Electronic Supplementary Information (ESI)

Expanding the Chemical Diversity of TNA with tUTP Derivatives that are Substrates for a TNA Polymerase

Hui Mei and John C. Chaput*

Departments of Pharmaceutical Sciences, Chemistry, Molecular Biology and Biochemistry, University

of California, Irvine, CA 92697-3958.

* To whom correspondence should be addressed. E-mail: <u>ichaput@uci.edu</u>

Table of Contents

Experimental Section	2-15
HPLC analysis of compounds 8a, 9a and 10a	16
HPLC analysis of compounds 8b, 9b and 10b	17
HPLC analysis of compounds 8c , 9c and 10c	18
¹ H and ¹³ C NMR spectra of compound 3	19-20
¹ H and ¹³ C NMR spectra of compound 4a	21-22
¹ H and ¹³ C NMR spectra of compound 4c	23-24
¹ H, ¹³ C and ³¹ P NMR spectra of compound 5a	25-27
¹ H, ¹³ C and ³¹ P NMR spectra of compound 5b	28-30
¹ H, ¹³ C and ³¹ P NMR spectra of compound 5c	31-33
¹ H, ¹³ C and ³¹ P NMR spectra of compound 6a	34-36
¹ H, ¹³ C and ³¹ P NMR spectra of compound 6b	37-39
¹ H, ¹³ C and ³¹ P NMR spectra of compound 6c	40-42
³¹ P NMR spectra of compounds 7a-c	43-45
³¹ P NMR spectra of compounds 8a-c	46-48

Experimental Section

General Methods and Materials. All non-aqueous reactions were performed using oven-dried glassware under an atmosphere of argon or nitrogen. All chemicals and solvents were purchased from Sigma-Aldrich and used without further purification. Reactions were monitored by thin layer chromatography using UV-activated TLC plates with silica gel 60 F254 and aluminium backing (Sigma-Aldrich, St. Louis, MO). Flash column chromatography was performed using SiliCycle 40-60 mesh silica gel (SiliCycle Inc., Quebec City, Canada). Yields are reported as isolated yields of pure compounds. UV guantification data are analyzed on NanoDrop 2000c using Beer's Law. ¹H, ¹³C and ³¹P NMR spectra were obtained using Bruker DRX400 and Bruker DRX500 NMR spectrometers (Bruker, Billerica, MA). ¹H and ¹³C NMR values are reported in parts per million (ppm) relative to Me₄Si as internal standard or corresponding deuterium solvents as internal standard. ³¹P NMR values are reported in ppm relative to an external standard of 85% H₃PO₄. Splitting patterns are designated as follows: s, singlet; br, broad; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; m, multiplet. HPLC purification was performed with a C18 reverse-phase 250 x 9.4 mm HPLC column (Thermo Scientific, US) using a mobile phase of 0.1 M triethylammonium acetate buffer (pH 7.0)/acetonitrile. α -Lthreofuranosyl nucleoside 3'-monophosphates (6a-c), 3'-phosphoro(2-methyl) imidazolides (7a-c), and 3'-triphosphates (8a-c) were analyzed by analytical HPLC with a reverse-phase column (C18 150 \times 4.6 mm, 5 μ m particle size, Thermo Scientific, US). Thermo Pol buffer was purchased from New England Biolabs (Ipswich, MA). DNA oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA), purified by denaturing polyacrylamide gel electrophoresis, electro-eluted, precipitated by ethanol, re-suspended in water, and quantified by UV absorbance. Recombinant Kod-RI polymerases was expressed and purified from *E. coli* as previously described¹. TNA triphosphates bearing natural bases were synthesized as previously described².

5-iodo-1-(2'-O-benzoyl- α -L-threofuranosyl)-uracil (3).

To a suspension of 5-iodo-uracil (1) (9.1 g, 38.5 mmol) in 100 mL anhydrous acetonitrile was added N,O-bis(trimethylsilyl)acetamide (19.6 mL, 80.2 mmol) and the mixture was stirred for 1 h at 60 °C. After cooling to 24 °C, 1-O-acetyl-2-O-benzoyl-3-O-tertbutyldiphenylsilyl-L-threofuranose (2) (16.2 g, 32.1 mmol) in 50 mL anhydrous acetonitrile was added dropwise to the reaction mixture. TMSOTf (17.4 mL, 96.3 mmol) was then added and the mixture was heated for 2.5 h at 60 °C. After removal of acetonitrile, the syrup was diluted with 200 mL of EtOAc. The solution was washed with aqueous saturated NaHCO₃ and brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was directly used for the next step. The residue was dissolved in THF (100 mL), then cooled to 0-5 °C. To the cold THF solution was added dropwise tetrabutylammonium fluoride (TBAF, 1 M solution in THF, 32.1 mL, 32.1 mmol) and the mixture was stirred for 2 h at 0 °C. The solvent was evaporated under reduced pressure and the residue was dissolved in 200 mL of EtOAc. The organic layer was washed with H₂O (100 mL x 2) and brine (100 mL), dried over MgSO₄, and concentrated under reduced pressure to give a yellow syrup. The syrup was purified by flash chromatography (silica gel, hexane/EtOAc/CH₂Cl₂, 1:1:1) to afford **3** (10 g, 70%) as a light yellow form. TLC (hexane/EtOAc, 1:1): $R_{\rm f}$ = 0.23. ¹H NMR (500 MHz, CDCl₃): δ 9.07 (s, 1H), 8.02-8.00 (m, 2H), 7.62-7.59 (m, 1H), 7.48-7.45 (m, 2H), 7.26 (s, 1H), 5.98 (s, 1H), 5.50 (s, 1H), 4.51 (s, 1H), 4.40-4.38 (m, 1H), 4.27-4.25 (m, 1H), 3.75 (s, 1H). ¹³C NMR (125.8 MHz, CDCl₃): δ 165.9, 160.3, 150.1, 145.9, 134.1, 130.1, 128.8, 128.5, 91.4, 82.6, 74.1, 67.7. HRMS (ESI-TOF) calcd for C₁₅H₁₃N₂O₆Nal [M + Na]⁺ 466.9716; observed 466.9709.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-ethynyl-uracil (4a).

To a solution of **3** (1.16 g, 2.61 mmol), [Pd(PPh₃)₄] (0.30 g, 0.26 mmol) and Cul (0.10 g, 0.52 mmol) in anhydrous DMF (15 mL) were added anhydrous Et₃N (0.73 mL, 5.2 mmol), and trimethylsilylacetylene (1.8 mL, 13.0 mmol). The reaction mixture was stirred at rt under a nitrogen atmosphere for 16 h. The solvent was diluted with ethyl acetate (80 mL), and washed with saturated Na₂EDTA aqueous solution (80 mL x 6) and brine (100 mL), dried over MgSO₄, and concentrated under reduced pressure to give a black residue. The residue was dissolved in THF (20 mL), and treated with TBAF (1 M solution in THF, 13.0 mL, 13.0 mmol) at 0 °C for 20 min. After removal of THF, the residue was purified by flash chromatography (silica gel, CH₂Cl₂/acetone, 10:1) to give the product **4a** (0.79 g, 88%) as a light yellow foam. TLC (CH₂Cl₂/acetone, 10:1): *R*f = 0.14. ¹H NMR (500 MHz, DMSO-*d6*): δ 11.75 (s, 1H), 8.07 (s, 1H), 8.01 (d, *J* = 7.5 Hz, 2H), 7.72-7.69 (m, 1H), 7.58-7.55 (m, 2H), 5.96 (s, 1H), 5.33 (s, 1H), 4.36 (s, 1H), 4.25 (d, *J* = 9.5 Hz, 1H), 4.16-4.14 (m, 2H). ¹³C NMR (125.8 MHz, DMSO-*d6*): δ 164.6, 161.7, 149.4, 145.0, 134.0, 129.6, 128.9, 128.8, 97.3, 89.5, 83.7, 81.7, 76.3, 75.7, 72.3. HRMS (ESI-TOF) calcd for C₁₇H₁₄N₂O₆Na [M + Na]⁺ 365.0750; observed 365.0748.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-(octa-1,7-diynyl)-uracil (4c).

To a solution of **3** (1.25 g, 2.82 mmol), $[Pd(PPh_3)_4]$ (0.32 g, 0.28 mmol) and Cul (0.11 g, 0.57 mmol) in anhydrous DMF (15 mL) were added anhydrous Et₃N (0.59 mL, 4.2 mmol),

and octa-1,7-diyne (3.75 mL, 28.0 mmol). The reaction mixture was stirred at rt under a nitrogen atmosphere for 16 h. The solvent was diluted with ethyl acetate (80 mL), and washed with saturated Na₂EDTA aqueous solution (80 mL x 6) and brine (100 mL), dried over MgSO₄, and concentrated under reduced pressure to give a black residue. The residue was purified by flash chromatography (silica gel, hexane/EtOAc, 1:1) to give the product **4c** (0.66 g, 58%) as a light yellow foam. TLC (hexane/EtOAc, 1:1): $R_f = 0.41$. ¹H NMR (500 MHz, DMSO-*d*6): δ 9.56 (s, 1H), 7.99 (d, *J* = 5.0 Hz, 2H), 7.79 (s, 1H), 7.57 (t, *J* = 7.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 5.96 (s, 1H), 5.54 (s, 1H), 4.46 (s, 1H), 4.38 (d, *J* = 10.0 Hz, 1H), 4.28-4.22 (m, 2H), 2.40-2.38 (t, *J* = 6.5 Hz, 2H), 2.24-2.21 (m, 2H), 1.97-1.96 (m, 1H), 1.69-1.64 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*6): δ 165.7, 162.6, 149.5, 143.0, 133.9, 130.0, 128.7, 100.0, 94.5, 91.2, 84.4, 82.2, 76.3, 73.8, 71.5, 68.7, 27.7, 27.5, 19.2, 18.1. HRMS (ESI-TOF) calcd for C₂₃H₂₂N₂O₆Na [M + Na]⁺ 445.1375; observed 445.1375.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-ethynyl-uracil 3'-*O*-bis(2-cyanoethyl)-phosphotriester (5a).

To a stirring solution of **4a** (0.43 g, 1.0 mmol) and DMAP (25 mg, 0.20 mmol) in CH₂Cl₂ (10 mL) was added *N*,*N*-Diisopropylethylamine (DIPEA) (261 μ L, 1.5 mmol) followed by the addition of 2-cyanoethyl-*N*,*N*-diisopropylchlorophosphoramidite (268 μ L, 1.2 mmol). After stirring for 20 min at rt, the solution was diluted with CH₂Cl₂ (40 mL) and extracted with saturated aqueous NaHCO₃ (40 mL). The organic layer was washed with brine, dried over Na₂SO₄ and evaporated to dryness for the next step.To a stirring solution of the residue in acetonitrile (15 mL) was added 3-hydroxypropionitrile (137 μ L, 2.0 mmol) followed by a solution of 0.45 M tetrazole in acetonitrile (4.45 mL, 2.0 mmol). After being stirred for 2 h at room temperature, H₂O₂ (30% in H₂O) (306 μ L, 3.0 mmol) was added to the solution. After being stirred at rt for 20 min, the solution was diluted with CH₂Cl₂ (50

mL) and washed with brine. The organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography (silica gel, CH₂Cl₂/MeOH, 20:1) to afford **5a** (0.21 g, 40%) as a white foam. TLC (CH₂Cl₂/MeOH, 10:1): $R_f = 0.31$. ¹H NMR (500 MHz, CDCl₃): δ 9.59 (s, 1H), 8.02 (d, J = 7.5 Hz, 2H), 7.83 (s, 1H), 7.63-7.60 (t, J = 7.5 Hz, 1H), 7.48-7.45 (t, J = 7.5 Hz, 2H), 6.07 (s, 1H), 5.73 (s, 1H), 5.09-5.07 (m, 1H), 4.65 (d, J = 11.0 Hz, 1H), 4.42-4.34 (m, 5H), 3.25 (s, 1H), 2.85-2.83 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): δ 164.9, 161.7, 149.2, 143.4, 134.3, 130.1, 128.8, 128.2, 116.8, 98.6, 90.4, 82.3, 79.8 (d, $J_{C,P} = 6.3$ Hz), 78.8 (d, $J_{C,P} = 5.0$ Hz), 75.1, 74.7 (d, $J_{C,P} = 5.0$ Hz), 63.4 (t, $J_{C,P} = 5.0$ Hz), 19.9 (t, $J_{C,P} = 5.0$ Hz, $J_{C,P} = 6.3$ Hz). ³¹P NMR (162 MHz, CDCl₃): δ -3.29. HRMS (ESI-TOF) calcd for C₂₃H₂₁N₄O₉PNa [M + Na]⁺ 551.0944; observed 551.0950.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-uracil 3'-*O*-bis(2-cyanoethyl)-phosphotriester (5b).

Phosphotriester **5a** (155 mg, 0.29 mmol) and benzyl azide (1.0 mmol) were dissolved in THF/H₂O/t-BuOH (3:1:1, v/v, 6 mL), then sodium ascorbate (0.50 mL, 0.50 mmol) of a freshly prepared 1 M solution in water was added, followed by the addition of copper(II) sulfate pentahydrate 7.5% in water (333 mL, 0.10 mmol). The reaction mixture was stirred for 30 min at room temperature. The solvent was evaporated and the residue was diluted with CH₂Cl₂ (50 mL). The organic layer was washed with saturated Na₂EDTA aqueous solution (50 mL x 3) and brine (50 mL), dried over MgSO₄, and concentrated. The residue was purified by flash chromatography (silica gel, CH₂Cl₂/MeOH, 30:1) to give **5b** (127 mg, 66%) as a white foam. TLC (CH₂Cl₂/MeOH, 10:1): $R_{\rm f} = 0.43$. ¹H NMR (500 MHz, CDCl₃): δ 9.41 (s, 1H), 8.49 (s, 1H), 8.20 (s, 1H), 8.02 (d, J = 7.0 Hz, 2H), 7.83 (s, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.47-7.45 (m, 2H), 7.38-7.27 (m, 5H), 6.25 (s, 1H), 5.65 (s, 1H), 5.51-5.50 (m,

2H), 5.16-5.14 (m, 1H), 4.68 (d, J = 11.5 Hz, 1H), 4.44-4.30 (m, 5H), 2.81-2.73 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): δ 165.1, 161.1, 149.4, 139.4, 135.7, 134.7, 134.2, 130.1, 129.3, 128.9, 128.8, 128.3, 128.1, 122.6, 116.7, 116.6, 106.5, 90.1, 80.8 (d, $J_{C,P} = 6.3$ Hz), 79.3 (d, $J_{C,P} = 5.0$ Hz), 74.1 (d, $J_{C,P} = 3.8$ Hz), 63.4 (d, $J_{C,P} = 5.0$ Hz), 63.3 (d, $J_{C,P} = 3.8$ Hz), 19.6 (d, $J_{C,P} = 8.8$ Hz). ³¹P NMR (162 MHz, CDCl₃): δ -2.56. HRMS (ESI-TOF) calcd for C₃₀H₂₈N₇O₉PNa [M + Na]⁺ 684.1584; observed 684.1569.

1-(2'-O-benzoyl- α -L-threofuranosyl)-5-(octa-1,7-diynyl)-uracil

3'-O-bis(2-cyanoethyl)-phosphotriester (5c).

As described for **5a**, compound **5c** was prepared from nucleoside **4c** (0.38 g, 0.90 mmol), purified by flash chromatography (silica gel, CH₂Cl₂/MeOH, 30:1), and obtained as a white foam (0.24 g, 44%). TLC (CH₂Cl₂/MeOH, 10:1): $R_{\rm f} = 0.42$. ¹H NMR (500 MHz, CDCl₃): δ 9.73 (s, 1H), 8.02 (d, J = 7.5 Hz, 2H), 7.67 (s, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.04 (s, 1H), 5.71 (s, 1H), 5.09-5.07 (m, 1H), 4.62 (d, J = 11.0 Hz, 1H), 4.39-4.33 (m, 5H), 2.85-2.83 (m, 4H), 2.43 (t, J = 7.0 Hz, 2H), 2.25-2.22 (m, 2H), 1.99 (t, J = 2.5 Hz, 1H), 1.72-1.64 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): δ 164.9, 162.2, 149.3, 141.3, 134.2, 130.1, 128.7, 128.2, 116.8, 116.7, 100.2, 94.7, 90.4, 84.2, 79.8 (d, $J_{\rm C,P} = 6.3$ Hz), 78.8 (d, $J_{\rm C,P} = 5.0$ Hz), 74.5 (d, $J_{\rm C,P} = 5.0$ Hz), 71.7, 68.8, 63.3 (dd, $J_{\rm C,P} = 5.0$ Hz, $J_{\rm C,P} = 8.8$ Hz), 27.6, 19.8 (t, $J_{\rm C,P} = 8.8$ Hz), 19.2, 18.0. ³¹P NMR (162 MHz, CDCl₃): δ -2.45. HRMS (ESI-TOF) calcd for C₂₉H₂₉N₄O₉PNa [M + Na]⁺ 631.1570; observed 631.1556.

1-(2'-O-benzoyl- α -L-threofuranosyl)-5-ethynyl-uracil 3'-O-monophosphate (6a).

Compound **5a** (236 mg, 0.45 mmol) was dried by co-evaporation with dry pyridine (5 mL x 2) and dissolved in 10 ml dry pyridine. To this solution N,O-Bis(trimethyl silyl)acetamide (4.4 mL, 18.0 mmol) and DBU (404 µL, 2.7 mmol) were added and the resulting solution was stirred at room temperature for 5 h. The reaction was guenched with 30 ml water and diluted with 50 mL diethyl ether. The organic layer was extracted with 2 × 10 mL water and the combined aqueous phases were evaporated to dryness. The residue was co-evaporated with 3×5 mL toluene and 2×5 mL pyridine, and treated with ammonia in methanol (2.5 M, 10 mL) for 3 h under stirring at room temperature. The solvent was evaporated, the residue was dissolved in water (20 mL), and washed with CH₂Cl₂ (4 x 30 mL). The aqueous layer was lyophilized, and the resulting material was suspended in ammonia-MeOH (2.5 M, 1 mL) and diluted with acetone (20 mL). The precipitate was collected by centrifugation at 4400 rpm at room temperature for 15 min and the resulting pellet was washed twice with 20 mL of acetone and dried under high vacuum. Monophosphate 6a was obtained as the ammonium salt (white solid) in near quantitative yield (150 mg, 95%). ¹H NMR (500 MHz, D₂O): δ 8.18 (s, 1H), 5.84 (s, 1H), 4.66-4.64 (m, 1H), 4.55-4.52 (m, 2H), 4.43-4.39 (m, 1H), 3.65 (s, 1H). ¹³C NMR (126 MHz, D₂O): δ 165.7, 151.1, 146.6, 110.5, 97.9, 93.2, 83.5, 79.6, 78.2, 78.1, 76.4, 76.3, 75.6. ³¹P NMR (162 MHz, D₂O): δ 2.83. HRMS (ESI-TOF) calcd for C₁₀H₁₂N₂O₈P [M + H]⁺ 319.0331; observed 319.0330.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-uracil 3'-*O*-monophosphate (6b).

In a sealed tube, compound **5b** (116 mg, 0.175 mmol) was combined with NH₃-MeOH (2 mL) and NH₄OH (4 mL), and stirred for 16 h at 37 °C. The solution was cooled down to room temperature, diluted with water, and washed with CH₂Cl₂ (3 x 40 mL). The aqueous layer was lyophilized to afford the product as ammonium salt. The precipitate was collected by centrifugation at 4400 rpm at room temperature for 15 min and the resulting pellet was washed twice with 20 mL of acetone and dried under high vacuum. The nucleoside 3'-monophosphate **6b** was obtained as the ammonium salt (white solid) in quantitative yield (85 mg, 100%). ¹H NMR (400 MHz, D₂O): δ 8.29-8.27 (m, 2H), 7.42-7.32 (m, 5H), 5.85 (s, 1H), 5.57 (s, 2H), 4.70-4.69 (m, 1H), 4.63-4.59 (m, 2H), 4.45-4,44 (m, 1H). ¹³C NMR (100 MHz, D₂O): δ 163.2, 151.0, 138.2, 135.1, 129.4, 129.0, 128.2, 124.0, 104.6, 92.7, 79.2, 79.1, 78.2, 75.7, 69.6, 54.2. ³¹P NMR (162 MHz, D₂O): δ 0.46. HRMS (ESI-TOF) calcd for C₁₇H₁₈N₅O₈PNa [M + Na]⁺ 474.0791; observed 474.0802.

1-(2'-*O*-benzoyl- α -L-threofuranosyl)-5-(octa-1,7-diynyl)-uracil 3'-*O*-monophosphate (6c).

As described for **6b**, compound **6c** was prepared from nucleoside **5c** (184 mg, 0.30 mmol), and obtained as the ammonium salt (white solid, 105 mg, 81%). ¹H NMR (500

MHz, D₂O): δ 7.98 (s, 1H), 5.81 (s, 1H), 4.65-4.64 (m, 1H), 4.55-4.50 (m, 2H), 4.43-4.40 (m, 1H), 2.55-2.47 (m, 2H), 2.41 (s, 1H), 2.32-2.29 (m, 2H), 1.74-1.68 (m, 4H). ¹³C NMR (126 MHz, D₂O): δ 165.3, 150.6, 143.9, 98.9, 95.9, 92.6, 86.1, 79.0, 77.8, 77.7, 75.7, 71.5, 69.4, 27.1, 27.0, 18.4, 17.2. ³¹P NMR (162 MHz, D₂O): δ 1.38. HRMS (ESI-TOF) calcd for C₁₆H₁₉N₂O₈PNa [M + Na]⁺ 421.0777; observed 421.0762.

1-(2'-O-benzoyl-α-L-threofuranosyl)-5-ethynyl-uracil

3'-O-phosphor-(2-methyl)imidazolide (7a). General procedure for the preparation of 7a-c.

To a stirring solution containing nucleoside 3'-monophosphate **6a** (88 mg, 0.25 mmol) and 2-methylimidazole (200 mg, 2.44 mmol, 9.7 equiv) in anhydrous DMSO (1 mL) and DMF (1 mL), and was added triethylamine (0.2 mL, 1.44 mmol, 5.8 equiv), triphenylphosphine (200 mg, 0.76 mmol, 3.0 equiv) and 2,2'-dipyridyldisulfide (240 mg, 1.1 mmol, 4.4 equiv). The reaction was stirred under a nitrogen atmosphere for 3 h at room temperature with monitoring by analytical HPLC. After consumption of the starting material, the product was precipitated by the dropwise addition of the reaction mixture to a stirring solution containing 60 mL of acetone, 60 mL of diethyl ether, 4 mL of triethylamine and 1 mL of saturated NaClO₄ in acetone. The precipitate was collected by centrifugation at 4400 rpm for 15 min at room temperature. The pellet was washed twice with 30 mL of washing solution (acetone/diethyl ether 1:1) and dried under high vacuum to afford **7a** as sodium salt (white solid, 73 mg, 72%). ¹H and ¹³C spectrum were not taken for nucleoside 3'-phosphoro(2-methyl) imidazolides (**7a-c**), as these compounds were used without further purification. ³¹P NMR (162 MHz, DMSO-*d6*): δ -9.86. HRMS (ESI-TOF) calcd for C₁₄H₁₄N₄O₇PNa₂ [M -H + 2Na]⁺ 427.0396; observed 427.0394.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-uracil 3'-*O*-phosphor-(2-methyl)imidazolide (7b).

As described for **7a**, compound **7b** was prepared from nucleoside **6b** (78 mg, 0.16 mmol), and obtained as sodium salt (white solid, 85 mg, 98%). ³¹P NMR (162 MHz, D₂O) δ -9.73. HRMS (ESI-TOF) calcd for C₂₁H₂₂N₇O₇PNa [M + Na]⁺ 538.1216; observed 538.1224.

$1-(2'-O-benzoyl-\alpha-L-threofuranosyl)-5-(octa-1,7-diynyl)-uracil$

3'-O-phosphor-(2-methyl)imidazolide (7c).

As described for **7a**, compound **7c** was prepared from nucleoside **6c** (40 mg, 0.093 mmol), and obtained as sodium salt (white solid, 40 mg, 89%). ³¹P NMR (162 MHz, DMSO-*d6*): δ -9.77. HRMS (ESI-TOF) calcd for C₂₀H₂₃N₄O₇PNa [M +Na]⁺ 485.1202; observed 485.1191.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-ethynyl-uracil 3'-*O*-triphosphate (8a). General procedure for the preparation of 8a-c.

To a anhydrous DMF (2 mL) solution of compound **7a** (30 mg, 78 µmol) was added tributylamine (48 µL, 0.20 mmol, 2.56 equiv) and tributylammonium pyrophosphate (110 mg, 0.20 mmol, 2.56 equiv), and the reaction was stirred for 6 h at 24°C under N₂ with monitoring by analytical HPLC. After the reaction was finished, the reaction mixture was added dropwise to a stirring solution containing 20 mL of acetone and 3 mL of saturated NaClO₄ in acetone. The precipitate was collected by centrifugation at 4400 rpm for 15 min at room temperature and dried under vacuum for 1 h. The crude precipitate was dissolved in 2 ml of 0.1 M triethylammonium acetate buffer and purified by a semi-preparative HPLC. Fractions containing triphosphates were collected, concentrated, pH adjusted by triethylamine to 8.0, and lyophilized to afford the product as a triethylammonium salt. The solid product was resuspended in 1 mL of methanol and was added dropwise to a solution containing 30 mL of acetone and 1 mL of saturated NaClO₄ in acetone. The solution was centrifuged at 4400 rpm for 15 min at room temperature. The supernatant was discarded, and the pellet was washed with 30 mL acetone and dried under vacuum. The desired triphosphate **8a** was obtained as sodium salt in a white solid form. The yield was measured by the NanoDrop 2000c, assuming an extinction coefficient²⁻³ of 3.8 mM⁻¹ cm⁻¹ and found to be 22% (17 µmol). The 3'-O-triphosphates were dissolved and stocked in a 10 mM Tris (pH 8.0) buffer and used for enzymatic TNA synthesis. ¹H and ¹³C spectra were not recorded for nucleoside 3'-O-triphosphates (8a-c), because of the difficulty in recovery the compounds from the Tris buffer. ³¹P NMR (162 MHz, D₂O): δ –4.42 (d, J = 21.7 Hz), -10.09 (d, J = 20.7 Hz), -20.33 (t, J = 24.8 Hz). HRMS (ESI-TOF) calcd for C₁₀H₁₀N₂O₁₄P₃Na₄ [M -3H + 4Na]⁺ 566.8936; observed 566.8959.

1-(2'-*O*-benzoyl-α-L-threofuranosyl)-5-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-uracil 3'-*O*-triphosphate (8b).

As described for **8a**, compound **8b** was prepared from nucleoside **7b** (65 mg, 0.12 mmol), and obtained as sodium salt in a white solid form. The yield was measured by the NanoDrop 2000c, assuming an extinction coefficient⁴ of 3.8 mM⁻¹ cm⁻¹ and found to be 28% (33.8 µmol). ³¹P NMR (162 MHz, D₂O): δ –4.64 (d, J = 20.7 Hz), –11.19 (d, J = 20.6 Hz), -20.63 (t, J = 20.3 Hz). HRMS (ESI-TOF) calcd for C₁₇H₁₇N₅O₁₄P₃Na₄ [M -3H + 4Na]⁺ 699.9576; observed 699.9598.

1-(2'-*O*-benzoyl- α -L-threofuranosyl)-5-(octa-1,7-diynyl)-uracil 3'-*O*-triphosphate (8c).

As described for **8a**, compound **8c** was prepared from nucleoside **7c** (30 mg, 62 µmol), and obtained as sodium salt in a white solid form. The yield was measured by the NanoDrop 2000c, assuming an extinction coefficient⁵ of 4.0 mM⁻¹ cm⁻¹ and found to be 32% (19.8 µmol). ³¹P NMR (162 MHz, D₂O): δ –4.46 (d, *J* = 20.3 Hz), -10.99 (d, *J* = 20.4 Hz), -20.38 (t, *J* = 20.3 Hz). HRMS (ESI-TOF) calcd for C₁₆H₁₈N₂O₁₄P₃Na₄ [M -3H + 4Na]⁺ 646.9562; observed 646.9591. **Primer extension assay.** Primer-extension reactions were performed in a final volume of 10 μL using 10 pmol of PBS8-IR680 primer (5'-IR680-GGATA CCACC) and 15 pmol of 30-mer DNA template template (5'- TCTCT ATAGT GAGTC GTATA GGTGG TATCC). Each reaction contained primer/template complex, 1x ThermoPol buffer [20 mM Tris-HCl, 10 mM (NH4)₂SO₄, 10 mM KCl, 2 mM MgSO₄, 0.1% Triton X-100, pH 8.8], 1 μM KOD-RI, 100 μM of each tNTP, and 1 mM MnCl₂. Reactions were incubated for 1 h or 2 h at 55°C, quenched with stop buffer (8 M urea, 45 mM EDTA) and analyzed by 15% denaturing urea PAGE.

Large-scale TNA synthesis. Primer-extension reactions were performed in a final volume of 500 μL using 0.5 nmol of PBS8-IR680 primer (5'-IR680-GGATA CCACC) and 0.75 nmol of 50-mer DNA template template (5'-TCTCT ATAGT GAGTC GTATA GGTGG TATCC TTTTT TTTTT TTTTT TTTTT) or (5'-TCTCT ATTGT GTGTC GTCTC GGTGG TATCC TTTTT TTTTT TTTTT). Each reaction contained primer/template complex, 1x ThermoPol buffer [20 mM Tris-HCl, 10 mM (NH4)₂SO₄, 10 mM KCl, 2 mM MgSO₄, 0.1% Triton X-100, pH 8.8], 1 μM KOD-RI, 100 μM of tNTP containing 5-alkynyl-tUTP **8a** or **8c**, and 1 mM MnCl₂. Reaction was incubated for 1 h at 55°C, and the aqueous part was removed by SpeedVac concentrator and the residue was purified by 10% denaturing urea PAGE. The incorporation of 5-alkynyl-tUTP **8a** or **8c** into the TNA oligonucleotides was confirmed by mass spectrum (for **8a**, calculated: 10456.8, found: 10460.0; for **8c**, calculated: 10790.1, found: 10786.6).

Click reactions performed on purified TNAs with benzyl azide. To 5 μ L of a 4 μ M TNA aqueous solution (20 pmol) obtained from TNA synthesis step based on DNA template (5'-TCTCT ATAGT GAGTC GTATA GGTGG TATCC TTTTT TTTTT TTTTT TTTTT), 1 μ L of benzyl azide solution (in DCM, 100 mM), 10 μ L of a freshly prepared solution containing 0.1 M CuBr and 0.1 M TBTA ligand in a 1.2 ratio in 3:1 DMSO/*t*-BuOH was added. The mixture was thoroughly mixed and shaken at 37 °C for 16 h. The reaction was subsequently diluted with 0.3 M NaOAc (10 μ L) and the TNA precipitated using 0.5 mL cold EtOH. The washed residue was redissolved in pure water (40 μ L) and 10 μ L was

used for PAGE analysis without further purification.

Click reactions performed on purified TNAs with IR-800 azide. To 10 μ L of a 12 μ M TNA aqueous solution (120 pmol) obtained from TNA synthesis step based on DNA template (5'- TCTCT ATTGT GTGTC GTCTC GGTGG TATCC TTTTT TTTTT TTTTT, 1 μ L of IR-800 azide solution (in DMSO, 100 mM), 10 μ L of a freshly prepared solution containing 0.1 M CuBr and 0.1 M TBTA ligand in a 1.2 ratio in 3:1 DMSO/*t*-BuOH was added. The mixture was thoroughly mixed and shaken at 37 °C for 16 h. The reaction is subsequently diluted with 0.3 M NaOAc (20 μ L) and the TNA precipitated using 1 mL cold EtOH. The washed residue was purified by denaturing PAGE and then used for PAGE analysis.

References:

1. Nikoomanzar, A.; Dunn, M. R.; Chaput, J. C., *Curr. Protoc. Nucleic Acid Chem.* **2017**, *69*, 4.75.1-4.75.20.

- 2. Bala, S.; Liao, J. Y.; Mei, H.; Chaput, J. C., J. Org. Chem. 2017, 82, 5910-5916.
- 3. Ingale, S. A.; Mei, H.; Leonard, P.; Seela, F., J. Org. Chem. 2013, 78, 11271-11282.
- 4. Kocalka, P.; Andersen, N. K.; Jensen, F.; Nielsen, P., ChemBioChem **2007**, *8*, 2106-2116.
- 5. Seela, F.; Sirivolu, V. R., *Helv. Chim. Acta* **2007**, *90*, 535-552.

HPLC analysis of the TNA nucleoside 3'-monophosphate **8a**, 3'-phosphor-imidazolide **9a**, 3'-triphosphate **10a**.

HPLC analysis of the TNA nucleoside 3'-monophosphate **8b**, 3'-phosphor-imidazolide **9b**, 3'-triphosphate **10b**.

HPLC analysis of the TNA nucleoside 3'-monophosphate **8c**, 3'-phosphor-imidazolide **9c**, 3'-triphosphate **10c**.

¹H NMR spectrum of compound **3** (500 MHz, CDCl₃)

 ^{13}C NMR spectrum of compound **3** (126 MHz, CDCl₃)

¹H NMR spectrum of compound **4a** (500 MHz, DMSO-d6)

¹³C NMR spectrum of compound **4a** (126 MHz, DMSO-d6)

¹H NMR spectrum of compound **4c** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **4c** (126 MHz, CDCl₃)

¹H NMR spectrum of compound **5a** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **5a** (126 MHz, CDCl₃)

¹H NMR spectrum of compound **5b** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **5b** (126 MHz, CDCl₃)

³¹P NMR spectrum of compound **5b** (162 MHz, CDCl₃)

¹H NMR spectrum of compound **5c** (500 MHz, CDCl₃)

 ^{13}C NMR spectrum of compound **5c** (126 MHz, CDCl₃)

³¹P NMR spectrum of compound **5c** (162 MHz, CDCl₃)

 1 H NMR spectrum of compound **6a** (500 MHz, D₂O)

 13 C NMR spectrum of compound **6a** (126 MHz, D₂O)

 31 P NMR spectrum of compound **6a** (162 MHz, D₂O)

 1 H NMR spectrum of compound **6b** (400 MHz, D₂O)

 ^{13}C NMR spectrum of compound **6b** (100 MHz, D₂O)

 ^{31}P NMR spectrum of compound **6b** (162 MHz, D₂O)

 1 H NMR spectrum of compound **6c** (500 MHz, D₂O)

 ^{13}C NMR spectrum of compound **6c** (126 MHz, D₂O)

 31 P NMR spectrum of compound **6c** (162 MHz, D₂O)

 ^{31}P NMR spectrum of compound 7a (162 MHz, D₂O)

N NH Ο о́н 76 0 -20 -40 -60 -80 (ppm) 220 200 180 160 140 120 100 80 -120 -160 60 40 20 -200

 ^{31}P NMR spectrum of compound **7b** (162 MHz, D₂O)

 ^{31}P NMR spectrum of compound 8a (162 MHz, D₂O)

 ^{31}P NMR spectrum of compound **8b** (162 MHz, D₂O)

 ^{31}P NMR spectrum of compound 8c (162 MHz, D₂O)