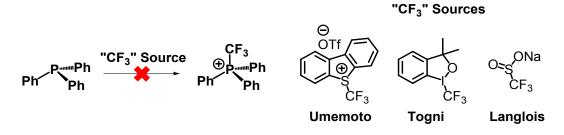
Supporting Information for:

Air- and water-stable Lewis acids: synthesis and reactivity of *P*-trifluoromethyl electrophilic phosphonium cations

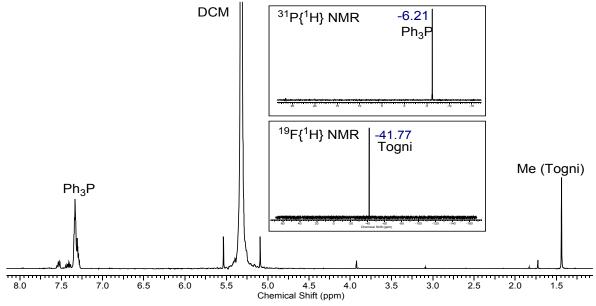
V. Fasano, J. H. W. LaFortune, J. M. Bayne, M. J. Ingleson*and D. W. Stephan*

* michael.ingleson@manchester.ac.uk School of Chemistry, University of Manchester, M139PL, U.K. * dstephan@chem.utoronto.ca Department of Chemistry, University of Toronto, M5S3H6, Canada

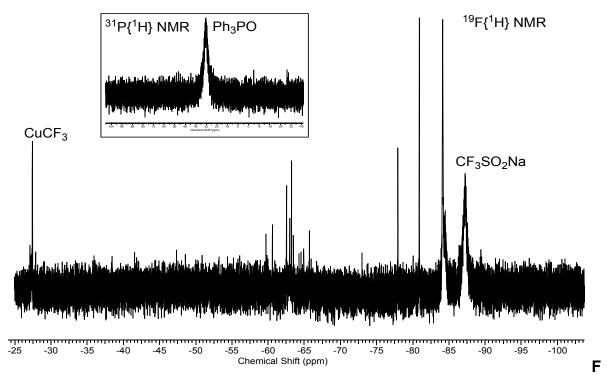

Table of Contents

1. General Remarks	S2
2. Attempted trifluoromethylations of phosphines	S3
2.1 Electrophilic / radical trifluoromethylation	S3
2.2 Nucleophilic trifluoromethyltion	S4
3. Catalyst synthesis	S7
3.1 Synthesis of Ph ₂ PCF ₃	S7
3.2 Synthesis of [1][OTf]	S7
3.3 Synthesis of [1][BArF]	S10
3.4 Synthesis of [2][OTf]	S13
4. Stability tests	S16
4.1 Water addition	S16
4.2 Phenol addition	S17
4.3 Phenol/PhNH ₂ addition	S18
4.4 Water/PhNH ₂ addition	S19
4.5 HCl addition	S21
5. Hydride ion affinity calculations	S22
6. Hydrodefluorination reactions	S29
7. Dehydrosilylation of alcohols	S33
8. C=O reductions	S37
9. Imine reductions	S46
10. H/D silane-scrambling	S48
11. Mukaiyama aldol reactions	S49
12. Crystallographic details of [1][OTf], [1][BArF], [2][OTf]	S50
13. References	S52

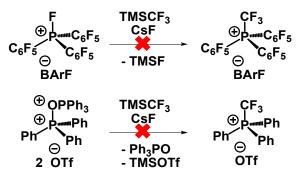
1. General Remarks


Unless otherwise indicated all manipulations were conducted under inert nitrogen 5-(Trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate atmosphere. 1-Trifluoromethyl-1,2-benziodoxol-3-(1H)-one (Umemoto's reagent), (Togni's reagent), sodium triflinate (Langlois reagent), Ph₃P, Ph₂POPh, TMSCF₃, CsF and all the reagents for the catalysis screening were purchased from commercial sources and used as received unless otherwise stated. Tris(pentafluorophenyl)fluorophosphonium tetrakis(pentafluorophenyl)borate $[(C_6F_5)_3PF][BArF]^1$ triphenylphosphonium anhydride trifluoromethane sulfonate (Hendrickson reagent)² and [K][BArF]³ were synthesized in accordance with the literature. Dichloromethane, d_2 -dichloromethane, d-chloroform were dried over CaH₂ and distilled and degassed before use. Solvents for column chromatography were of technical grade and used without further purification. Column chromatography was performed on silica gel (230-400 mesh). NMR spectra were recorded with a Bruker AV-400 spectrometer (400 MHz ¹H; 100 MHz ¹³C; 128 MHz ¹¹B; 376 MHz ¹⁹F; 79 MHz ²⁹Si, 162 MHz ³¹P). ¹H NMR chemical shifts are reported in ppm relative to protio impurities in the deuterated solvents and ¹³C NMR chemical shifts using the solvent resonances unless otherwise stated. ¹¹B NMR spectra were referenced to external BF₃:Et₂O, ¹⁹F to Cl₃CF, ²⁹Si to Si(CH₃)₄ and ³¹P to 85% H₃PO₄). Coupling constants J are given in Hertz (Hz), while the multiplicity of the signals are indicated as "s", "d", "t", "q", "pent", "sept" or "m" for singlet, doublet, triplet, quartet, pentet, septet or multiplet, respectively. Mass spectra were recorded on a Waters QTOF mass spectrometer.

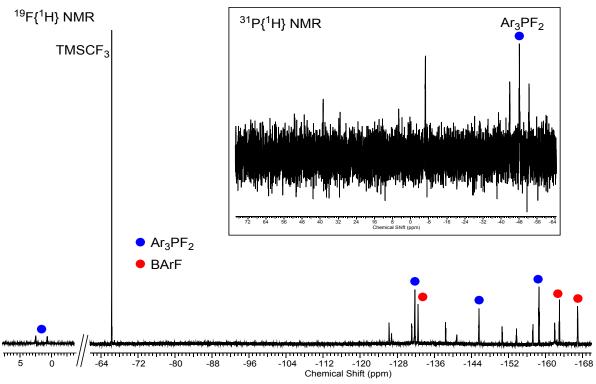
Attempted trifluoromethylations of phosphines Electrophilic / radical trifluoromethylation


Umemoto's: the use of Umemoto's reagent was found to be unsuccessful under a range of conditions (this is consistent with already reported by Umemoto and co-workers).⁴

Togni's: under inert atmosphere, in a J. Youngs NMR tube, Ph_3P (15 mg, 0.06 mmol, 1.5 eq.) was dissolved in anhydrous DCM (0.5 mL), followed by the addition of 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole (13 mg, 0.04 mmol, 1.0 eq.). After heating the reaction mixture at 60°C for 18 hours, no significant reactivity was observed.


Figure S1. In situ ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reaction between Ph_3P and Togni's reagent in anhydrous DCM after 18 h at 60°C.

Langlois's: under inert atmosphere, in a J. Youngs NMR tube, Ph_3P (10 mg, 0.04 mmol, 1.0 eq.), sodium triflinate (19 mg, 0.12 mmol, 3.0 eq.) and CuCl (4 mg, 0.04 mmol, 1.0 eq.) were dissolved in anhydrous DCM (0.5 mL), followed by the addition of a 5.5 M solution of tert-butyl hydroperoxide in nonane (35 µL, 0.20 mmol, 5.0 eq.). After heating the reaction mixture at 60°C for 1 hours, although some CuCF₃ was observed (thus suggesting CF₃ radical formation), Ph_3P was oxidized to Ph_3PO .



igure S2. In situ ${}^{31}P{}^{1}H$ and ${}^{19}F{}^{1}H$ -NMR spectra of the reaction with Ph₃P, CF₃SO₂Na, CuCl and TBHP in anhydrous DCM after 1 h at 60°C.

2.2 Nucleophilic trifluoromethylation

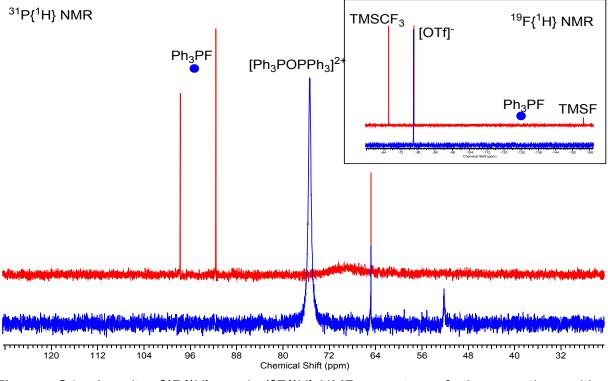

[(C₆F₅)₃PF][BArF]: Under inert atmosphere, in a J. Youngs NMR tube, [(C₆F₅)₃PF][BArF] (49 mg, 0.04 mmol, 1.0 eq.) was dissolved in anhydrous DCM (0.5 mL), followed by the addition of TMSCF₃ (9 µL, 0.06 mmol, 1.5 eq.) and CsF (3 mg, 0.02 mmol, 0.5 eq.). After inverting the reaction mixture at R.T. for 18 hours, (C₆F₅)₃PF₂ was observed; the high fluorophilicity of the starting phosphonium sequestered the fluoride preventing TMSCF₃ activation, while in absence of CsF no reaction was observed at R.T.). Diagnostic peaks: ³¹P{¹H} NMR δ = -48.1 ppm (t, ¹J_{P-F} = 695 Hz) and ¹⁹F{¹H} NMR δ = 1.60 ppm (d, ¹J_{P-F} = 695 Hz), in accordance with those reported in the literture.¹

Figure S3. In situ ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reaction with $[(C_6F_5)_3PF][BArF]$, TMSCF₃ and CsF in anhydrous DCM, after 18 h at R.T.

[Ph₃POPPh₃][OTf]₂: Under inert atmosphere, in a vial Ph₃PO (45 mg, 0.16 mmol, 2.0 eq.) was dissolved in anhydrous DCM (0.5 mL), followed by the addition of Tf₂O (14 µL, 0.08 mmol, 1.0 eq.). After 10 minutes at R.T., a white solid was formed (³¹P/¹⁹F NMR analysis revealed full conversion of Ph₃PO to [Ph₃POPPh₃][OTf]₂).² Then, to the reaction mixture TMSCF₃ (25 µL, 0.17 mmol, 2.1 eq.) and CsF (25 mg, 0.16 mmol, 2.0 eq.) were added. After leaving the reaction mixture stirring at R.T. for 4 hours, Ph₃PF was detected as major species with minimal TMSCF₃ activation observed). Diagnostic peaks: ³¹P{¹H} NMR δ = 94.7 ppm (d, ¹J_{P-F} = 996 Hz) and ¹⁹F{¹H} NMR δ = -128.0 ppm (d, ¹J_{P-F} = 996 Hz), in accordance with those reported in the literature.⁵

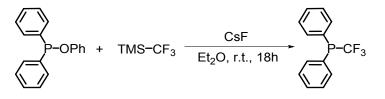
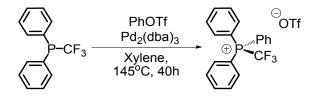

Note: in the $[Ph_3POPPh_3][OTf]_2$ formation, the small peaks at 65 ppm and 52 ppm are related to the coordination of one or two $[OTf]^-$ to the dication, respectively.²

Figure S4. In situ ${}^{31}P{}^{1}H$ and ${}^{19}F{}^{1}H$ -NMR spectra of the reaction with $[Ph_3POPPh_3][OTf]_2$, TMSCF₃ and CsF in anhydrous DCM, after 18 h at R.T.


3. Catalyst synthesis

3.1 Synthesis of diphenyl(trifluoromethyl)phosphine (Ph₂PCF₃)

Under anhydrous conditions, an ampoule was charged with diphenyl phenoxy phosphine (2.40 g, 8.45 mmol, 1.00 eq.) and caesium fluoride (0.76 g, 4.75 mmol, 0.56 eq.) in distilled Et₂O (15 mL), followed by the addition of trifluoromethyl trimethylsilane (1.90 mL, 12.70 mmol, 1.50 eq.). The ampoule was sealed and the solution stirred at room temperature for 18 hours. The obtained orange solution was then filtered and the solvent removed. The resulting crude oil was purified by flash chromatography on silica gel (100%) hexane). vielding diphenyl(trifluoromethyl)phosphine as a colourless oil (1.83 g, 7.2 mmol, 85%). $R_f =$ 0.22. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.65 (m, 4H), 7.40-7.52 (m, 6H) ppm. ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 2.57 ppm (q, J = 73.2 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -55.1 ppm (d, J = 72.7 Hz). The results are in accordance with those reported in the literature.⁶

3.2 Synthesis of triphenyl(trifluoromethyl)phosphonium trifluoromethanesulfonate ([1][OTf])

Under anhydrous conditions. an ampoule was charged with tris(dibenzylideneacetone)dipalladium(0) (0.12 g, 0.12 mmol, 0.05 eq.) in distilled xylene (1 mL), followed by the addition of phenyltriflate (1.01 mL, 6.11 mmol, 2.50 eq.) and diphenyl(trifluoromethyl)phosphine (0.50 mL, 2.45 mmol, 1.00 eq.). The ampoule was sealed and the solution stirred at 145°C for 40 hours. Upon heating, a dark orange solution with a whitish precipitate was found. The solvent was removed under vacuum and the crude left was washed with hexane. The solid left was dissolved in DCM and filtered . The obtained orange solution was concentrated and а recrystallization in DCM/hexane was performed twice to obtain triphenyl(trifluoromethyl)- phosphonium trifluoromethanesulfonate [1][OTf] as a pale brown solid after the removal of the solvent (1.00 g, 2.08 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.97-8.12 (m, 3H), 7.72-7.95 (m, 12H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.0 (d, J = 2.9 Hz), 134.8 (d, J = 11.7 Hz), 131.6 (d, J = 13.7 Hz), 109.6 (d, J = 86.1 Hz) ppm (the trifluoromethyl carbons could not be detected). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 27.5 ppm (q, J = 92.3 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -58.2 ppm (d, J = 92.3 Hz), -78.2 (s) ppm. Elemental analysis for C₂₀H₁₅F₆O₃PS: calcd C 50.01 H 3.15, found C 50.20 H 3.37. HRMS (MS ESI+) for [1]⁺: *m*/*z* 331.0856 (calcd 331.0858).

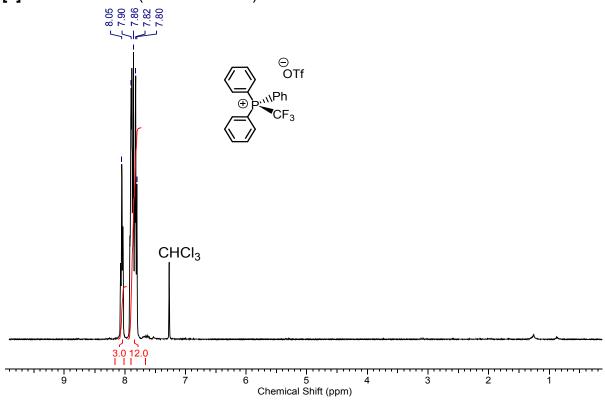


Figure S5. ¹H-NMR spectrum of [1][OTf] in dried CDCl₃.

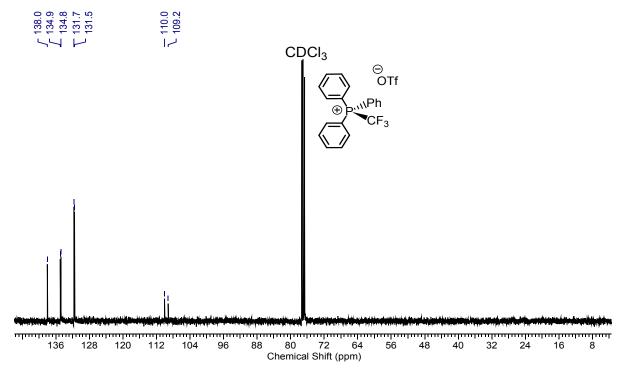
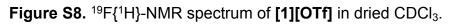
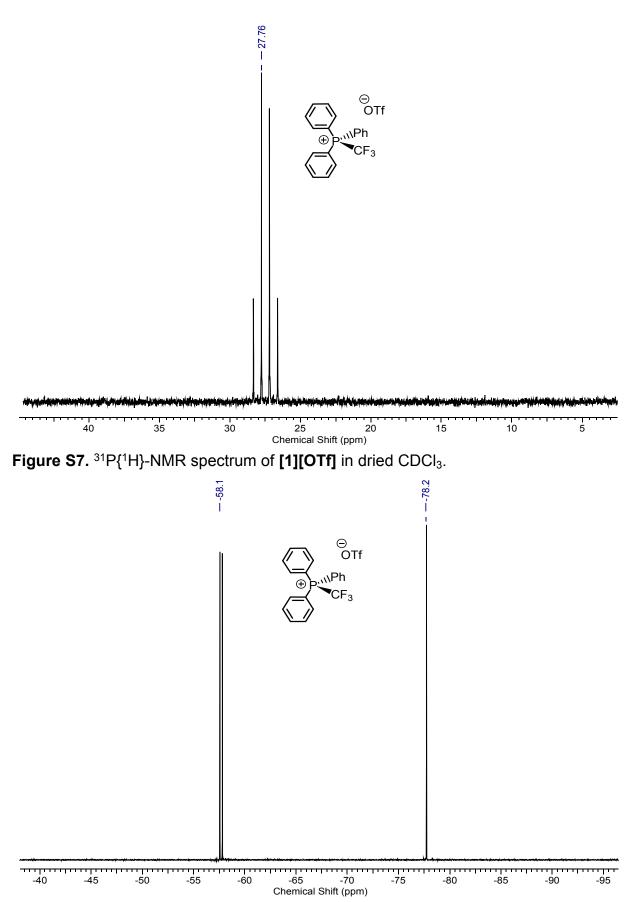
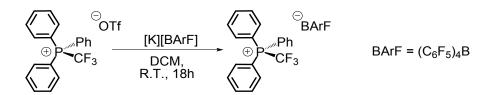





Figure S6. ¹³C{¹H}-NMR spectrum of [1][OTf] in dried CDCl₃.

3.3 Synthesis of triphenyl(trifluoromethyl)phosphonium tetrakis(pentafluorophenyl)borate ([1][BArF])

Under anhydrous conditions, in a 20 mL vial potassium tetrakis(pentafluorophenyl)borate (329 mg, 0.46 mmol, 1.10 eg.) was dissolved in distilled DCM (15 mL), followed by the addition of [1][OTf] (200 mg, 0.42 mmol, 1.00 eq.). The vial was sealed and the light brown suspension was stirred at ambient temperature for 18 hours. The resultant suspension was filtered over celite. The obtained solution was precipitated with hexane, decanted, and dried under vacuum. The crude left was washed with hexane and dried under vacuum. The obtained solid was recrystallized in DCM/hexane, providing [1][BArF] as a light brown solid (371 mg, 0.37 mmol, 88%). ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.76 (m(br), 6H), 7.81 (m(br), 6H), 8.03 ppm (m(br), 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 109.7 (d, *J* = 86.5 Hz), 124.0 (m,(br)), 131.8 (d, J = 13.7 Hz), 134.6 (d, J = 10.9 Hz), 136.3 (d(br), J = 240 Hz), 138.2 (d(br), J = 240 Hz), 138.4 (d, J = 3.3 Hz), 148.2 ppm (d(br), J = 238 Hz) (the trifluoromethyl carbon). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ 27.5 ppm (g, J = 94.8 Hz). ¹⁹F{¹H} NMR (470 MHz, CDCl₃): δ -58.0 ppm (d, J = 95.4 Hz), -132.6 (s), -163.1 (t, J= 20.5 Hz), -166.9 ppm (t, J = 16.0 Hz). ¹¹B{¹H} NMR (160 MHz, CDCl₃) δ -16.7 ppm (s). Elemental analysis for $C_{43}H_{15}BF_{23}P$: calcd C 51.12 H 1.50, found C 51.66 H 1.60.

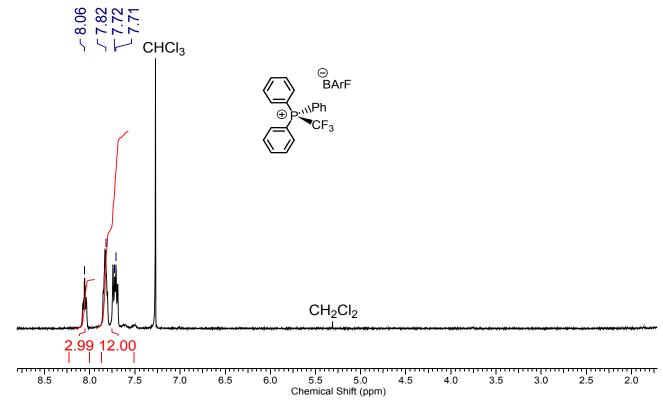


Figure S9. ¹H-NMR spectrum of [1][BArF] in dried CDCl₃.

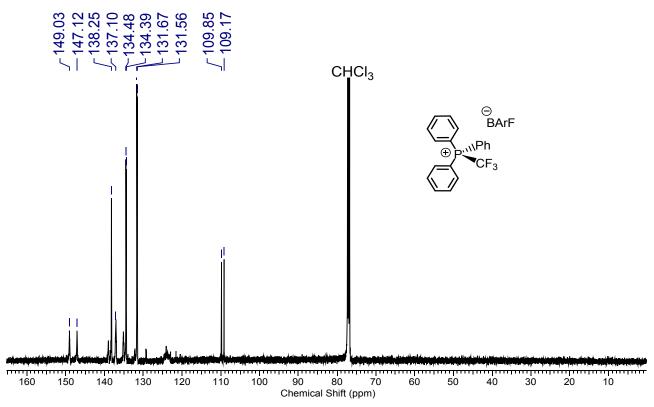


Figure S10. ¹³C{¹H}-NMR spectrum of [1][BArF] in dried CDCl₃.

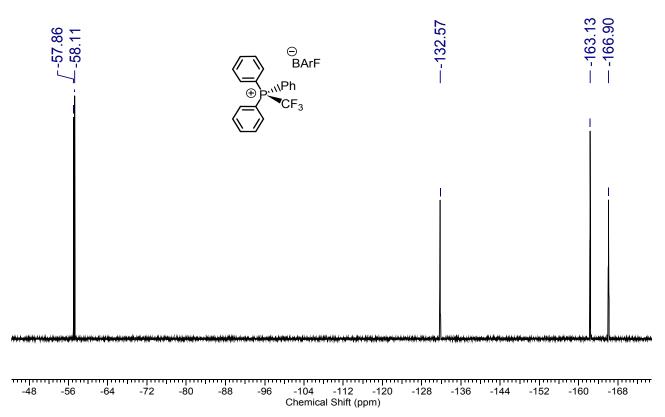


Figure S12. ¹⁹F{¹H}-NMR spectrum of [1][BArF] in dried CDCl₃.

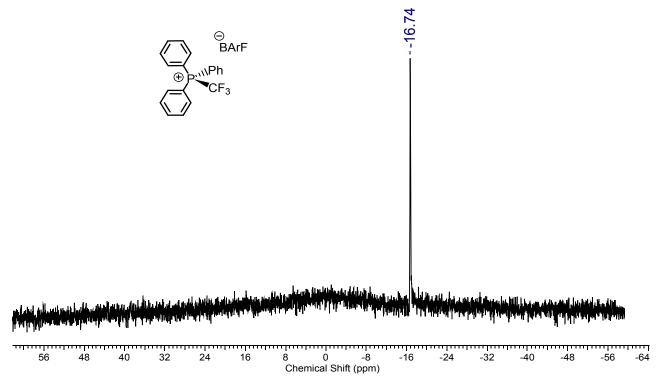
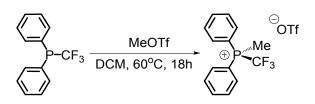



Figure S13. ¹¹B{¹H}-NMR spectrum of [1][BArF] in dried CDCl₃.

3.4. Synthesis of methyldiphenyl(trifluoromethyl)phosphonium trifluoromethanesulfonate ([2][OTf])

Under anhydrous conditions, an ampoule was charged with diphenyl(trifluoromethyl)phosphine (250 µL, 1.22 mmol, 1.00 eq.) in distilled DCM (3 mL), followed by the addition of methyltriflate (155 µL, 1.34 mmol, 1.10 eq.). The ampoule was sealed and the solution stirred at 60°C for 18 hours. Then, the solvent and the excess of the MeOTf were removed under vacuum, obtaining methyldiphenyl(trifluoromethyl)phosphonium trifluoromethanesulfonate [2][OTf] as a white powder (440 mg, 1.05 mmol, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.87-8.10 (m, 6H), 7.70-7.86 (m, 4H), 3.09 (d, J = 14.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 137.3 (d, J = 3.4 Hz), 133.9 (d, J = 11.2 Hz), 131.1 (d, J = 13.7 Hz), 110.5 (d, J = 86.6 Hz), 3.9 (d, J = 50.9 Hz) ppm (the trifluoromethyl carbons could not be detected). ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CDCl₃): δ 29.6 ppm (q, J = 92.3 Hz). ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃): δ -62.9 ppm (d, *J* = 92.3 Hz), -78.5 (s) ppm. Elemental analysis for C₁₅H₁₃F₆O₃PS: calcd C 43.07 H 3.13, found C 42.82 H 3.07. HRMS (MS ESI+) for [2]+: m/z 269.0728 (calcd 269.0701).

Note: MeOTf is a strong methylating agent (use it in a fumehood at all times and quench it with $NaOH_{(aq.)}$ solution).

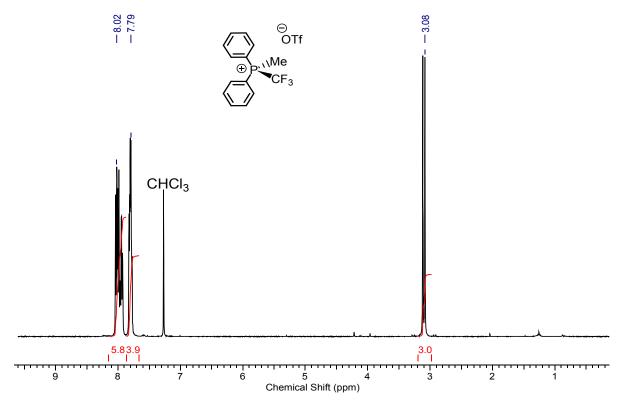


Figure S14. ¹H-NMR spectrum of [2][OTf] in dried CDCl₃.

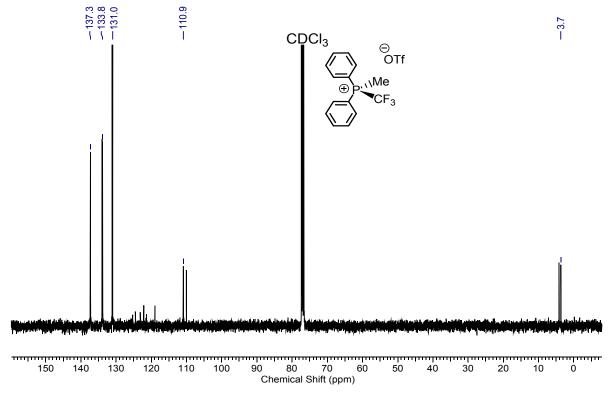
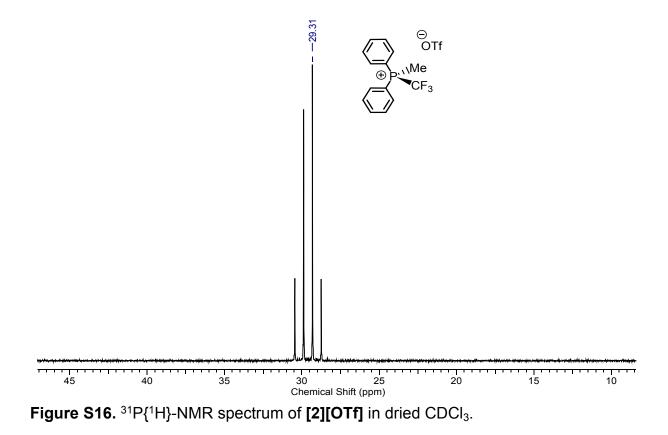
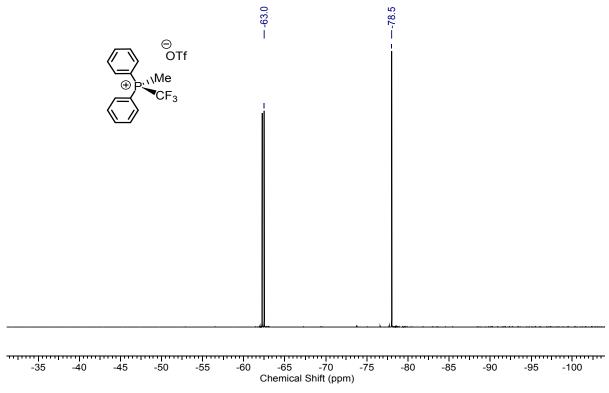
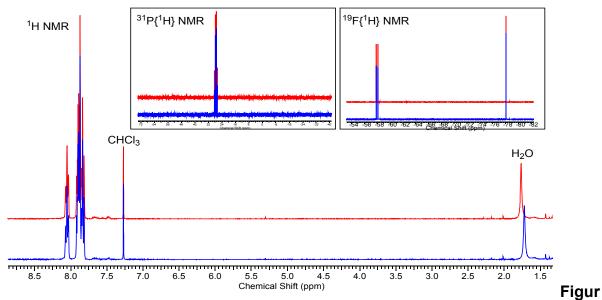



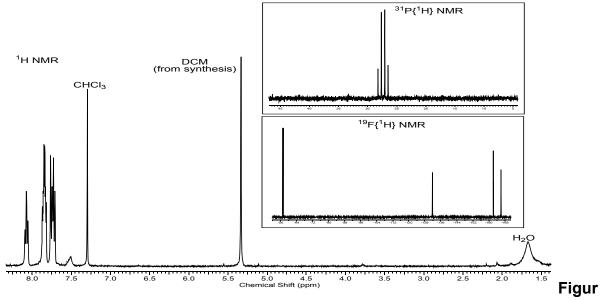
Figure S15. ¹³C{¹H}-NMR spectrum of [2][OTf] in dried CDCl₃.



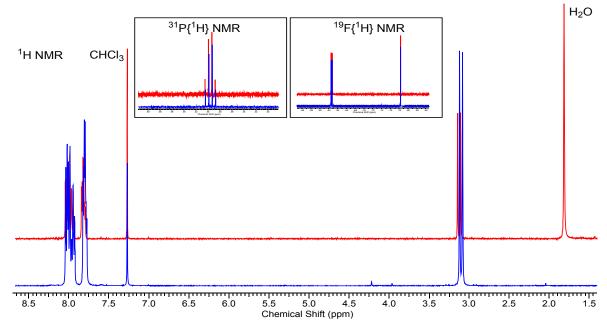

Figure S17. ¹⁹F{¹H}-NMR spectrum of [2][OTf] in dried CDCl₃.

4. Stability test

General procedure: in a J. Young NMR tube the catalyst was dissolved in $CDCI_3$ (0.05 mL), followed by the addition of ROH (R = H, Ph). The system was then heated in an oil bath (see figure captions for the temperatures) and analysed by multinuclear NMR analysis. In the absence of added water, the solutions were made under inert atmosphere with dried $CDCI_3$ (0.5 mL). When aniline was involved in the test, it was added after ROH.


4.1 Water addition

[1][OTf] (9 mg, 1 eq.) + H₂O (4 µL, > 10 eq.).

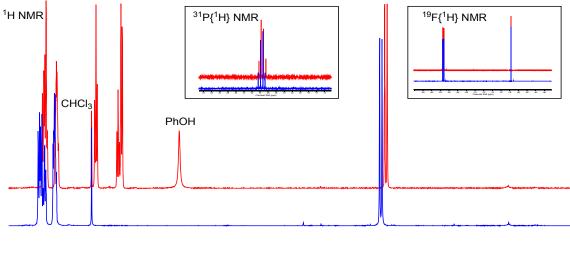

e S18. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of [1][OTf] with water in CDCl₃. Blue (after 5 min), red (after 18h at 60°C).

[1][BArF] (10 mg, 1 eq.) + H₂O (4 µL, > 10 eq.) in CDCl₃ (0.5 mL).

e S19. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of [1][BArF] with water in CDCl₃ after 18h at 100°C.

[2][OTf] (8 mg, 1 eq.) + H₂O (4 µL, > 10 eq.) in CDCl₃ (0.5 mL).

Figure S20. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[2][OTf]** with water in CDCl₃. Blue (under anhydrous conditions), red (with water after 18h at 60°C). Note: no significant shift is noted when water is added to the system, indicating a very low degree of water coordination.


4.2 Phenol addition

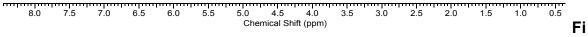
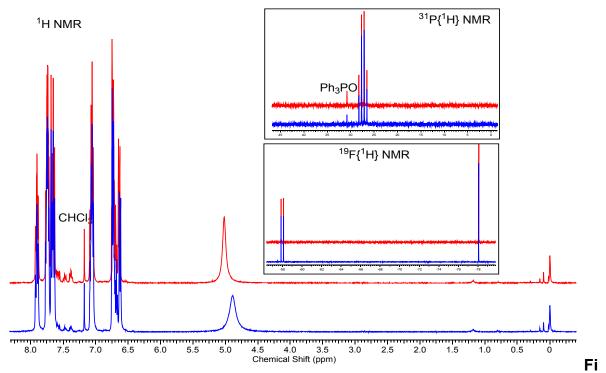
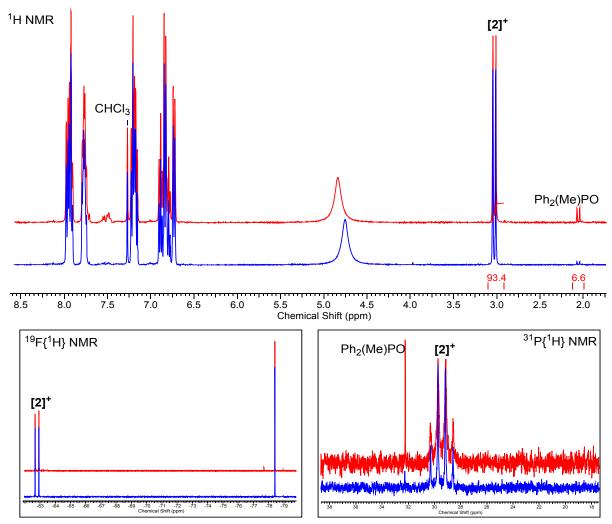

[1][OTf] (15 mg, 1 eq.) + PhOH (3 mg, 1 eq)

Figure S21. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[1][OTf]** with PhOH in CDCl₃. Blue (before PhOH addition), red (after 5 hours at 60°C from PhOH addition). Note: minimal shift is noted when PhOH is added to the system, indicating a very low degree of PhOH coordination.

[2][OTf] (10 mg, 1 eq.) + PhOH (3 mg, 1 eq.)




gure S22. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[2][OTf]** with PhOH in CDCl₃. Blue (before PhOH addition), red (after 10 min from PhOH addition). Note: minimal shift is noted when PhOH is added to the system, indicating a very low degree of PhOH coordination.

4.3 Phenol / PhNH₂ addition

[1][OTf] (15 mg, 1 eq.) + PhOH (3 mg, 1 eq.) + PhNH₂ (3 µL, 1 eq.)

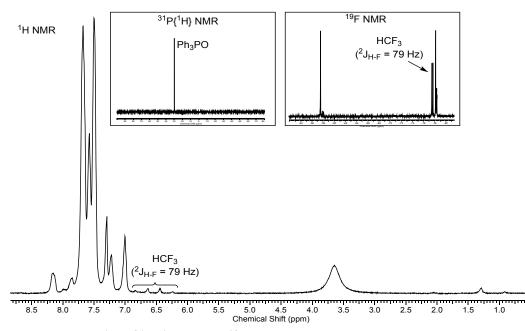
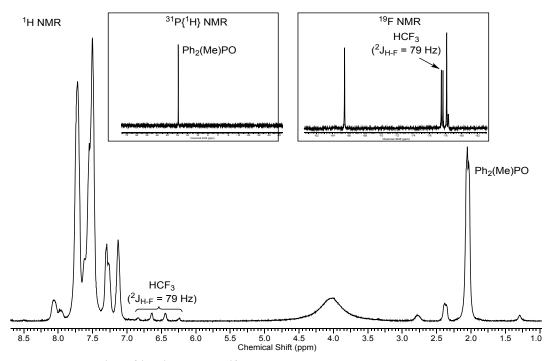

gure S23. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[1][OTf]** with PhOH / PhNH₂ in CDCl₃. Blue (after 5 min), red (after 18h at 60°C). Small Ph₃PO formation is observed on heating most likely due to trace water present in phenol/aniline. **[2][OTf]** (10 mg, 1 eq.) + **PhOH** (3 mg, 1 eq.) + **PhNH₂** (2 μ L, 1 eq.) in CDCl₃ (0.5 mL).

Figure S24. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[2][OTf]** with PhOH / PhNH₂ in dried CDCl₃. Blue (after 5 min), red (after 18h at 60°C). Note: small Ph₂(Me)PO formation (~ 7%) is observed on heating most likely due to trace water present in phenol/aniline.


4.4 Water/ PhNH₂ addition

[1][OTf] (24 mg, 1 eq.) + H_2O (1 µL, 1 eq.) + $PhNH_2$ (5 µL, 1 eq.). After 5 min upon mixing, effervescence was noted, along with white solid formation. NMR analysis revealed HCF₃ (¹H δ = 6.6 ppm, q, ²J_{H-F} = 79 Hz; ¹⁹F δ = -77.8 ppm, d, ²J_{H-F} = 79 Hz) and Ph₃PO (³¹P δ = 29.9 ppm (s)) as major products. The data are in accordance for those reported in the literature.⁷ Note: due to [PhNH₃]⁺ formation, the δ ³¹P value for Ph₃PO is slightly downfield due to the H-bonding effect.

Figure S25. ¹H, ³¹P{¹H} and ¹⁹F-NMR spectra of **[1][OTf]** with H_2O / PhNH₂ in CDCl₃, after 5 min at R.T.

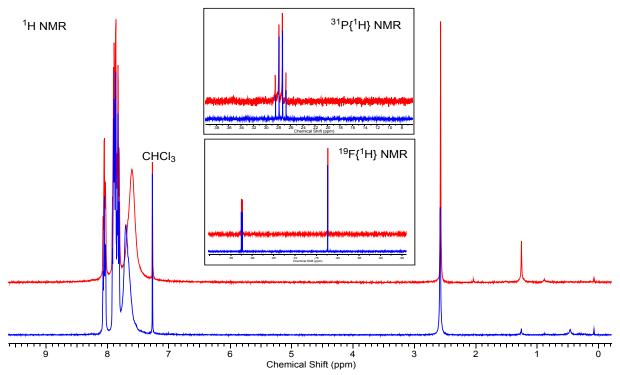

[2][OTf] (21 mg, 1 eq.) + H₂O (1 µL, 1 eq.) + PhNH₂ (5 µL, 1 eq.). After 5 min upon mixing, effervescence was noted, along with white solid formation. NMR analysis revealed HCF₃ (¹H δ = 6.6 ppm, q, ²J_{H-F} = 79 Hz; ¹⁹F δ = -77.8 ppm, d, ²J_{H-F} = 79 Hz) and Ph₂(Me)PO (³¹P δ = 31.4 ppm (s)) as major products. The data are in accordance for those reported in the literature.⁷ Note: due to [PhNH₃]⁺ formation, the δ ³¹P value for Ph₂(Me)PO is slightly downfield due to H-bonding effect.

Figure S26. ¹H, ³¹P{¹H} and ¹⁹F-NMR spectra of **[2][OTf]** with H_2O / PhNH₂ in CDCl₃, after 5 min at R.T.

4.5 HCI addition

[1][OTf] (6 mg, 1 eq.) + HCl _(aq.) 37% (2 µL, 2 eq.)

Figure S27. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of **[1][OTf]** with HCl in CDCl₃. Blue (after 5 min), red (after 6h at R.T.)

5. Hydride ion affinity calculations

Calculations were performed using the Gaussian09⁸ suite of programmes. Structures were optimised at the M06-2X/6-311G(d,p) level with PCM(Dichloromethane) solvation.⁹ In all cases, structures were confirmed as minima by frequency analysis and the absence of imaginary frequencies. Structures and energies for Et₃B and Et₃BH and were taken from previous work.^{10,11} Full Cartesian coordinates for the optimised geometries for the HIA determinations are provided below.

Ρ	-0.582200	0.304900	0.138900
С	-0.012200	-1.387800	0.061800
С	-0.933600	-2.424500	0.225200
С	1.349400	-1.651700	-0.135200
С	-0.484200	-3.738700	0.188200
Н	-1.985000	-2.212300	0.379000
С	1.779500	-2.969200	-0.173400
Н	2.065300	-0.846900	-0.257300
С	0.865000	-4.008100	-0.011600
Н	-1.190900	-4.548600	0.314400
Н	2.828600	-3.184600	-0.329700
Н	1.209600	-5.034500	-0.041800
С	-2.363400	0.434400	0.038600
С	-3.078700	0.879700	1.152600
С	-3.018900	0.047700	-1.137300
С	-4.465200	0.940800	1.083900
С	-4.402500	0.120700	-1.189900
С	-5.121800	0.565200	-0.082500
С	0.093700	1.205000	1.527800
С	0.786700	0.516900	2.526000
С	-0.100500	2.590400	1.601900
С	1.290700	1.227400	3.608600
Н	0.930300	-0.555300	2.463400
С	0.412200	3.283700	2.687300
С	1.104800	2.602900	3.686800
Н	1.827600	0.703800	4.389000

Compound [1]+

Н	0.270600	4.354600	2.753700
Н	1.501300	3.150900	4.532600
С	0.096400	1.156600	-1.406400
F	-0.472100	2.347500	-1.562200
F	1.410700	1.323200	-1.298600
F	-0.150300	0.421800	-2.486000
Н	-0.642800	3.121900	0.828300
Н	-2.464800	-0.305700	-1.999400
Н	-4.919800	-0.169900	-2.095200
Н	-6.202600	0.617200	-0.131100
Н	-5.028800	1.282000	1.942700
Н	-2.564300	1.171800	2.060400

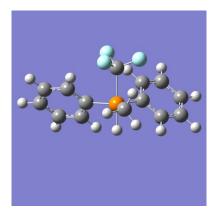
Total Energy: - 1373.61255313 Hartrees

Р	1.206700	0.925200	-0.079300
Н	1.074800	0.820800	1.369500
С	0.289000	2.514500	-0.045300
С	-0.874500	2.549100	0.724200
С	0.736400	3.670400	-0.684000
С	-1.609000	3.724200	0.825200
Н	-1.204900	1.654700	1.244200
С	0.017500	4.853900	-0.549700
Н	1.641300	3.657700	-1.279000
С	-1.158600	4.879500	0.192700
Н	-2.522800	3.741000	1.406800
Н	0.375400	5.755600	-1.031800
Н	-1.721200	5.801100	0.282700
С	3.034900	0.919000	0.093200
С	3.881600	0.133100	-0.688500
С	3.565300	1.707900	1.114900
С	5.251300	0.142000	-0.445000
Н	3.483300	-0.490000	-1.479300
С	4.937500	1.741700	1.330700

Compound [1-H]

Н	2.902900	2.298600	1.740700
С	5.780800	0.952000	0.554200
Н	5.904400	-0.482300	-1.042700
Н	5.345800	2.373500	2.110000
Н	6.849500	0.964800	0.731300
С	0.283800	-0.650800	-0.269700
С	-0.773100	-0.815300	-1.164600
С	0.635200	-1.691600	0.590900
С	-1.470000	-2.018900	-1.195300
С	-0.040100	-2.904600	0.531400
С	-1.098700	-3.065600	-0.358000
С	1.392200	1.076200	-2.138800
F	1.638600	-0.108900	-2.758600
F	0.281900	1.566000	-2.752400
F	2.400200	1.896000	-2.540300
Н	-1.062600	-0.012200	-1.830400
Н	-2.301300	-2.138200	-1.879500
Н	-1.637500	-4.004900	-0.394100
Н	0.249800	-3.716800	1.186800
Н	1.437700	-1.551200	1.308900

Total Energy: - 1374.33437839 Hartrees


Ρ	-0.605400	0.304500	0.125300
С	0.033600	-1.358900	-0.040400
С	-0.806900	-2.449400	0.197400
С	1.387800	-1.542500	-0.344200
С	-0.282900	-3.733900	0.123300
Н	-1.852200	-2.301000	0.440500
С	1.893000	-2.831700	-0.419000
Н	2.042300	-0.698400	-0.526500
С	1.059800	-3.922700	-0.185300
Н	-0.926000	-4.584600	0.308400

Compound [2]+

Н	2.937500	-2.984000	-0.658300
Η	1.461800	-4.926700	-0.243200
С	-2.388000	0.363300	0.111900
С	-3.077200	0.976300	1.160600
С	-3.072400	-0.201900	-0.972100
С	-4.465100	1.022600	1.120300
С	-4.457300	-0.143600	-0.998100
С	-5.149800	0.466400	0.045600
С	-0.050400	1.265100	-1.397500
F	-0.622200	2.462700	-1.397400
F	1.272400	1.427100	-1.380600
F	-0.387600	0.624400	-2.509600
Н	-2.536900	-0.683100	-1.783000
Н	-4.995100	-0.576000	-1.831800
Н	-6.231600	0.506800	0.019200
Н	-5.007600	1.495400	1.928600
Н	-2.548800	1.413300	1.999100
С	0.135600	1.192200	1.500200
Н	-0.169900	2.238800	1.478300
Н	-0.172800	0.720000	2.433400
Н	1.219900	1.120300	1.402700

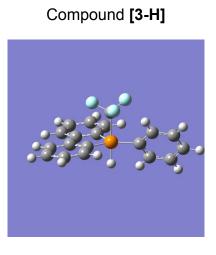
Total Energy: -1181.91022653 Hartrees

Compound [2-H]

Ρ	-1.977200	0.398200	-0.231100
Н	-2.076700	0.131200	1.201300
С	-2.857200	1.993800	-0.011100
С	-3.988000	1.991900	0.806700
С	-2.404100	3.191300	-0.563600
С	-4.687400	3.170600	1.036000
Н	-4.322500	1.068000	1.268500
С	-3.087600	4.375200	-0.304700
Н	-1.519700	3.208700	-1.188200
С	-4.233600	4.364900	0.483500

Н	-5.576500	3.159000	1.654900
Н	-2.723800	5.306100	-0.722900
Н	-4.768700	5.287500	0.674000
С	-0.142300	0.415700	-0.086100
С	0.729000	-0.189900	-0.991700
С	0.372800	1.063100	1.038800
С	2.101500	-0.150500	-0.764500
Н	0.351400	-0.698800	-1.868600
С	1.745200	1.134200	1.242000
Н	-0.306100	1.513000	1.757300
С	2.611200	0.518800	0.342500
Н	2.772800	-0.638600	-1.460800
Н	2.136900	1.656200	2.106700
Н	3.681300	0.558200	0.506900
С	-1.851600	0.720500	-2.260900
F	-1.568500	-0.427000	-2.948000
F	-3.038100	1.136700	-2.770700
F	-0.931800	1.618000	-2.696100
С	-2.990300	-1.090300	-0.605500
Н	-2.320600	-1.953100	-0.580000
Н	-3.725200	-1.201400	0.190800
Н	-3.476400	-1.041500	-1.576900

Total Energy: - 1182.63155661 Hartrees


Compound [3]+

С	-1.017600	-6.161400	-0.095700
С	0.338200	-6.412800	-0.293300
С	1.247800	-5.360400	-0.328400
С	0.756500	-4.072300	-0.162500
С	-0.610300	-3.800500	0.033100
С	-1.500800	-4.864300	0.067000
Н	-1.713200	-6.991000	-0.070100
Н	0.688500	-7.428700	-0.419500
Н	2.304300	-5.546100	-0.482100
Н	-2.559800	-4.694100	0.216300

C C	0.191200 0.093300	-1.511500 -0.130800	0.090400 0.185200
С	-1.170600	0.419600	0.377700
С	-2.289100	-0.405400	0.467000
С	-2.179900	-1.791100	0.365500
С	-0.928500	-2.359500	0.173300
Н	0.967900	0.504000	0.111000
Н	-1.282000	1.493300	0.455600
Н	-3.266000	0.038000	0.615500
Н	-3.064500	-2.412000	0.433800
С	2.665800	-2.414200	1.441300
С	2.739200	-2.216400	-1.511100
С	2.490600	-2.877200	-2.718300
С	3.787500	-1.298300	-1.386800
С	3.305400	-2.611100	-3.810100
Н	1.678500	-3.590100	-2.804200
С	4.590900	-1.045500	-2.489100
Н	3.982100	-0.787400	-0.451900
С	4.349300	-1.698300	-3.694700
Н	3.125100	-3.118800	-4.748800
Н	5.406600	-0.339300	-2.404500
Н	4.981700	-1.494900	-4.550100
F	1.970600	-2.899200	2.457600
F	2.968100	-1.142100	1.699200
F	3.792600	-3.101800	1.312000
Ρ	1.642600	-2.527100	-0.139100

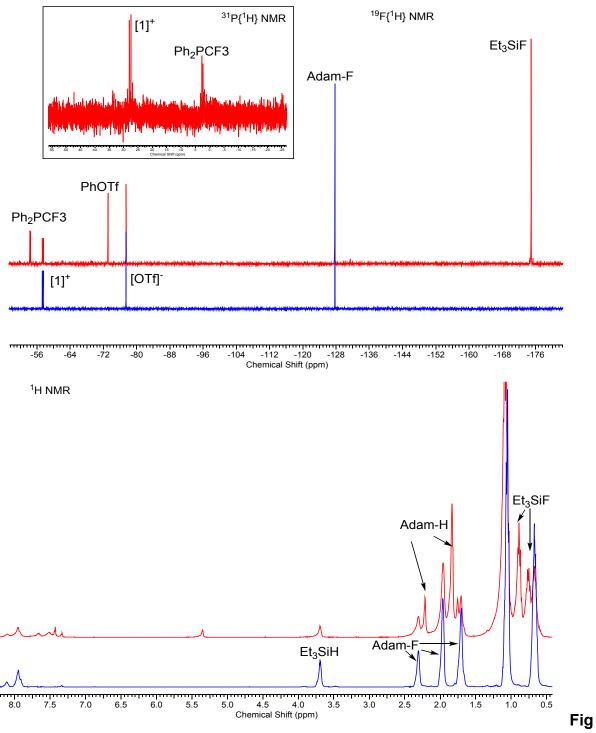
Total Energy: - 1372.41673467 Hartrees

С	-0.903000	-0.138300	0.686600
С	0.427900	-0.278900	1.075200
С	1.321000	0.777400	0.914700
С	0.861800	1.965300	0.366100
С	-0.482300	2.124000	-0.023300

С	-1.362200	1.054900	0.140500
Ĥ	-1.590400	-0.965600	0.814600
Н	0.770300	-1.212800	1.504200
Н	2.355900	0.670600	1.218000
H	-2.402000	1.151000	-0.149800
С	0.256900	4.361300	-0.607500
С	0.102100	5.660700	-1.065000
С	-1.158200	6.073400	-1.491000
С	-2.233700	5.187800	-1.459000
С	-2.073200	3.885200	-0.998500
С	-0.819800	3.457500	-0.563700
Н	0.944200	6.343400	-1.087900
Н	-1.301800	7.085700	-1.848300
Н	-3.209400	5.518600	-1.793900
Н	-2.923100	3.213000	-0.974600
Ρ	1.760900	3.496100	-0.077400
С	3.470100	4.214500	-0.131500
С	4.323100	4.395800	0.959900
С	3.905200	4.578900	-1.408600
С	5.590400	4.934900	0.766600
Н	4.022500	4.115800	1.959000
С	5.154800	5.158700	-1.590700
Н	3.261600	4.409800	-2.265900
С	6.003500	5.328100	-0.502100
Н	6.254700	5.051800	1.614200
Н	5.469300	5.461400	-2.582000
Н	6.987100	5.760400	-0.642400
Н	1.985100	2.966700	-1.420600
С	1.480800	4.146000	1.830700
F	2.140000	3.401700	2.763900
F	1.862200	5.429000	2.038900
F	0.182700	4.092100	2.203000

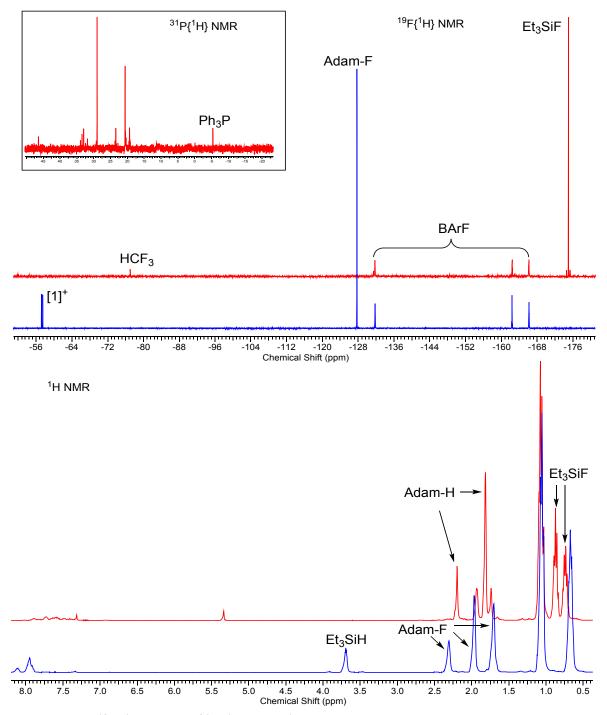
Total Energy: -1373.13599265 Hartrees

6. Hydrodefluorination reactions

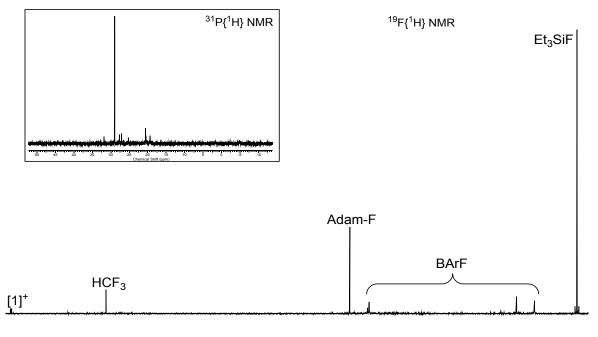

General procedure: under inert atmosphere, in a J. Young NMR tube the catalyst was dissolved in dried solvent (0.05 mL), followed by the addition of the 1-fluoro-adamantane and Et₃SiH. The system was then sealed and heated at 60°C or 100 °C in an oil bath for 18 hours. Subsequent addition of fluorobenzene (10 μ L) to the reaction mixture allowed the determination of the ¹⁹F-NMR yields based on the relative integral of the fluorine of Et₃SiF.

$ \begin{array}{c} F \\ \downarrow \\ \downarrow$									
Entry	Catalyst	Eq. Silane	Catalyst loading	Temp. (°C)	Conv. (%)	Et₃SiF (%)			
1	[1][OTf]	1.2	5 mol %	60	31	29			
2	[1][BArF]	1.2	5 mol %	60	39	35			
3	[1][OTf]	2.2	10 mol %	100	70	60			
4	[1][BArF]	2.2	10 mol %	100	99	97			

Table 1. Hydrodefluorination with [1][OTf] and [1][BArF].


To avoid showing similar spectra multiple times, for each catalyst one result is reported.

Entry 3: 1-fluoro-adamantane (20 mg, 0.13 mmol, 1.0 eq.), Et₃SiH (46 μ L, 0.28 mmol, 2.2 eq.), **[1][OTf]** (6 mg, 0.01 mmol, 0.05 eq.). After 18 hours at 100°C, Et₃SiF was found as main product (catalyst decomposition noted as well). Et₃SiF NMR yield = 60%. ¹⁹F{¹H} NMR (376 MHz, CHCl₃): δ -177 ppm (s, 1F). ¹H NMR and ¹⁹F{¹H} NMR spectra are in agreement with those reported in the literature.¹


ure S28. ¹⁹F{¹H}-NMR, ³¹P{¹H} and ¹H NMR spectra of the reduction of 1-fluoroadamantane with Et₃SiH with **[1][OTf]** in dried CDCl₃. Blue (after 5 min), red (after 18 h at 100°C).

Entry 4: 1-fluoro-adamantane (20 mg, 0.13 mmol, 1.0 eq.), Et₃SiH (46 μ L, 0.28 mmol, 2.2 eq.), **[1][BArF]** (13 mg, 0.01 mmol, 0.05 eq.). After 18 hours at 100°C, full conversion to Et₃SiF was observed (catalyst decomposition noted as well). Et₃SiF NMR yield = 97%. ¹⁹F{¹H} NMR (376 MHz, CHCl₃): δ -177 ppm (s, 1F). The results are in agreement with those reported in the literature.¹

Figure S29. ¹⁹F{¹H}-NMR, ³¹P{¹H} and ¹H NMR spectra of the reduction of 1-fluoroadamantane with Et₃SiH with **[1][BArF]** in dried CDCl₃. Blue (after 5 min), red (after 18 h at 100°C).

Reaction under ambient conditions: the reaction in entry 4 was repeated under ambient conditions using CDCl₃ straight from the Winchester. After 18 hours at 100°C, good conversion to Et_3SiF was observed. As for the reaction under anhydrous conditions, catalyst decomposition was noted as well. Et_3SiF NMR yield = 76%.

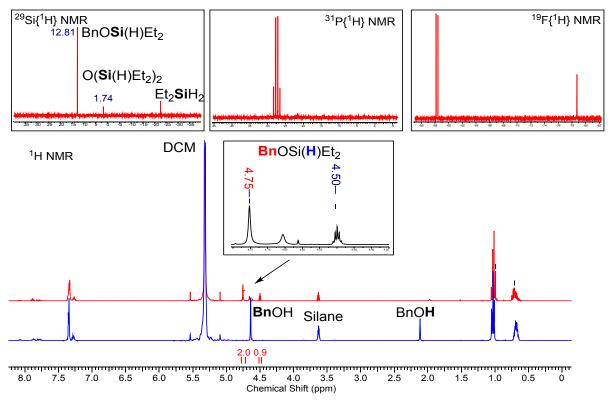
-64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 Chemical Shift (ppm)

Figure S30. ${}^{19}F{}^{1}H$ -NMR and ${}^{31}P{}^{1}H$ spectra of the reduction of 1-fluoroadamantane with Et₃SiH with **[1][BArF]** in wet CDCl₃ under ambient conditions, after 18 h at 100°C.

7. Dehydrosilylation of alcohols

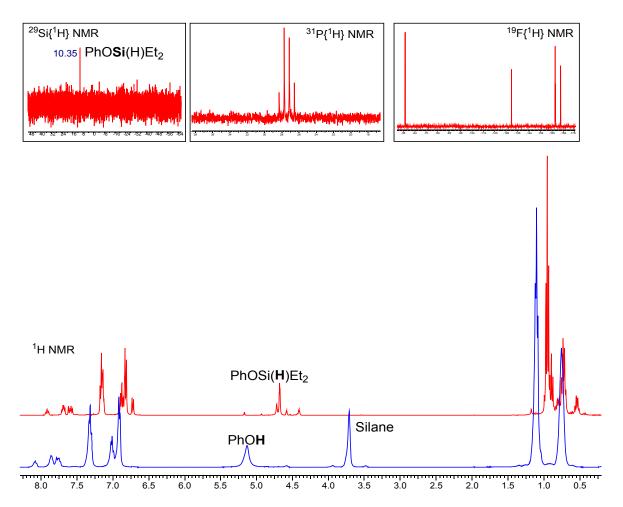
General procedure: under inert atmosphere, in a J. Young NMR tube the catalyst (5 mol %) was dissolved in dried solvent (0.05 mL), followed by the addition of the alcohol and the silane. The system was then sealed and heated at 60°C in an oil bath. Subsequent addition of mesitylene to the reaction mixture allowed the determination of the ¹H-NMR yields based on the relative integral of the benzylic protons of the product (when BnOH was used) or of the silicon-attached proton (in case of PhOSi(H)Et₂).

$\begin{array}{rcl} \textbf{R-OH} &+ & \textbf{Et_2SiH_2} & \underbrace{(5 \text{ mol } \%)}_{\text{DCM or CDCl}_3} & \textbf{R-OSi(H)Et_2} \\ (1.0 \text{ eq.}) & (1.2 \text{ eq.}) & \underbrace{60^\circ\text{C}, -\text{H}_2} \end{array}$										
Entry	Catalyst	R	Solvent	Time (h)	Conv. (%)					
1	[2][OTf]	Bn	DCM	18	0					
2	[1][OTf]	Bn	DCM	2	90					
3	[1][BArF]	Bn	DCM	2	90ª					
4	[2][OTf]	Ph	CDCI ₃	18	19					
5	[1][OTf]	Ph	CDCI ₃	2	94					
6	[1][BArF]	Ph	CDCl ₃	4	78					

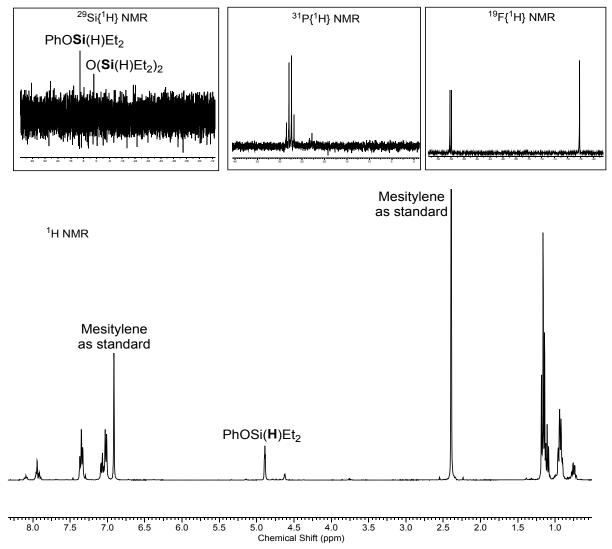

Table 2. Alcohol dehydrosilylation with [2][OTf], [1][OTf] and [1][BArF].

Catalyst

^aProduct further reacted to give Bn₂O and siloxane.


To avoid showing similar spectra multiple times, for each substrate one result is reported.

Entry 2: BnOH (25 µL, 0.24 mmol, 1.0 eq.), Et_2SiH_2 (45 µL, 0.28 mmol, 1.2 eq.), **[1][OTf]** (6 mg, 0.02 mmol, 0.05 eq.). After 2 hours at 60°C, BnOSi(H)Et₂ was found as the main product (NMR yield = 90%). Diagnostic peaks: ¹H NMR (400 MHz, CHCl₂): δ 4.75 (s, 2H, Bn_), 4.50 (quint, *J* = 2.1 Hz, Si-H) ppm. ²⁹Si{¹H} NMR (79 MHz, CHCl₂): δ 12.8 ppm. The results are in agreement with those reported in the literature.¹²


Figure S31. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the dehydrosilylation of BnOH with Et_2SiH_2 with **[1][OTf]** in dried DCM. Blue (after 5 min), red (after 2 h at 60°C).

Entry 6: PhOH (20 mg, 0.20 mmol, 1.0 eq.), Et_2SiH_2 (32 µL, 0.25 mmol, 1.2 eq.), **[1][BArF]** (10 mg, 0.01 mmol, 0.05 eq.). After 4 hours at 60°C, PhOSi(H)Et₂ was found as the main product (NMR yield = 78%). Diagnostic peaks: ¹H NMR (400 MHz, CHCl₃): δ 4.68 (quint, *J* = 2.1 Hz, Si-H) ppm. ²⁹Si{¹H} NMR (79 MHz, CHCl₃): δ 10.3 ppm. The results are in agreement with those reported in the literature.¹³

Figure S32. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the dehydrosilylation of PhOH with Et_2SiH_2 with **[1][BArF]** in dried CDCl₃. Blue (after 5 min), red (after 2 h at 60°C).

Reaction under ambient conditions (PhOH): the reaction in entry 5 was repeated under ambient conditions using $CDCI_3$ straight from the Winchester. No decomposition was observed after 2 h at 60°C, with PhOSi(H)Et₂ found as the main product (NMR yield = 78%). Note: water from the unpurified solvent reacts to produce the corresponding siloxane.

Figure S33. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the dehydrosilylation of PhOH with Et_2SiH_2 with **[1][OTf]** in wet $CDCI_3$ under ambient conditions, after 2 h at 60°C.

8. C=O reductions

General procedure: under inert atmosphere, in a J. Young NMR tube the catalyst (5 mol %) was dissolved in dried solvent (0.05 mL), followed by the addition of the carbonyl and the silane. The system was then sealed and heated at 60°C or 100 °C in an oil bath. Subsequent addition of mesitylene to the reaction mixture allowed the determination of the ¹H-NMR yields based on the relative integral of the benzylic protons of the product.

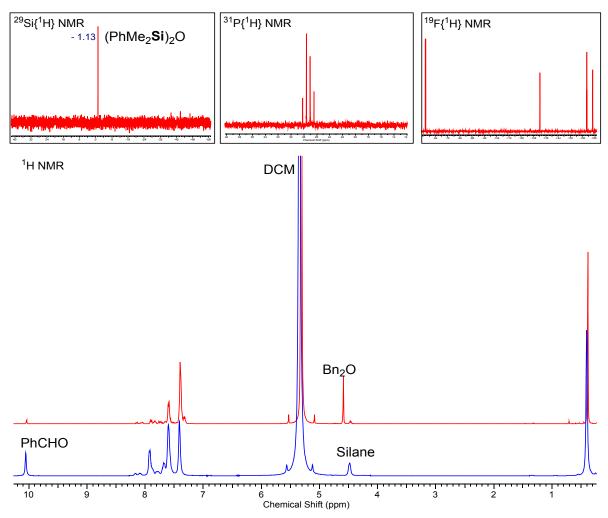
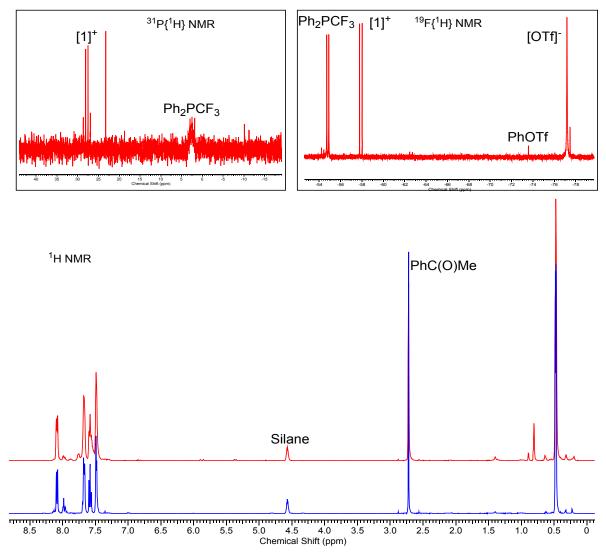
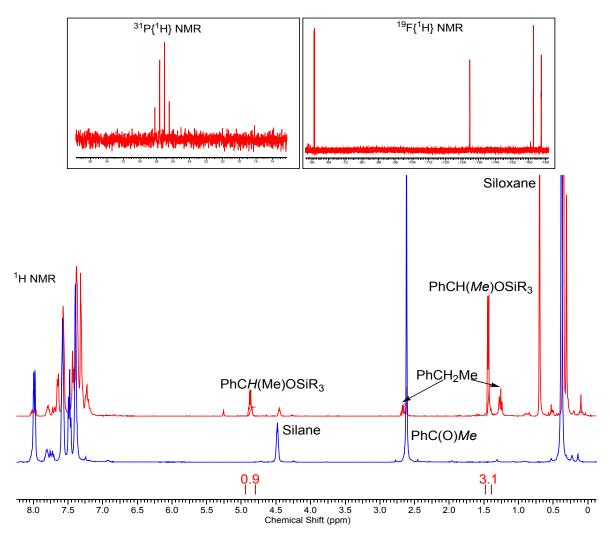

$\begin{array}{c} \textbf{Catalyst} \\ \textbf{O} \\ \textbf{(5 mol \%)} \\ \textbf{Ph} \\ \textbf{Ph} \\ \textbf{R} \\ \textbf{Ph} \\ \textbf{R} \\ \textbf{DCM} (60^{\circ}\text{C}) \\ \textbf{or} \\ \textbf{CDCl}_3 (100^{\circ}\text{C}) \\ \textbf{A} \\ \end{array} \begin{array}{c} \textbf{Ph} \\ \textbf{H} \\ \textbf{H}$							
Entry	Catalyst	R	Eq. Silane	Temp./Tim e (°C / h)	Conv. (%)	A : B : C (%)	
1	[1][OTf]	Н	1.2	60 / 1	92	0:0:45	
2	[1][BArF]	н	1.2	60 / 3	89	0:0:44	
3	[1][OTf]	Me	1.2	100 / 2	0	-	
4	[1][BArF]	Ме	1.2	100 / 2	83ª	21 : 13 : 0	
5	[1][BArF]	Me	2.2	100 / 4	91	59 : 15 : 0	
6	[1][OTf]	Ph	2.2	100 / 4	0	-	
7	[1][BArF]	Ph	2.2	100 / 4	89	50 : 39 : 0	

Table 3. C=O reductions with [1][OTf] and [1][BArF].

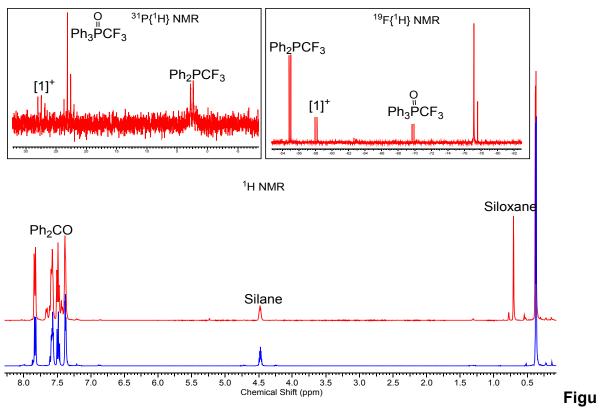
^a Mixture of byproducts including styrene and 1-phenylethanol.


To avoid showing similar spectra multiple times, for each substrate one result is reported.

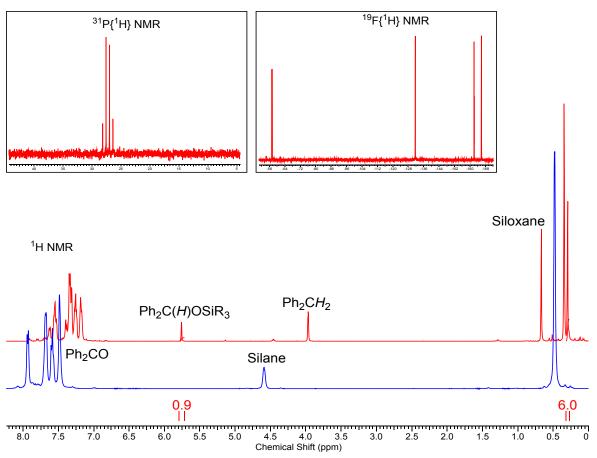
Entry 2: PhCHO (25 µL, 0.24 mmol, 1.0 eq.), PhMe₂SiH (45 µL, 0.29 mmol, 1.2 eq.), [**1][BArF]** (12 mg, 0.01 mmol, 0.05 eq.). After 3 hours at 60°C, Bn₂O was found as the main product upon siloxane loss. Bn₂O NMR yield = 44% (max 50%). ¹H NMR (400 MHz, CH₂Cl₂): δ 4.58 ppm (s, 4H, Bn-). ²⁹Si{¹H} NMR (79 MHz, CH₂Cl₂): δ – 1.13 ppm (siloxane). The results are in agreement with those reported in the literature.¹²


Figure S34. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhCHO with PhMe₂SiH with **[1][BArF]** in dried DCM. Blue (after 5 min), red (after 3 h at 60°C).

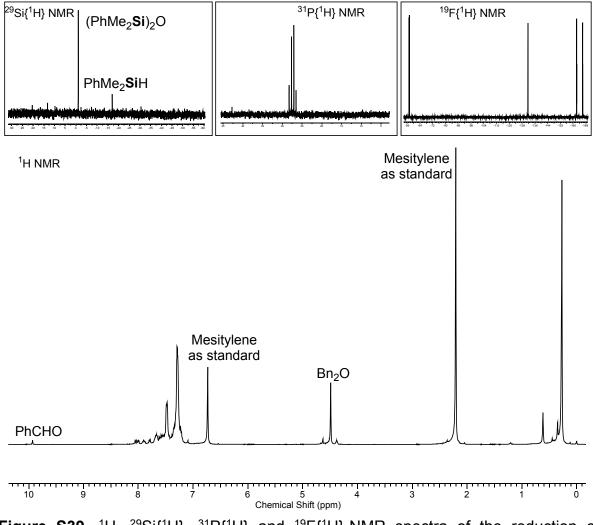
Entry 3: PhC(O)Me (25 μ L, 0.21 mmol, 1.0 eq.), PhMe₂SiH (39 μ L, 0.25 mmol, 1.2 eq.), **[1][OTf]** (5 mg, 0.01 mmol, 0.05 eq.). After 2 hours at 100°C, minimal reduction was observed, while the catalyst had partially decomposed.


Figure S35. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhC(O)Me with PhMe₂SiH with **[1][OTf]** in dried CHCl₃. Blue (after 5 min), red (after 2 h at 100°C).

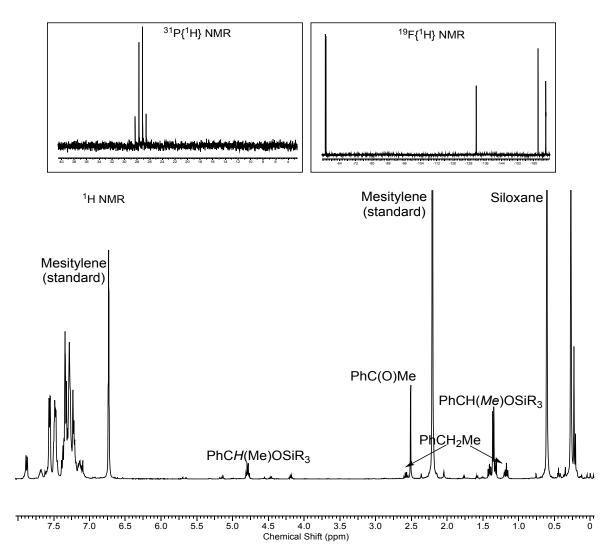
Entry 5: PhC(O)Me (12 µL, 0.10 mmol, 1.0 eq.), PhMe₂SiH (35 µL, 0.22 mmol, 2.2 eq.), **[1][BArF]** (5 mg, 0.005 mmol, 0.05 eq.). After 4 hours at 100°C, PhCH(Me)OSiPhMe₂ (NMR yield = 59%) and PhCH₂Me (NMR yield = 13%) were found as main products. PhCH(Me)OSiPhMe₂ ¹H NMR (400 MHz, CHCl₃): δ 4.87 (q, J = 6.4 Hz, 1H, -CHMe), 1.44 (d, J = 6.4 Hz, 3H, -CHMe), 0.35 (s, 3H, -SiMe), 0.33 (s, 3H, -SiMe') ppm. PhCH₂Me ¹H NMR (400 MHz, CHCl₃): δ 2.66 (q, J = 7.6 Hz, 2H, -CH₂Me), 1.26 (t, J = 7.6 Hz, 3H, -CH₂Me) ppm. The results are in agreement with those reported in the literature.^{12a,14}


Figure S36. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhC(O)Me with PhMe₂SiH with **[1][BArF]** in dried CHCl₃. Blue (after 5 min), red (after 2 h at 100°C).

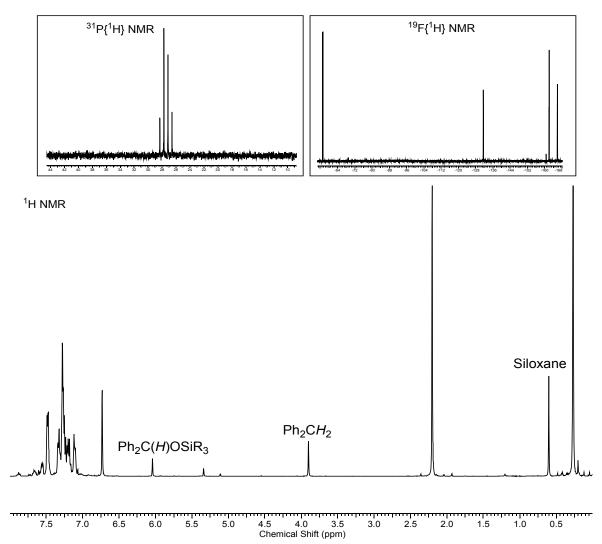
Entry 6: Ph_2CO (39 mg, 0.21 mmol, 1.0 eq.), $PhMe_2SiH$ (72 µL, 0.46 mmol, 2.2 eq.), **[1][OTf]** (5 mg, 0.01 mmol, 0.05 eq.). After 4 hours at 100°C, minimal reduction was observed, while the catalyst had partially decomposed.


re S37. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of Ph₂CO with PhMe₂SiH with **[1][OTf]** in dried CHCl₃. Blue (after 5 min), red (after 4 h at 100°C).

Entry 7: Ph₂CO (39 mg, 0.21 mmol, 1.0 eq.), PhMe₂SiH (72 µL, 0.46 mmol, 2.2 eq.), **[1][BArF]** (11 mg, 0.005 mmol, 0.05 eq.). After 4 hours at 100°C, Ph₂C(H)OSiPhMe₂ (NMR yield = 50%) and Ph₂CH₂ (NMR yield = 39%) were found as the main products. Ph₂C(H)OSiPhMe₂ ¹H NMR (400 MHz, CHCl₃): δ 5.76 (s, 1H, -CH-), 0.30 (s, 6H, -SiMe₂) ppm. Ph₂CH₂ ¹H NMR (400 MHz, CHCl₃): δ 3.97 ppm (s, 2H, -CH₂-). The results are in agreements with those reported in the literature.^{12a,14}


Figure S38. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of Ph_2CO with $PhMe_2SiH$ with **[1][BArF]** in dried CHCl₃. Blue (after 5 min), red (after 4 h at 100°C).

Reaction under ambient conditions (PhCHO): the reaction in entry 2 was repeated under ambient conditions using $CDCl_3$ straight from the Winchester. No decomposition was observed after 3 h at 60°C, with Bn_2O and siloxane found as main products (NMR conversion PhCHO 92%). Note: water from the unpurified solvent reacts to produce the corresponding siloxane.


Figure S39. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhCHO with PhMe₂SiH and **[1][BArF]** in wet DCM under ambient conditions, after 3 h at 60°C.

Reaction under ambient conditions (PhC(O)Me): the reaction in entry 5 was repeated under ambient conditions using $CDCl_3$ straight from the Winchester. No decomposition was observed after 8 h at 100°C, with the silane completely consumed (NMR conversion PhC(O)Me 80%). Note: water may have caused hydrolysis of the product (e.g. other set of –CH(Me)- could be detected).

Figure S40. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhC(O)Me with PhMe₂SiH and **[1][BArF]** in wet CDCl₃ under ambient conditions, after 8 h at 100°C.

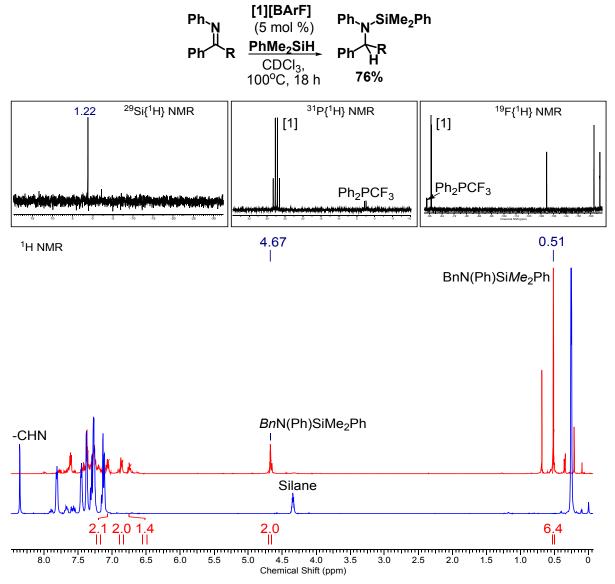
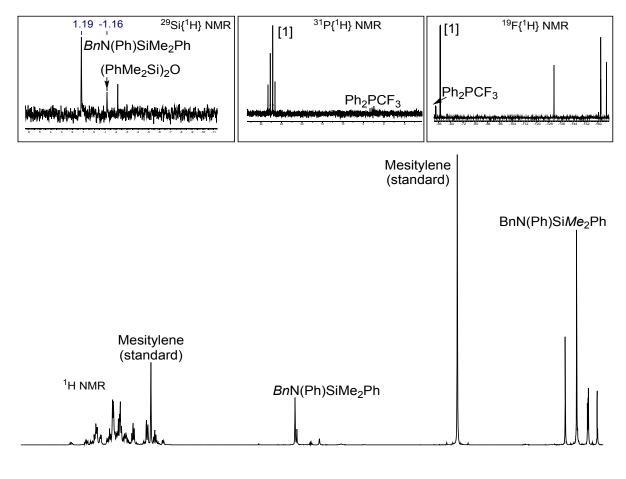

Reaction under ambient conditions (Ph₂CO): the reaction in entry 7 was repeated under ambient conditions using $CDCl_3$ straight from the Winchester. No decomposition was observed after 8 h at 100°C, with the silane completely consumed (NMR conversion Ph₂CO 70%).

Figure S41. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of Ph_2CO with $PhMe_2SiH$ and **[1][BArF]** in wet $CDCI_3$ under ambient conditions, after 8 h at 100°C.


9. Imine reductions

Under inert atmosphere, in a J. Young NMR tube the **[1][BArF]** (5 mg, 0.005 mmol, 0.05 eq.) was dissolved in dried CDCl₃ (0.05 mL), followed by the addition of the *N*-benzylidene aniline (18 mg, 0.10 mmol, 1.0 eq.) and PhMe₂SiH (19 µL, 0.12 mmol, 1.2 eq.). The system was then sealed and heated at 100 °C in an oil bath. After 18 hours at 100°C, full imine reduction was observed and PhCH₂N(Ph)SiPhMe₂ was found as the main product (NMR yield = 76% based on the relative integral of the benzylic protons of the product). ¹H NMR (400 MHz, CHCl₃): δ 4.67 (s, 2H, -CH₂-), 0.52 (s, 6H, -Si*Me*₂) ppm. ²⁹Si{¹H} NMR (79 MHz, CH₂Cl₂): δ 1.22 ppm. The results are in agreements with those reported in the literature.¹⁵

Figure S42. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhC(H)NPh with PhMe₂SiH with **[1][BArF]** in dried CHCl₃. Blue (after 5 min), red (after 18 h at 100°C).

Reaction under ambient conditions (PhC(H)NPh): the reaction was repeated under ambient conditions using $CDCI_3$ straight from the Winchester. No decomposition was observed after 8 h at 100°C, with the imine completely consumed (NMR conversion PhCH₂N(Ph)SiPhMe₂ 56%). Note: water may have caused hydrolysis of the silyl amine product to the NH congener.

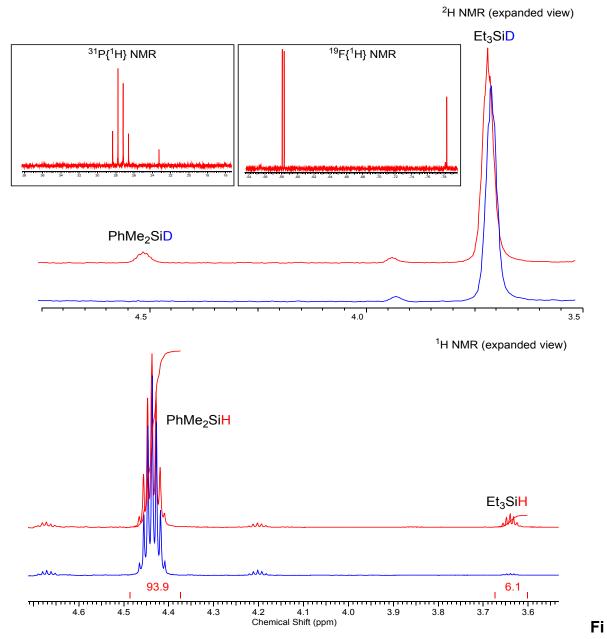
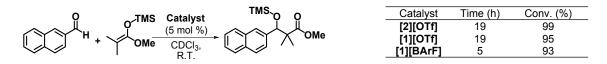

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

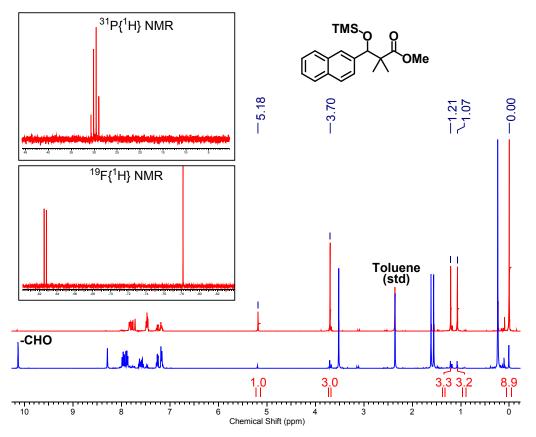
Figure S43. ¹H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the reduction of PhC(H)NPh with PhMe₂SiH with **[1][BArF]** in wet CDCl₃ under ambient conditions, after 8 h at 100°C.

10. H/D silane scrambling

$$\label{eq:phme2SiH} \begin{array}{c} \textbf{PhMe_2SiH} \hspace{0.1cm} \textbf{+} \hspace{0.1cm} \textbf{Et_3SiD} \hspace{0.1cm} \overbrace{\begin{array}{c} (5 \text{ mol } \%) \\ DCM, \\ 18h \hspace{0.1cm} 60^{\circ}\text{C} \end{array}} \hspace{0.1cm} \textbf{PhMe_2SiD} \hspace{0.1cm} \textbf{+} \hspace{0.1cm} \textbf{Et_3SiH} \end{array}$$


Under inert atmosphere, in a J. Young NMR tube **[1][OTf]** was dissolved in dried DCM (0.05 mL), followed by the addition of the fresh distilled PhMe₂SiH (34 μ L, 0.21 mmol, 1.0 eq.) and Et₃SiD (35 μ L, 0.21 mmol, 1.0 eq.). The system was then sealed and heated at 60°C in an oil bath for 18 hours, revealing formation of PhMe₂SiD and Et₃SiH, although at small extent (~ 6%).

gure S44. ¹H, ²H, ²⁹Si{¹H}, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the H/D silane scrambling with **[1][OTf]** in dried CH_2CI_2 . Blue (after 5 min), red (after 18 h at 60°C).


11. Mukaiyama aldol reaction

General procedure: under inert atmosphere, in a J. Young NMR tube the catalyst and 2-naphthaldehyde were dissolved in dried CDCl₃ (0.05 mL), followed by the addition of the 1-methoxy-2-methyl-1-trimethylsiloxypropene and toluene (32 μ L) as internal standard. The system was then sealed, inverted for 19 hours at room temperature and subsequently analyzed by multinuclear NMR spectroscopy.

To avoid showing similar spectra multiple times, one example is reported.

Entry 1: 2-Naphthadehyde (47 mg, 0.30 mmol, 1.0 eq.), 1-methoxy-2-methyl-1trimethylsiloxypropene (73 μ L, 0.36 mmol, 1.2 eq.), **[2][OTf]** (6 mg, 0.02 mmol, 0.05 eq.). After 19 hours at R.T., the corresponding Mukaiyama aldol product was found as main product (NMR yield = 99%). Diagnostic peaks: ¹H NMR (400 MHz, CHCl₂): δ 5.18 (s, 1H, -C(*H*)-), 3.70 (s, 3H, -OMe), 1.21 (s, 3H, Me), 1.07 (s, 3H, Me'), 0.00 (s, 9H, -OTMS) ppm. The results are in agreements with those reported in the literature.¹⁶

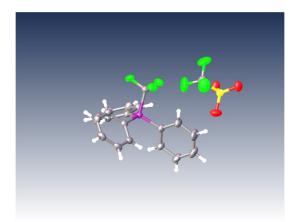
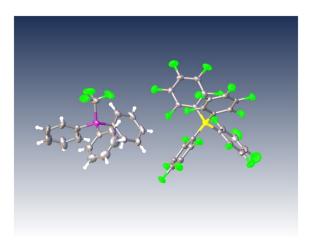


Figure S45. ¹H, ³¹P{¹H} and ¹⁹F{¹H}-NMR spectra of the Mukaiyama reaction with **[2][OTf]** in dried CHCl₃. Blue (after 20 min), red (after 19 h at R.T.).


12. Crystallographic analysis of [1][OTf], [1][BArF], [2][OTf]

Crystallographic data for compounds **[1][OTf]** and **[2][OTf]** were recorded on a Bruker X8 Prospector diffractometer, at 293 K with Cu K α radiation (mirror monochromator, $\lambda = 1.54184$). Data for compound for **[1][BArF]** were recorded on a Bruker Apex2 X-ray diffractometer, at 150 K with Mo K α radiation (mirror monochromator, $\lambda = 0.71073$). The CrysAlisPro¹⁷ software package was used for data collection, cell refinement and data reduction. For all data sets the CrysAlisPro software package was used for empirical absorption corrections, which were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. All further data processing was undertaking within the Olex2 software.¹⁸ The structures were solved using the ShelXT¹⁹ structure solution program using Intrinsic Phasing. All structures were refined with the SHELXL²⁰ refinement package using Least Squares minimisation against F2. Non-hydrogen atoms were refined anisotropically.

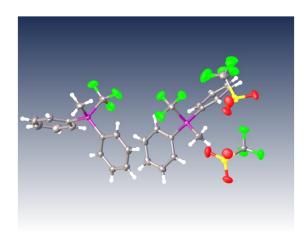

Compound	[1][OTf]	[1][BArF]	[2][OTf]
CCDC code	1586279	1586281	1586280
Empirical formula	$C_{20}H_{15}F_6O_3PS$	C ₄₃ H ₁₅ BF ₂₃ P	C ₁₅ H ₁₃ F ₆ O ₃ PS
Formula weight	480.35	1010.33	418.28
Temperature / K	293(2)	150(2)	293(2)
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pbca	Pbca	P-1
a/Å	21.9081(6)	14.9846(19)	11.4013(6)
b/Å	8.3531(2)	19.108(2)	11.4161(6)
c/Å	22.4426(7)	27.311(3)	13.9435(7)
α/°	90	90	81.712(4)
β/°	90	90	76.486(4)
γ/°	90	90	89.978(4)
Volume / Å ³	4107.0(2)	7819.9(16)	1745.14(16)
Z	8	8	4
ρ _{calc} gcm ⁻³	1.554	1.716	1.592
M / mm ⁻¹	2.836	0.215	3.233
F(000)	1952.0	4000.0	848.0
Crystal size / mm ³	0.4 × 0.3 × 0.1	0.1 × 0.1 × 0.1	0.3 × 0.2 × 0.2
Radiation	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)
2O range for data	7.878 to 148.53	2.982 to 55.318	6.592 to 149.622
collection / °			
Index ranges	-26 ≤ h ≤ 24, -9 ≤ k ≤	-19 ≤ h ≤ 19, -24 ≤ k	-14 ≤ h ≤ 14, -14 ≤ k
-	9, -24 ≤ l ≤ 24	≤ 24, -35 ≤ l ≤ 35	≤ 14, -17 ≤ I ≤ 15
Reflections collected	17128	127741	18932
Independent reflections	3836 [R _{int} = 0.0425,	9054 [R _{int} = 0.0730,	6797 [R _{int} = 0.0195,
•	R _{sigma} = 0.0195]	R _{sigma} = 0.0388]	R _{sigma} = 0.0164]
Data/restraints/parameters	3836/0/280	9054/0/613	6797/0/499
Goodness-of-fit on F ²	1.062	1.036	1.064
Final R indexes [I>=2σ (I)]	R ₁ = 0.0431,	$R_1 = 0.0422,$	$R_1 = 0.0327,$
	$wR_2 = 0.1201$	$wR_2 = 0.1193$	$wR_2 = 0.0865$
Final R indexes [all data]	$R_1 = 0.0447,$	$R_1 = 0.0881,$	$R_1 = 0.0339,$
	wR ₂ = 0.1219	wR ₂ = 0.1612	wR ₂ = 0.0874
Largest diff. peak/hole / e Å ⁻³	0.52/-0.49	0.41/-0.43	0.35/-0.48

Figure S46. ORTEP representation of the molecular structure of compound **[1][OTf]**, with thermal ellipsoids set at the 50 % level.

Figure S47. ORTEP representation of the molecular structure of compound **[1][BArF]**, with thermal ellipsoids set at the 50 % level.

Figure S48. ORTEP representation of the molecular structure of compound **[2][OTf]**, with thermal ellipsoids set at the 50 % level. **[2][OTf]** displays disorder on one triflate anion.

13. References

- 1 C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science, 2013, 341, 1374.
- 2 Z. Moussa, S. A. Ahmed, A. S. ElDouhaibi, S. Y. Al-Raqa, *Tetrahedron Lett.*, 2010, **51**, 1826.
- 3 P. Romanato, S. Duttwyler, A. Linden, K. K. Baldridge, J. S. Siege, *J. Am. Chem. Soc.*, 2010, **132**, 7828.
- 4 T. Umemoto, S. Ishihara, J. Am. Chem. Soc., 1993, **115**, 2156.
- 5 C. B. Caputo, D. Winkelhaus, R.Dobrovetsky, L. J. Hounjet, D. W. Stephan, *Dalton Trans.*, 2015, **44**, 12256.
- 6 M. B. Murphy-Jolly, L. C. Lewis, A. J. M. Caffyn, *Chem. Commun.*, 2005, 4479.
- 7 N. Nebra, V. V. Grushin, J. Am. Chem. Soc., 2014, 136, 16998.
- 8 Gaussian 09, Revision C1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 9 http://comp.chem.umn.edu/info/DFT.htm.
- 10 E. R. Clark and M. J. Ingleson, Angew. Chem. Int. Ed., 2014, 53, 11306.
- 11 E. R. Clark, A. Del Grosso and M. J. Ingleson, Chem. Eur. J., 2013, 19, 2462.
- (a) V. Fasano, J. E. Radcliffe, L. D. Curless, M. J. Ingleson, *Chem. Eur. J.* 2017, 23, 187.
 (b) B. Chatterjeea, C. Gunanathan, *Chem. Commun.*, 2014, 50, 888.
- 13 T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 7534.
- 14 For selectivity in ketone reductions see: M. Mehta, M. H. Holthausen, I. Mallov, M. Pérez, Z.-W. Qu, S.Grimme, D. W. Stephan, *Angew. Chem. Int. Ed.*, 2015, **54**, 8250.
- 15 D. V. Gutsulyak, A. van der Est, G. I. Nikonov, Angew. Chem. Int. Ed., 2011, 50, 1384.
- 16 A. G. Barrado, J. M. Bayne, T. C. Johnstone, C. W. Lehmann, D. W. Stephan, M. Alcarazo, *Dalton Trans.* 2017, DOI: 10.1039/c7dt03197a
- 17 CrysAlisPro, Agil. Technol. Version 1.1 71.35.19 (release 27-10-2011 CrysAlis171.NET) (compiled Oct 27 2011,150211)
- 18 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339.
- 19 G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
- 20 G. M. Sheldrick, Acta Cryst. 2015, C71, 3.