074500	0.53971700
Н	3.15018400	-2.72188000	2.03107700
Н	5.26462000	-2.18493900	-0.27102700
Н	5.11157100	-0.39188900	-0.33433800
Н	5.05487200	-1.23689300	1.26311500

01			
0	1.95655100	-0.94703400	-0.65704000
Ι	-1.56510800	-1.60809300	-0.25190500
0	-2.81226500	-0.16555500	-1.55468600
С	-2.96213200	1.03692000	-1.09802600
0	-3.52598800	1.95627200	-1.67768000
С	-1.72242600	0.18287900	0.90380100
С	-2.40262800	1.23024100	0.29707100
С	-2.55648300	2.41052800	1.02880300
С	-2.04047800	2.49727600	2.32615700
С	-1.20155800	0.22223900	2.18934600
С	-1.37057400	1.41200200	2.90770700
Н	-3.08207000	3.24691600	0.56464400
Н	-2.16313100	3.42091200	2.89568100
Н	-0.69413000	-0.64704700	2.61003600
Н	-0.97730100	1.48970000	3.92329300
С	3.83435000	2.47844500	0.15459100
С	2.57785700	2.42522000	0.97275800
С	1.35639100	2.21011700	0.44812000
С	1.14169600	2.06514800	-1.00458000
С	2.36020500	2.26344700	-1.88985100
С	3.66030800	1.82061000	-1.21708100
Н	4.65796900	2.00514700	0.71521600
Н	4.13092800	3.54060000	0.04540200
Н	2.67295600	2.57814400	2.05371200
Н	0.46778500	2.16272600	1.07785800
Н	0.65701700	-1.14705000	-1.24322400
Н	2.18130300	1.73915500	-2.84006600
Н	2.39906700	3.34505000	-2.12356100
Н	4.52342700	2.04530700	-1.86233000
Н	3.61316900	0.73028900	-1.08464600
0	0.03096200	1.86656400	-1.47586900
0	-0.29583800	-1.24656000	-1.67971200
0	-0.42992500	-2.46509800	0.92992500
С	2.41823500	-1.45616100	1.91442800
S	2.49264200	-2.10823200	0.23020800
С	4.28491200	-2.03617100	-0.02466900
Н	1.35079200	-1.44761600	2.15879900

 Table S7. Cartesian coordinates (Angstroms) for INT4

H 2 8/175600 _0 //297200 1 9	
11 2.04173000 -0.44237200 1.3	1365800
Н 4.75819700 -2.79423300 0.6	1521200
Н 4.45853900 -2.27099400 -1.08	3280300
Н 4.64978300 -1.02836200 0.2	1440600

6. References

(1) M. S. Yusubov, D. Y. Svitich, A. Yoshimura, V. N. Nemykin, V. V. Zhdankin *Chem. Commun.* **2013**, *49*, 11269.

- (2) M. Uyanik, M. Akakura, K. Ishihara J. Am. Chem. Soc. 2009, 131, 251.
- (3) E. Jecs, S. T. Diver Org. Lett. 2015, 17, 3510.
- (4) L. M. Lima, P. Castro, A. L. Machado, C. A. M. Fraga, C. Lungnier, V. L. G. de Moraes, E. J. Barreiro *Bioorg. Med. Chem.* **2002**, *10*, 3067.
- (5) I. Volchkov, D. Lee. J. Am. Chem. Soc. 2013, 135, 5324.
- (6) S. Nagasawa, Y. Sasano, Y. Iwabuchi Angew. Chem. Int. Ed. 2016, 55, 13189.
- (7) S. Pichlmair, M. de Lera Ruiz, K. Basu, L. A. Paquette Tetrahedron 2006, 62, 5178.
- (8) G. L. Adams, P. J. Carroll, A. B. Smith III J. Am. Chem. Soc. 2013, 135, 519.
- (9) O. R. Cromwell, J. Chung, Z. Guan J. Am. Chem. Soc. 2015, 137, 6492.
- (10) W. Ding, L.-Q. Lu, Q.-Q. Zhou, Y. Wei, J.-R. Chen, W.-J. Xiao J. Am. Chem. Soc. 2017, 139, 63.
- (11) Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- (12) (a) A. D. Becke, J. Chem. Phys. **1993**, 98, 5648–5652. (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. **1988**, 37, 785–789.
- (13) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- (14) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- (15) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- (16) Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215–241.
- (17) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.

7. ¹H and ¹³C spectra

十

82.926 77.321 77.000 76.679

62.795

17.151

117.459

17//

134.191 -130.562 -128.940 -128.199 -

145.878

167.103 -

200

PPM

0

auto

170.980

142.141 131.928

198.732 -

71

63.651 62.235

36.458 31.652

77.321 77.000 76.679

auto

auto

