Supporting Information

Stepwise Chelation-Etching Synthesis of Carbon-Confined Ultrafine

SnO₂ Nanoparticles for Stable Sodium Storage

Yuanjie Zhang,^a Jiashen Meng,^a Xuanpeng Wang,^a Xiong Liu,^a Xiaoming Xu,^a Ziang Liu,^a Kwadwo Asare Owusu,^a Congyun Huang,^b Qi Li*^a and Liqiang Mai*^a

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.

^bSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China.

Experimental

Preparation of CoSn(OH)₆ nanocubes

1.40 g tin chloride pentahydrate (SnCl₄·5H₂O) was dissolved in 20 mL H₂O to obtain a homogeneous light red solution (named as solution A). 0.9517 g cobalt chloride hexahydrate (CoCl₂·6H₂O) and 1.1864 g sodium citrate dihydrate (Na₃C₆H₅O₇·2H₂O) were dissolved in 120 mL H₂O to obtain a homogeneous solution (named as solution B). 1.60 g sodium hydroxide (NaOH) was dissolved in 20 mL H₂O to obtain a homogeneous solution (named as solution C). Solution A was added into solution B, forming a light pink turbid liquid; then solution C was added dropwise followed by stirring for 1 h. Finally, pink CoSn(OH)₆ powder was obtained after washing and drying in oven at 70 °C for 12 h.

Preparation of CoSn(OH)6@polydopamine nanocubes

336 mg CoSn(OH)₆ powder and 406.5 mg tris(hydroxymethyl)aminomethane was dissolved in 330 mL H₂O to obtain a light pink turbid liquid, then diluted hydrochloric acid was added to the light pink CoSn(OH)₆ turbid liquid dropwse until the pH value reached 8.5. 100.8 mg dopamine hydrochloride powder was dissolved in 6 mL H₂O, forming colorless solution; then it was added to the light pink CoSn(OH)₆ turbid liquid followed by stirring for 24 h. Finally, the greyish-black CoSn(OH)₆@polydopamine powder was obtained after washing and drying in oven at 70 °C for 12 h.

Preparation of CoSnO₃@NC nanocubes

The as-prepared $CoSn(OH)_6$ @polydopamine powder was annealed at 500 °C (3 °C min⁻¹) under the nitrogen atmosphere for 1 h. Then, the black $CoSnO_3$ @NC powder was obtained.

Preparation of SnO₂@NC nanocubes

75 mg CoSnO₃@NC composite (0.3mmol, based on the molar of Co) and a certain amount of ethylenediaminetetraacetic acid (EDTA) were added to 70 mL H₂O and stirred under sonication for 10 min. Then the black turbid liquid was transferred into 100 mL Teflon-lined sealed autoclave and maintained at 120 °C for 12 h. Afterward, the autoclave was cooled down to room temperature naturally and the samples were washed with distilled water 6 times. The final products were dried at 70 °C for 12 h in an oven. SnO₂@NC-1, SnO₂@NC-1.2, SnO₂@NC-1.5, SnO₂@NC-2 respectively correspond to the product obtained when the additive amount of EDTA is 87.67 mg (0.3 mmol, M_{CoSnO3}:M_{EDTA}=1:1), 105.2 mg (0.36 mmol, M_{CoSnO3}:M_{EDTA}=1:1.2), 131.5 mg (0.45 mmol, M_{CoSnO3}:M_{EDTA}=1:1.5), 175.34 mg (0.6 mmol, M_{CoSnO3}:M_{EDTA}=1:2).

Characterization

The crystallographic information of the final products were measured using a Bruker D8 Discover X-ray diffractometer (XRD) equipped with a Cu-K α radiation source; the samples were scanned over a 2 θ range from 20° to 80° at room temperature. Scanning electron microscope (SEM) images were collected using a JEOL-7100F SEM. Transmission electron microscope (TEM) and high-resolution TEM (HRTEM) images were collected using a JEM-2100F TEM. The Brunauer-Emmett-Teller (BET) specific surface area was calculated from nitrogen adsorption isotherms measured at 77 K using a Tristar-3020 instrument. Energy-dispersive X-ray spectra (EDS) was recorded using an Oxford IE250 system. X-ray photoelectron spectroscopy (XPS) measurements were performed using a VG MultiLab 2000 instrument. Thermogravimetric analysis (TGA) was performed using a Netzsch STA 449 C simultaneous analyzer under an air flow with a temperature ramp of 10 °C min⁻¹. Raman spectra was obtained using a Renishaw INVIA micro-Raman spectroscopy system. Fourier transform infrared spectroscopy (FTIR) was recorded using a Thermo

Nicolet Nexus instrument. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was performed using an Optima 4300DV instrument.

Electrochemical measurements

Typical 2016 coin cells were assembled in an argon-filled glovebox with moisture and oxygen concentrations below 1.0 ppm. Sodium foil was used as the counter electrode and a solution of NaClO₄ (1 M) in EC: DMC = 1:1 (Vol %) with 5 wt.% FEC was used as the electrolyte. The anode was composed of a grinded mixture of 70 wt.% active material, 20 wt.% acetylene black and 10 wt.% carboxymethylcellulose. Copper foil was used as the current collectorq. Galvanostatic charge/discharge measurements were performed using a multichannel battery testing system (LAND CT2001A). Cyclic voltammograms (CV, 0.01-3 V) and electrochemical impedance spectra (EIS) were collected using an Autolab potentiostat/galvanostat. Specific capacities were calculated based on the mass of active material. The mass loading of each electrode was 1-1.5 mg cm⁻².

Fig. S1 (a) XRD pattern, (b, c) SEM images of the initial product CoSn(OH)₆.

Fig. S2 (a) XRD pattern (b) TG curves and (c, d) TEM images of CoSnO₃@NC.

Fig.S3 SEM images of SnO₂@NC-1 (a), SnO₂@NC-1.2 (b), SnO₂@NC-1.5 (c), SnO₂@NC-2 (d).

Tab. S1 ICP	results	of SnO ₂ @NC-1.
-------------	---------	----------------------------

	Gauged molar concentration (mmol g ⁻¹)	Ratio (Sn/Co)	
Со	0.143	10.2	
Sn	1.478	10.5	

Fig. S4 TG curves of SnO₂@NC.

Fig.S5 N₂ adsorption-desorption isotherms of $CoSnO_3@NC$ (a), $SnO_2@NC-1$ (b), $SnO_2@NC-1.2$ (c), $SnO_2@NC-1.5$ (d) and $SnO_2@NC-2$ (e), respectively. The inserted pictures are the corresponding BJH pore size distribution plots; (f) BET specific surface area of $CoSnO_3@NC$ and $SnO_2@NC$ and corresponding most probable distribution of pore diameter.

Fig. S6 Digital photo of colour change during the process: (a) aqueous solution after adding all the agents except NaOH; (b) aqueous turbid liquid of as-prepared $CoSn(OH)_6$; (c) aqueous turbid liquid of $CoSn(OH)_6$ @polydopamine; (d) aqueous turbid liquid of $CoSnO_3$ @NC; (e) supernatant after EDTA chelating $CoSnO_3$ @NC.

Fig. S7 Fourier transform infrared spectroscopy of EDTA and the aubergine chelate of $SnO_2@NC-1.2$ after chelation.

Fig. S8 Raman spectrum of SnO₂@NC-1.2.

Fig. S9 XPS analysis of $SnO_2@NC-1.2$: (a) the survey spectrum, (b) XPS Sn 3d spectra, (c) high-resolution spectrum of N 1s, (d) C 1s spectrum.

Fig. S10 Charge–discharge profiles of (a) $SnO_2@NC-1$ and (b) $SnO_2@NC-1.5$ at a current density of 50 mA g⁻¹ respectively.

Fig. S11 Cyclic voltammetry curves at 0.1 mV s⁻¹ sweep rate of $SnO_2@NC-1.2$ electrode for the first three cycles.

Fig. S12 Rate performance of (a) $SnO_2@NC-1$ and (b) $SnO_2@NC-1.5$ at various current densities, respectively.

Fig. S13 Nyquist plots of $SnO_2@NC$ electrode after 80 cycles at a current density of 1000 mA g⁻¹.

Fig. S14 SEM images of (a, b) $SnO_2@NC-1$, (c, d) $SnO_2@NC-1.2$ and (e, f) $SnO_2@NC-2$ electrode after 80 cycles at a current density of 1000 mA g⁻¹.

Fig. S15 Cycling performance and coulombic efficiency of $SnO_2@NC-1.2$ at a current density of 200 mA g⁻¹.

Fig. S16 Cycling performance and coulombic efficiency of $SnO_2@NC-1.2$ at a current density of 2000 mA g⁻¹. (The electrode was activated at a current density of 50 mA g⁻¹ for the first three cycles.)

Fig. S17 (A, B, C) SEM images and (D) XRD pattern of $ZnSn(OH)_6$, (E, F, G) SEM images and (H) XRD pattern of the obtained SnO_2 .

Materials	SnO ₂	R low ^{a)}	R high ^{b)}	C ^{c)}	Ref
	conten				
	t	-1			
	wt.%	$mA h g^{-1}/A g^{-1}$	mA h g ⁻¹ /A g ⁻¹	mA h g ⁻¹ /A g ⁻¹ /cycle	
SnO ₂ /nitrogen-doped graphene	47	339/0.02	170/0.64	246/0.08/100	1
Amorphous SnO ₂ /graphene aerogel	50.7	576.2/0.05	84.4/0.8	380.2/0.05/100	2
SnO ₂ /CNT	72	630.4/0.1	324.1/1.6	223.2/1.6/300	3
SnO ₂ /graphene	80	512/0.05	34/0.5	220/0.1/100	4
SnO ₂ –Graphene DualAerogel	70	448/0.05	184/1	221/0.2/200	5
SnO₂@3D graphene	71.5	551/0.05	210/0.8	432/0.1/200	6
Mesoporous NiO/SnO₂@rGO	74.6	No data	No data	254.8/0.05/40	7
Triple-walled SnO ₂ @N-doped carbon@SnO ₂ nanotubes	70.4	586/0.025	320/0.4	492/0.025/50	8
SnO ₂ -carbon	60	459/0.08	133/5.12	371/0.08/200	9
Ultrafine SnO ₂ –RGO	76.4	480/0.05	125/1	330/0.1/150	10
Carbon/SnO ₂ /carbon cloth	No data	501/0.134	394/6.7	314/0.134/100	11
$AI_2O_3/SnO_2/carbon cloth$	No data	455/0.134	245/6.7	377/0.134/100	11
Mesoporous Sn/SnO ₂	No data	500/0.05	209.8/1	372.3/0.05/50	12
Hollow SnO ₂ /SnS ₂	No data	497.8/0.3	245.4/2.5	485.6/0.3/100	13
Sn ₂ Nb ₂ O ₇ /SnO ₂ @3D carbon nanocomposites	60.38	302/0.1	135/5	210/1/500 300/0.1/100	14
SnO ₂ /3D graphene	75	321/0.08	266/1.2	223/0.08/350	15
Mesoporous ultrafine SnO ₂ @N- dopped carbon	76.4	560/0.05	236/2 180/5	255.4/1/1000 385/0.2/35	This work

Table S2. Summary of the representative SnO_2 -based anode materials for SIBs.

a) Rate performance at low current density; b) rate performance at high current density; c) cycling performance.

References

- 1. X. Xie, D. Su, J. Zhang, S. Chen, A. K. Mondal and G. Wang, *Nanoscale*, 2015, **7**, 3164-3172.
- L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes and X. Sun, *Adv. Energy Mater.*, 2016, 6, 1502057.
- 3. J. Cui, Z. Xu, S. Yao, J. Huang, J. Huang, S. Abouali, M. A. Garakani, X. Ning and J. Kim, *J. Mater. Chem. A*, 2016, **4**, 10964-10973.
- 4. H. Lai, B. Feng, Y. Jiang, N. Shi, C. Liang, S. Chang, S. Guo, B. Cui and H. Cao, *Mater. Lett.*, 2016, **166**, 292-295.
- 5. Z. Li, J. Ding, H. Wang, K. Cui, T. Stephenson, D. Karpuzov and D. Mitlin, *Nano Energy*, 2015, **15**, 369-378.
- L. Pei, Q. Jin, Z. Zhu, Q. Zhao, J. Liang and J. Chen, *Nano Res.*, 2014, 8, 184-192.
- 7. Y. He, A. Li, C. Dong, C. Li and L. Xu, *Chem. Eur. J.*, 2017, **23**, 13724–13733.
- 8. J. Yue, W. Wang, N. Wang, X. Yang, J. Feng, J. Yang and Y. Qian, *J. Mater. Chem. A*, 2015, **3**, 23194-23200.
- 9. J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzov and D. Mitlin, *J. Mater. Chem. A*, 2015, **3**, 7100-7111.
- Y. Wang, Y. Lim, M. Park, S. Chou, J. Kim, H. Liu, S. Dou and Y. Kim, J. Mater. Chem. A, 2014, 2, 529-534.
- 11. Y. Liu, X. Fang, M. Ge, J. Rong, C. Shen, A. Zhang, H. A. Enaya and C. Zhou, *Nano Energy*, 2015, **16**, 399-407.
- 12. D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song and D. Wang, *Eur. J. Inorg. Chem.*, 2016, **13-14**, 1950-1954.
- 13. K. Wang, Y. Huang, X. Qin, M. Wang, X. Sun and M. Yu, *ChemElectroChem*, 2017, 4, 1-7.
- 14. P. Zhai, J. Qin, L. Guo, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, J. Li and C. He, *J. Mater. Chem. A*, 2017, **5**, 13052-13061.
- 15. J. Lee, J. Song, Y. Cha, S. Fu, C. Zhu, X. Li, Y. Lin and M. Song, *Nano Res.*, 2017, 1-17.