Electronic Supporting Information

The Homometallic Polyoxotungstate Archetype {P₄W₂₄}

Xiaofeng Yi,^{a,b} Natalya V. Izarova,^a and Paul Kögerler^{a,b,*}

- *a.* Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI 6), Forschungszentrum Jülich, D-52425 Jülich, Germany.
- b. Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany.

I. General methods and materials.

The reagents were used as purchased without further purification. K₁₂[H₂P₂W₁₂O₄₈]·24H₂O (K- P_2W_{12}) was synthesized according to the reported procedure ^[1] and its identity and purity were confirmed by IR spectroscopy. Elemental analysis results (ICP-OES and C/H/N) were obtained from Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich GmbH (D-52425 Jülich, Germany). TGA/DTA measurements were carried out with a Mettler Toledo TGA/SDTA 851 in dry N₂ (60 mL min⁻¹) at a heating rate of 5 K min⁻¹. Vibrational spectra were recorded on a Bruker VERTEX 70 FT-IR spectrometer coupled with a RAM II FT-Raman module (1064 nm Nd: YAG laser) on KBr disks for the FT-IR and the solid material for the Diamond ATR FT-IR and Raman measurements. ³¹P NMR spectra were recorded by Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich GmbH (D-52425 Jülich, Germany). The measurements were done at room temperature in 5 mm tubes using a Bruker Avance 600-MHz spectrometer equipped with a prodigy probe, operating at 242.95 MHz for ³¹P and with a Varian Inova 400 MHz spectrometer equipped with an Auto-X-PFG-probe and with resonance frequency of 161.834 MHz. Chemical shifts are reported with respect to 85% H₃PO₄; all chemical shifts downfield of the reference are reported as positive values. UV-Vis spectra were measured using 10 mm quartz cuvettes on Shimadzu UV-3600 plus UV-Vis-NIR spectrophotometer and Analytik Jena Specord S600 spectrophotometer.

Synthesis of K_{3.5}Li₈[(CH₃)₂NH₂]_{4.5}[(C₆H₅PO)₂P₄W₂₄O₉₂]·35H₂O (KLD-1).

A solution of C₆H₅PO₃H₂ (0.040 g, 0.25 mmol) in 5 mL of 1 M LiCl was added dropwise to a solution of **K-P₂W₁₂** (0.394 g, 0.1 mmol) in 15 mL of 1 M LiCl acidified by 50 µL glacial acetic acid under vigorous stirring. The pH of the resulting mixture was adjusted to 2.5 - 3.0 by addition of glacial acetic acid. The reaction solution was then placed in an oven and uniformly heated at 60 °C for 1 day. After cooling down to room temperature, 1 M aqueous solution of $[(CH_3)_2NH_2]Cl$ (40 drops) was added to the reaction mixture and it was left for evaporation. Transparent colorless block-like crystals of **KLD-1** formed within three weeks. The crystals were collected by filtration and dried in air. Yield: 0.064 g (17.6 % based on {P₂W₁₂}). Elemental analysis: calculated for C₂₁H₁₁₆K_{3.5}Li₈N_{4.5}O₁₂₉P₆W₂₄ (found): C, 3.46 (3.47); H, 1.60 (1.60); K, 1.88 (1.90); Li, 0.76 (0.78); N, 0.87 (0.84); P, 2.55 (2.54); W, 60.55 (58.3) %. IR spectrum (KBr pellet), cm⁻¹: 3432 (s, br); 1631 (m); 1466 (w); 1438 (w); 1161 (m); 1128 (m); 1088 (m); 1020 (m); 989 (m); 974 (m); 929 (s); 916 (s); 808 (s); 698 (s); 563 (m); 548 (m); 465 (m). Raman (solid sample, $\lambda_e = 1064$ nm), cm⁻¹: 1001(w); 964 (s); 862 (w); 660 (w); 397 (w); 228 (m); 193 (m); 77 (m). UV-Vis (1 M LiCl solution): $\lambda = 213$ nm, $\varepsilon = 2.87 \times 10^5$ M⁻¹cm⁻¹; $\lambda = 271$ nm, $\varepsilon = 9.49 \times 10^4$ M⁻¹cm⁻¹.

Synthesis of K3.5Li8[(CH3)2NH2]4.5[(C6H5AsO)2P4W24O92]·40H2O (KLD-2).

The synthetic procedure for **KLD-2** was similar to that for preparation of **KLD-1** but C₆H₅AsO₃H₂ (0.051 g, 0.25 mmol) was used instead of C₆H₅PO₃H₂. After the reaction 30 drops of 1 M aqueous [(CH₃)₂NH₂]Cl solution were added to the reaction mixture for crystallization. Transparent block-like crystals of **KLD-2** were obtained within four weeks. The crystals were collected by filtration and dried in air. Yield: 0.116 g (31 % based on {P₂W₁₂}). Elemental analysis: calculated for C₂₁H₁₂₆As₂K_{3.5}Li₈N_{4.5}O₁₃₄P₄W₂₄ (found): C, 3.38 (3.32); H, 1.70 (1.73); As, 2.01 (2.00); K, 1.83 (1.83); Li, 0.74 (0.72); N, 0.84 (0.81); P, 1.66 (1.62); W, 59.11 (58.6) %. IR spectrum (KBr pellet), cm⁻¹: 3426 (s, br); 1629 (m); 1466 (w); 1440 (w); 1161 (m); 1086 (m); 1018 (m); 989 (m); 929 (s); 916 (s); 829 (s); 785 (s); 694 (s); 573 (m); 528 (m); 465 (m). Raman (solid sample, λ_e = 1064 nm), cm⁻¹: 1001(w); 960 (s); 892 (w); 835 (w); 684 (w); 233 (m); 193 (m); 137 (m); 75 (m). UV-Vis (1 M LiCl solution): λ = 209 nm, ε = 2.81×10⁵ M⁻¹cm⁻¹; λ = 270 nm, ε = 8.86×10⁴ M⁻¹cm⁻¹.

Synthesis of $H_2K_2Li_{1.5}[(CH_3)_2NH_2]_{4.5}\{[C_0(H_2O)_4]_2[\{(H_2O)_4C_0\}(C_6H_5PO)_2P_4W_{24}O_{92}]\}\cdot 28H_2O(KLD-3).$

A solution of C₆H₅PO₃H₂ (0.040 g, 0.25 mmol) and CoCl₂ (0.130 g, 1.00 mmol) in 5 mL of 1 M LiCl was added dropwise to a solution of K-P2W12 (0.394 g, 0.1 mmol) in 15 mL of 1 M LiCl acidified by 50 µL glacial acetic acid under vigorous stirring. The pH of the resulting mixture was adjusted to 3.0 by addition of glacial acetic acid. The reaction solution was then placed in an oven and heated at 60 °C for 2 days. After cooling down to room temperature, 1 M aqueous solution of [(CH₃)₂NH₂]Cl (30 drops) was added to the reaction mixture and it was left for evaporation. Transparent red block-like crystals of KLD-3 form within 2 - 3 weeks. The crystals were collected by filtration and dried in air. Yield: (6.8 % {**P**}). Elemental 0.025 g based on analysis: calculated for C₂₁H₁₂₈Co₃K₂Li_{1.5}N_{4.5}O₁₃₄P₆W₂₄ (found), mass %: C, 3.38 (3.27); H, 1.73 (1.74); K, 1.05 (1.06); Li, 0.14 (0.15); N, 0.85 (0.90); Co, 2.37 (2.38); P, 2.49 (2.43); W, 59.21 (59.1) %. IR spectrum (KBr pellet), cm⁻¹: 3411 (s, br); 1621 (m); 1464 (w); 1438 (w); 1404 (w); 1157 (m); 1126 (m); 1085 (m); 1020 (m); 991 (m); 933 (s); 916 (s); 802 (s); 694 (s); 569 (m); 544 (m); 463 (m).

II. Single-crystal diffraction data for KLD-1, KLD-2 and KLD-3 were collected on a SuperNova (Agilent Technologies) diffractometer with MoK α radiation ($\lambda = 0.71073$ Å) at 120 K. The crystals were mounted in a Hampton cryoloop with Paratone-N oil to prevent water loss. Absorption corrections was applied numerically based on multifaceted crystal model using CrysAlis software.^[2] The SHELXTL software package^[3] was used to solve and refine the structure. The structures were solved by direct methods and refined by full-matrix least-squares method against $|F|^2$ with anisotropic thermal parameters for all heavy atoms (W, Co, P, As and K). Hydrogen atoms of the phenyl rings were placed in geometrically calculated positions. Hydrogen atoms of the disordered solvent molecules as well as DMA⁺ countercations were not located.

The relative site occupancy factors for the disordered positions of Co(1) ions in **KLD-3** as well as potassium, oxygen, carbon and nitrogen atoms of co-crystallized water molecules and counterions in all the three structures were first refined in an isotropic approximation with U_{iso} = 0.05 and then fixed at the obtained values and refined without the thermal parameters restrictions.

Due to severe disorder we could only locate 3 DMA⁺ cations in the structure of **KLD-1**, 1.5 DMA⁺ cations in the structure of **KLD-2** and 3.5 DMA⁺ cations in the structure of **KLD-3**, while 4.5 counterions per formula unit were found for each of the three compounds by elemental analysis.

Similarly, only 9.25, 11 and 8.25 heavily disordered oxygen atoms of co-crystallized water molecules could be located in the crystal structures of **KLD-1**, **KLD-2** and **KLD-3**, respectively, that can be compared with 35, 40 and 28 solvent H₂O molecules found for these compounds by combination of elemental and thermogravimetrical analyses. This is consistent with the large solvent-accessible volume remaining in the structures. For the overall consistency, the final formulae in the CIFs correspond to the composition of the bulk materials determined by elemental analysis and TGA.

The rather high value of R_{int} for **KLD-1** (0.17) combined with several violations of systematic absences is consistent with the twinning issue. The application of (-1, 0, 0; 0, -1, 0; 0, 0, -1) twinning low allowed slightly improve R_1 and other parameters (BASF 0.48).

Additional crystallographic data are summarized in Table S1. Further details on the crystal structures investigation can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK: http://www.ccdc.cam.ac.uk, e-mail: data_request@ccdc.cam.ac.uk, or fax: +441223 336033 upon quoting 1586966 (KLD-1), 1586967 (KLD-2) and 1586968 (KLD-3) numbers. The main bond lengths and angles in 1 - 2 are shown in Table S2.

Sample	KLD-1	KLD-2	KLD-3
Empirical formula	$C_{21}H_{116}K_{3.5}Li_8N_{4.5}O_{129}P_6W_{24}$	$C_{21}H_{126}As_2K_{3.5}Li_8N_{4.5}O_{134}P_4W_{24}$	$C_{21}H_{128}Co_3K_2Li_{1.5}N_{4.5}O_{134}P_6W_{24}$
Formula weight, g/mol	7286.77	7464.75	7451.90
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2	<i>C</i> 2	<i>C</i> 2
<i>a</i> / Å	26.5106(18)	26.5613(17)	26.212(2)
b / Å	28.0247(4)	28.3926(4)	28.3669(6)
<i>c</i> / Å	14.2981(10)	14.2563(9)	14.1580(11)
β	140.094(14)°	140.272(13)°	140.132(16)°
Volume / Å ³	6814.9(7)	6871.6(6)	6748.2(7)
Z	2	2	2
$D_{\rm calc},{ m g/cm^3}$	3.551	3.608	3.667
Absorption coefficient, mm ⁻¹	20.460	20.750	20.976
F(000)	6524	6696	6694
Crystal size, mm ³	$0.12 \times 0.18 \times 0.23$	$0.12\times0.23\times0.25$	$0.11 \times 0.15 \times 0.22$
Theta range for data collection	$4.20^\circ-25.02^\circ$	$4.18^\circ-26.02^\circ$	4.19° – 25.68°
Completeness to Θ_{\max}	94.6 %	99.5 %	99.5 %
	-30 < h < 31,	-32 < h < 32,	-31 < h < 31,
Index ranges	-33 < k < 33,	-35 < k < 35,	-34 < k < 34,
	-17 < l < 16	-17 < l < 17	-17 < l < 17
Reflections collected	31084	34786	33510
Independent reflections	10447	13220	11559
Rint	0.1696	0.0575	0.0657
Observed $(I > 2\sigma(I))$	8832	10996	10317
Absorption correction	Numerical based on gaussian integration over a multifaceted crystal model		
T _{min} / T _{max}	0.0311 / 0.2019	0.0280 / 0.1813	0.0187 / 0.2083
Data / restraints / parameters	10447 / 19 / 419	13220 / 19 / 470	11559 / 13 / 476
Goodness-of-fit on F^2	1.041	1.023	1.051
$R_1, wR_2 (I > 2\sigma(I))$	$R_1 = 0.0717, wR_2 = 0.1753$	$R_1 = 0.0483, wR_2 = 0.1132$	$R_1 = 0.0422, wR_2 = 0.0962$
R_1 , w R_2 (all data)	$R_1 = 0.0848, wR_2 = 0.1917$	$R_1 = 0.0655, wR_2 = 0.1268$	$R_1 = 0.0509, wR_2 = 0.1034$
Largest diff. peak and hole / e Å ⁻³	4.331 / -3.755	1.524 / -1.233	2.806 / -1.921

Table S1. Crystal data and structure refinement details for KLD-1, KLD-2 and KLD-3

Table S2. Selected bond lengths (Å) and angles (°) in 1 and 2 as determined from the crystal structure of KLD-1 and KLD-2.

KI	L D-1	KLD-2		
Bond type	Length	Bond type	Length	
P _L -O _t	1.54(3)	As-O _t	1.65(2)	
P _L -μ ₂ -Ο (W-Ο-P _L)	1.53(3)–1.59(3)	As–µ2-O (W–O–As)	1.675(18)–1.714(16)	
P _L –C	1.796(16)	As–C	1.874(11)	
Р-О	1.50(2)-1.62(3)	Р-О	1.510(14)-1.593(16)	
W=Ot	1.65(3)-1.78(2)	W=O _t	1.704(15)-1.773(15)	
W-µ2-O (W-O- PL)	2.09(2)-2.09(3)	W-μ ₂₋ O (W-O-As)	2.053(18)-2.072(16)	
W-µ2-О (W-О-Р)	2.086(17)-2.13(2)	₩–µ2-О (W–О–Р)	2.122(12)-2.138(13)	
W-µ2-O (W-O-W)	1.73(3)-2.12(2)	W-μ2-O (W-O-W)	1.740(16)-2.132(14)	
W–µ ₃ -O (2 W + P)	2.20(2)-2.30(2)	W-µ ₃ -O (2 W + P)	2.232(15)-2.312(13)	
Angle type	Angle value	Angle type	Angle value	
O-PL-O	108.0(15)-112.1(15)	O-As-O	105.9(9)-110.6(9)	
O- P _L -C	106.3(15)-111.6(12)	O-As-C	108.3(9)-112.3(8)	

Figure S1. Structure of polyanions $[K \subset (C_6H_5XO)_2P_4W_{24}O_{92}]^{15-}$ in **KLD-1** and **KLD-2**. WO₆: lime green octahedra, PO₄: pink tetrahedra; As/P: pink, C: black, H: gray, O: red spheres. Two equally occupied (50 %) positions (blue/light blue) of the K⁺ ion in the central cavity of the POM are shown with black/orange dashed K–O bonds.

III. Bond valence sum calculations

Bond valence sum calculations^[4] for **KLD-1** (Table S3), **KLD-2** (Table S4) and **KLD-3** (Table S5) are consistent with the oxidation state +VI for all W centers and +V for all P and As centers in 1 - 3, and +II for the Co centers in **3**. The BVS values for the oxygen atoms suggest that there is no protonation of any oxygen positions in the POM skeleton of the polyanions 1 - 3, while the terminal oxygens coordinated to Co^{II} ions in **3** belong to aqua ligands.

W and I	P centers	O6T	-1.56	µ2-O (W-O-W)	
W1	6.40	O6	-1.61	O12	-1.90
W2	6.52	07Т	-1.53	O13	-2.06
W3	6.17	O8T	-2.04	O14	-2.03
W4	6.58	O9T	-1.72	O25	-2.13
W5	6.12	O10T	-1.93	O26	-2.09
W6	6.34	O11T	-1.95	O34	-1.98
W7	6.29	O12T	-1.90	O37	-2.20
W8	6.72	Terminal oxygens of P _L =O		O45	-1.84
W9	6.28	O3P3	-1.28	O48	-2.16
W10	6.42	μ2-O (W-O-PL)		O56	-1.95
W11	6.29	O1P3	-2.06	O59	-2.21
W12	6.35	O2P3	-1.84	O78	-2.07
P1	4.73	μ2-O (V	V–O–P)	O89	-1.91
P2	4.62	O2P1	-2.04	O102	-2.08
P3	4.41	O4P1	-1.90	O112	-2.15
Terminal oxy	gens of W=O	s of W=O O1P2 -1.83		O121	-1.95
O1T	-1.83	O3P2	-1.83	O610	-2.22
O2T	-1.84	μ3-O (2W+P)		O710	-2.17
O3	-1.68	O1P1	-1.91	O711	-2.11
O3T	-1.54	O3P1	-1.97	O811	-2.20
O4T	-2.06	O2P2	-1.97	O910	-2.11
O5T	-1.69	O4P2	-1.94	O912	-2.05

Table S3. Bond valence sum values for different atoms in KLD-1

W, P and As centers		O6T	-1.53	μ2-O (W	/- O -W)
W1	6.20	O6	-1.55	O12	-2.00
W2	6.41	O7T	-1.77	O13	-2.06
W3	6.36	O8T	-1.73	O14	-2.07
W4	6.10	O9T	-1.59	O25	-2.08
W5	6.11	O10T	-1.78	O26	-2.10
W6	6.03	O11T	-1.81	O34	-1.89
W7	6.44	O12T	-1.85	O37	-2.18
W8	6.09	Terminal oxygens of As=O		O45	-1.88
W9	5.99	O3A1	-1.45	O48	-2.14
W10	6.33	μ2-O (W-O-As)		O56	-1.98
W11	6.32	O1A1	-2.12	O59	-2.13
W12	6.28	O2A1	-1.92	O78	-2.05
P1	4.80	μ2-O (V	V–O–P)	O89	-1.77
P2	4.89	O2P1	-1.97	O102	-2.10
Asl	4.83	O4P1	-1.92	O112	-2.10
Terminal oxy	gens of W=O	/= O O1P2 -1.88		O121	-1.88
O1T	-1.81	O3P2	-1.85	O610	-2.21
O2T	-1.82	μ3-O (2W+P)		O710	-2.17
O3T	-1.65	O1P1	-1.88	O711	-2.09
03	-1.64	O3P1	-1.95	O811	-2.03
O4T	-1.66	O2P2	-2.05	O910	-2.10
O5T	-1.58	O4P2	-1.91	O912	-2.01

Table S4. Bond valence sum values for different atoms in KLD-2

W, P and Co centers		O9T	-1.84	O34	-2.05
W1	6.37	O10T	-1.78	O37	-2.19
W2	6.21	O11T	-1.89	O45	-1.93
W3	6.36	O12T	-1.82	O48	-2.15
W4	6.30	Terminal oxy	gens of PL=O	O56	-1.98
W5	6.28	O3P3	-1.63	O59	-2.15
W6	6.39	Terminal oxyg	ens of Co–OH2O	078	-2.09
W7	6.26	O11C	-0.18	O89	-1.96
W8	6.09	O12C	-0.19	O102	-2.14
W9	5.26	O13C	-0.12	O112	-2.14
W10	6.40	O14C	-0.14	O121	-1.96
W11	6.38	O21C	-0.36	O610	-2.17
W12	6.43	O22C	-0.32	O710	-2.15
P1	4.98	O23C	-0.39	O711	-2.10
P2	4.94	O24C	-0.35	O811	-2.01
P3	4.84	μ2-O (W	V-O-PL)	O910	-2.07
Col	1.98	O1A1	-1.97	O912	-1.99
Co2	2.06	O2P3	-1.95	μ2-O (W-O-P)
Terminal oxyg	erminal oxygens of W=O		μ2-O (C0-O-W)		-1.95
O1T	-1.72	O3C1	-1.92	O4P1	-1.91
O2T	-1.71	O6C1	-1.91	O1P2	-1.93
O3T	-1.62	μ2-O (W	V- O -W)	O3P2	-1.91
O4T	-1.94	O12	-2.03	μз-О ((2W+P)
O5T	-1.97	O13	-2.08	O1P1	-1.97
O6T	-1.68	O14	-2.12	O3P1	-1.93
O7T	-1.72	O25	-2.04	O2P2	-1.95
O8T	-1.70	O26	-2.06	O4P2	-1.90

Table S5. Bond valence sum values for different atoms in KLD-3

IV. Thermal analysis

TGA measurements were performed from 25 °C to 950 °C under N₂ atmosphere. According to the obtained data the thermal decomposition of **KLD-1** and **KLD-2** proceeds in a similar way and involves three main steps of weight loss (Fig. S1, S2 and S3, respectively). The first step occurring in the temperature range of 25 - 270 °C for **KLD-1**, 25 - 255 °C for **KLD-2** and 25 - 250 °C for **KLD-3** is characteristic to the release of 35 (8.65 % calc. *vs.* 8.42 % obs. for **KLD-1**) and 40 (9.65 % calc. *vs.* 10.06 % obs. for **KLD-2**) lattice water molecules as well as 28 lattice water molecules accompanying 12 coordinated water molecules for **KLD-3** (8.94 % calc. *vs.* 9.28 % obs.) per formula unit. The next step of the weight loss corresponds to the decomposition and removal of phenyl groups in **1** - **3** as well as DMA⁺ counterions (4.92 % calc. *vs.* 4.21 % obs. for **KLD-1** (270 - 825 °C), 4.81 % calc. *vs.* 5.34 % obs. for **KLD-2** (255 - 730 °C) and 4.88 % calc. *vs.* 4.08 % obs. for **KLD-3** (250 - 850 °C). The mass loss at higher temperatures could be attributed to decomposition of the POT skeleton as well as As volatility for **KLD-2** (e.g. in the form of As₄O₆). Accordingly, the total loss of the mass at 900 °C constitutes 17.41 % for **KLD-1**, 22.81 % for **KLD-2** and 17.45% for **KLD-3**.

Figure S2. TGA (blue), differential TGA (green) and SDTA (black) curves for **KLD-1** from room temperature to 900 °C under N₂ atmosphere.

Figure S3. TGA (blue), derivative TGA (green) and SDTA (black) curves for KLD-2 from room temperature to 900 °C under N_2 atmosphere.

Figure S4. TGA (blue), derivative TGA (green) and SDTA (black) curves for KLD-3 from room temperature to 900 °C under N₂ atmosphere.

V. Vibrational spectra

The IR spectra of **KLD-1** and **KLD-2** were recorded between 4000 and 375 cm⁻¹ as KBr pellets and exhibit some distinct features consistent with the crystal structures of these compounds (Fig. S4). Thus, the IR spectrum of the **K-P₂W₁₂** precursor exhibit four bands at 1130, 1082, 1010, 972 cm⁻¹ characteristic for stretching vibrations of P–O bonds. In the spectra of **KLD-1** and **KLD-2** these bands are shifted to 1161, 1128, 1088, 1020, 989 cm⁻¹ and 1161, 1086, 1018, 989 cm⁻¹, respectively, reflecting dimerization of the {P₂W₁₂} units and coordination of C₆H₅XO₃^{2–} ligands in **1** and **2**. The spectrum of **KLD-1** exhibits two additional peaks centered at 1128 and 974 cm⁻¹ which should correspond to stretching vibrations of P–C and P–O in the C₆H₅PO₃^{2–} groups, respectively. Additional vibrations bands of P–C and As–C bonds appear at around 550 – 525 cm⁻¹ and overlap with vibration of POT skeleton in **1** and **2**. The characteristic range for As–O vibrations usually constitutes 880 – 700 cm⁻¹,^[5] therefore the unique band at 785 cm⁻¹ in the spectrum of **KLD-2**, which is not present in the spectrum of **KLD-1** should most likely belong to As–O vibrations of phenylarsonate ligands in **1**.

The bands at around 929 and 916 cm⁻¹ (both compounds) could be attributed to vibrations of W=O bands and could be compared with the peak at 910 cm⁻¹ in the spectrum of K-P₂W₁₂. Further pronounced differences in the spectra of the precursor salt and **KLD-1** / **KLD-2**, reflecting P₂W₁₂ dimerization and ligand attachment appear in the region of 900 – 500 cm⁻¹ characteristic for W–O–W, W–O–P and W–O–As vibrations.

The weak bands at around 1466 and 1440 cm⁻¹ reflect vibrations of C–C bonds of the $C_6H_5PO_3^{2-}$ (KLD-1)or $C_6H_5AsO_3^{2-}$ (KLD-2) ligands as well as C–N bonds of DMA⁺ counterions. The broad peak centered at 3432 for KLD-1 and 3426 cm⁻¹ for KLD-2 as well as the signal at 1631 (KLD-1) or 1629 cm⁻¹ (KLD-2) belong to symmetrical and asymmetrical vibrations of co-crystallized water molecules, respectively.

The spectrum of **KLD-3** is very similar to that of **KLD-1** (Fig. S6) with only minor shifts of some bands, reflecting the structural similarities of the both compounds.

Figure S5. FT-IR spectra of KLD-1 (green) and KLD-2 (navy) in comparison with that of the K-P₂W₁₂ precursor (black)

Figure S6. Diamond ATR FT-IR spectra of KLD-1 (green) and KLD-2 (navy) in comparison with that of the K-P₂W₁₂ precursor (black)

Figure S7. FT-IR spectrum of KLD-3 (orange) in comparison with the spectrum of the KLD-1 (green).

Figure S8. Raman spectra of KLD-1 (navy) and KLD-2 (green) in comparison with that of the K-P2W12 precursor (black).

Figure S9. Room temperature ³¹P NMR spectra of **KLD-1** dissolved in 1 M LiCl_{aq} after 1 h (black line), after 1 day (blue line) and after 1 day (purple line).

Figure S10. Room temperature ³¹P NMR spectra of **KLD-2** dissolved in H₂O after 1 h (black line), after 1 day (blue line) and after 1 day (purple line).

Figure S11. Room temperature ³¹P NMR spectra of **KLD-2** dissolved in 1 M LiCl_{aq} after 1 h (black line), after 1 day (blue line) and after 1 day (purple line).

VII. UV-Vis spectra

The UV-Vis spectra of **KLD-1** and **KLD-2** in 1 M aqueous LiCl solution show similar characteristics (Fig. S12 and S14, respectively). Two absorption maxima in these spectra, appearing at around 210 nm and 270 nm, are typical for the LMCT of $p\pi$ (O_{terminal}) $\rightarrow d\pi^*$ (W) electronic transitions in the W=O bonds and the $d\pi - p\pi - d\pi$ electronic transitions in the W=O bonds and the spectral characteristics of the free phenylphosphonate or phenylarsonate ligands (Fig. S12 and S14).

The spectra of **KLD-1** remain almost unchanged for one hour in a good agreement with the shortterm stability of polyanions **1** in the same medium observed by ³¹P NMR spectroscopy. Distinct changes in the light absorption pattern for the **KLD-1** solution occur within 3 h and become even more pronounced within 1 day (Fig. S13). The time-dependent UV-Vis measurements for **KLD-2** in 1 M LiCl_{aq} (Fig. S15) exhibit noticeable changes in the absorption intensity already within 30 min and indicate fast POM decomposition. At that, the trend of the changes in the spectra of **2** is rather different from that obtained for **1** (compare Fig. S13 and S15), which could indicate different decomposition pathways for these polyanions in aqueous medium resulting in formation of different products, that would also be in line with our ³¹P NMR observations (Fig. S9 and S11).

Figure S12. Room temperature UV-Vis spectrum of **KLD-1** in 1 M LiCl_{aq} (black line; ε values are averaged from the spectra of the solution with the concentration between 2.27×10^{-6} M and 8.57×10^{-6} M) compared to the spectrum of C₆H₅PO₃H₂ in 1 M LiCl_{aq} (green line; ε values are averaged from the spectra of the solution with the concentration between 7.91×10^{-5} M and 1.58×10^{-4} M).

Figure S13. Time evolution of room temperature UV-Vis spectra of 2.27×10^{-6} M KLD-1 solution in 1 M LiCl_{aq}.

Figure S14. Room temperature UV-Vis spectrum of **KLD-2** in 1 M LiCl_{aq} (black line; ε values are averaged from the spectra of the solution with the concentration between 2.26×10^{-6} M and 4.52×10^{-6} M, black) compared with the UV-Vis spectrum of C₆H₅AsO₃H₂ in 1 M LiCl_{aq} (blue line; ε values are averaged from the spectra of the solution with the concentration between 6.19×10^{-5} M and 1.24×10^{-4} M, blue).

Figure S15. Time evolution of room temperature UV-Vis spectra of 2.26×10^{-6} M KLD-2 solution in 1 M LiCl_{aq}.

VIII. Electrospray mass spectrometry measurements

Experimental details for the LC-ESI-FTICR-MS analysis. Analyses were performed using a hybrid linear ion trap FTICR mass spectrometer LTQ-FT (Thermo Fisher Scientific, Bremen, Germany) equipped with a 7 T superconducting magnet by infusion. The mass spectrometer was first tuned and calibrated in the negative mode following the standard optimization procedure for all voltages and settings. The complex was dissolved in 80 % H₂O and 20 % acetone. Mass spectra were recorded in full scan from 200 to 2000 Da with a resolution of 100.000 at m/z 400. All data were processed using the Xcalibur software version 2.1.

The complexity of the obtained spectrum allows attribution of the observed peaks to the ion pairs based on both intact $[(C_6H_5PO)_2P_4W_{24}O_{92}]^{16-}$ polyanions (see Figs. S16, S17) as well as on the species missing one phenylphosphonate group, $[(C_6H_5PO)P_4W_{24}O_{92}]^{18-}$ (Fig. S18) and Tables S6–S8.

Figure S16. Comparison of the isotope distributions observed experimentally (upper part) and calculated for the -4 charged ion pairs based on the intact $[(C_6H_5PO)_2P_4W_{24}O_{92}]^{16-}$ polyanions (bottom). For the peak assignments see Table S6.

Table S6. Assignment of the signals from mass spectrometry (given as the value of the most abundan
isotopologue) according to the simulation presented on Fig. S16.

Ion pair	m/z (calc)	Relative contribution to
		the simulated spectrum
$\{KLi_{3}H_{8}[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]\}^{4-}$	1581.34	0.70
$\{K_{2}Li_{3}H_{7}[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]\}^{4-}$	1590.83	1.00
$\{K_3Li_3H_6[(C_6H_5PO)_2P_4W_{24}O_{92}]\}^{4-}$	1600.31	1.00
$\{(DMA)K_{3}LiH_{7}[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]\}^{4-}$	1608.58	0.70
$\{(DMA)_2K_2Li_5H_3[(C_6H_5PO)_2P_4W_{24}O_{92}]\}^{4-}$	1616.36	0.25

Figure S17. Comparison of the isotope splitting observed experimentally (upper part) and calculated for the -4 charged ion pairs based on $[(C_6H_5PO)_2P_4W_{24}O_{92}]^{16-}$ polyanions (bottom). For the peak assignments see Table S7.

Table S7. Assignment of the signals from mass spectrometry (given as the value of the most abundantisotopologue) according to the simulation presented on Fig. S17.

Ion pair	m / z (calc)	Relative contribution to	
		the simulated spectrum	
$\{(DMA)_4K_3Li_5[(C_6H_5PO)_2P_4W_{24}O_{92}]\}^{4-}$	1648.38	0.20	
${(DMA)_5K_3Li_4[(C_6H_5PO)_2P_4W_{24}O_{92}]}^{4-}$	1658.14	0.50	
${(DMA)_{5}K_{4}Li_{3}[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]}^{4-}$	1666.13	1.00	
$\{(DMA)_{6}K_{4}Li_{2}[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]\}^{4-}$	1675.89	1.00	
${(DMA)_{6}K_{5}Li[(C_{6}H_{5}PO)_{2}P_{4}W_{24}O_{92}]}^{4-}$	1683.88	0.80	
$\{(DMA)_8K_4[(C_6H_5PO)_2P_4W_{24}O_{92}]\}^{4-}$	1695.41	0.70	

Figure S18. Comparison of the isotope splitting observed experimentally (upper part) and calculated for the -4 charged ion pairs based on the intact $[(C_6H_5PO)P_4W_{24}O_{92}]^{18-}$ polyanions (bottom). For the peak assignments see Table S8.

Table S8. Assignment of the signals from mass spectrometry (given as the value of the most abundant isotopologue) according to the simulation presented on Fig. S18.

Ion pair	m / z (calc)	Relative contribution to
		the simulated spectrum
$\{(DMA)_2K_2Li_2H_8[(C_6H_5PO)P_4W_{24}O_{92}]\}^{4-}$	1581.35	0.70
$\{(DMA)_2K_3Li_2H_7[(C_6H_5PO)P_4W_{24}O_{92}]\}^{4-}$	1590.84	1.00
${(DMA)_{3}K_{3}LiH_{7}[(C_{6}H_{5}PO)P_{4}W_{24}O_{92}]}^{4-}$	1600.61	1.00
$\{(DMA)_4K_2Li_5H_3[(C_6H_5PO)P_4W_{24}O_{92}]\}^{4-}$	1608.39	0.70
$\{(DMA)_4K_3Li_4H_3[(C_6H_5PO)P_4W_{24}O_{92}]\}^{4-}$	1616.38	0.25

IX. References

- R. Contant, *Inorganic Synthesis*; Ed: A. P. Ginsberg, John Wiley and Sons: New York, **1990**; 27, 104–111.
- [2] CrysAlisPro, Agilent Technologies, 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET).
- [3] G. M. Sheldrick, Acta Cryst. 2008, A64, 112–122.
- [4] I. D. Brown, D. Altermatt, Acta Crystallographica Section B Structural Science 1985, 41, 244-247; K. Knížek, Kalvados – Software for crystal structure and powder diffraction; see http://www.fzu.cz/~knizek/kalvados/index.html.
- [5] (a) M. Barsukova, N. V. Izarova, R. N. Biboum, B. Keita, L. Nadjo, V. Ramachandran, N. S. Dalal, N. S. Antonova, J. J. Carbó, J. M. Poblet, U. Kortz, *Chem. Eur.* 2010, *16*, 9076-9085; (b) L. W. Daasch, D. C. Smith, *Anal. Chem.* 1951, *23*, 853-868; (c) K. A. Jensen, P. H. Nielsen, *Acta Chem. Scand.* 1963, *17*, 1875-1885.