Supporting Information for

A self-template synthesis of defect-rich WS₂ as highly efficient electrocatalyst for

hydrogen evolution reaction

Ying Ling^a, Zehui Yang^{a*}, Quan Zhang^a, Yunfeng Zhang^a, Weiwei Cai^{a*} and Hansong

Cheng^a

^aSustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China

University of Geosciences Wuhan, China

E-mail: yeungzehui@gmail.com; willcai1985@gmail.com

Experimental Section

Preparation of WS₂: Firstly, AMT (0.97 g) was dissolved to deionized water (15 mL). The compound was stirred for 10 min to form a transparent, homogeneous solution at room temperature. According to the ratio of W:S=1:10, 17 mL of ammonium thiosulphate solution (8 wt%) was added. The resultant solution was heated to 70 °C for 1 h. After cooling to the room temperature, 270 mL of hydrochloric acid is slowly added to generate H₂S gas. The reaction was terminated until the solution turned to reddish brown. The resultant solution was centrifuged three times and the precipitation was placed in a blower dryer at 50 °C for 5 h. The precursor was ground into a uniform grain size of powder and placed in the tube furnace with Ar/H₂ flow for 30 min. After changing to air flow (60 mL min⁻¹), the precursor was heated to 450 °C (600 °C or 750 °C) for 4 h (5 °C min⁻¹). The WS₂ template was obtained. Finally, the pure WS₂ nanosheets can be obtained by removing the WO₃ template with 0.1 M NaOH solution.

Electrochemical measurements: The HER performance was measured in 0.5 M H_2SO_4 electrolyte based on a three-electrode cell, in which glass carbon electrode, carbon rod and saturated calomel electrode were used as working, counter and reference electrodes, respectively. 5 µL of catalyst ink were casted onto a glassy carbon electrode with a diameter of 3 mm, and the catalyst loading was 0.283 mg cm⁻². LSV curve was recorded with a scan rate of 5 mV s⁻¹ and CV was carried out with 50 mV s⁻¹ ranging from -0.3 to 0.2 V versus RHE. EIS was measured from 100 kHz to 0.01 Hz by VMP3 potentiostat (Bio-Logic Science Instruments).

Figure S1 TGA curve of WS₂ precursor.

Figure S2 XRD patterns of (a) WS_2 precursor at 750 °C and (b) WO_3 at 350 °C. Dissolution test in 0.1 M NaOH of WO_3 and $W_{18}O_{49}$ was inserted.

Figure S3 XPS survey scan of WS₂-450, WS₂-600 and WS₂-750 electrocatalysts.

Figure S4 (a) N_2 adsorption-desorption isotherms of WS₂ templates and (b) pore size distributions of WS₂ templates (b) prepared at 450 °C, 600 °C and 750 °C.

Figure S5 SEM images of (a) WS₂-450, (b) WS₂-600 and (c) WS₂-750 with low

magnification.

Figure S7 (a) LSV and (b) capacitive current@0.16 V versus RHE as a function of scan rate for of WS₂-400 (CV curves recorded in N₂-saturated 0.5 M H_2SO_4 electrolyte with different scan rates from 20 mV s⁻¹ to 180 mV s⁻¹ were inserted).

Figure S8 Cyclic voltammetry curves of (a) WS_2 -450, (b) WS_2 -600 and (c) WS_2 -750 recorded in N₂-saturated 0.5M H₂SO₄ electrolyte before durability test with different scan rates from 20 mV s⁻¹ to 180 mV s⁻¹.

Figure S9 Amount of hydrogen theoretically calculated and experimentally measured

versus time for WS_2 -450 in 0.5 M H_2SO_4 electrolyte.

Figure S10 (a) TEM image and (b) XRD patterns of WS_2 -450 after durability test.