Nickel-Catalyzed Cross-Coupling of Aldehydes with Aryl

Halides via Hydrazone Intermediates

Jianting Tang,^{ab} Leiyang Lv,^a Xi-Jie Dai,^a Chen-Chen Li,^a Lu Li,^a and Chao-Jun Li^{*a} ^aDepartment of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada. ^bKey Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, 2 Taoyuan Road, Xiangtan, Hunan 411201, China

* Corresponding E-mail Address: cj.li@mcgill.ca

Contents

I. General experimental information	2
II. Experimental procedures and results	5
i Preparation of hydrazone solution	5
ii. General procedure for cross-coupling	5
iii. Control experiment results of cross-coupling	6
III. Spectroscopic data of products	11
IV. References	19
V. HRMS and NMR spectra of products	20

I. General experimental information

Reaction setup: All reactions were carried out in flame-dried V-shaped microwave reaction vials which were covered by aluminum seals with PTFE-faced silicone septa, under an atmosphere of nitrogen unless otherwise stated. All reaction temperatures corresponded to oil bath temperatures. All air and moisture-sensitive catalysts, ligands, and reagents were stored and charged in MBRAUN UNIIab Pro Glove Box Workstation unless otherwise stated.

Purifications: All work-up and purification procedures were carried out with reagent-grade solvents. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash column chromatography was performed with E. Merck silica gel 60 (40–63 μ m particle size, 230–400 mesh) (SiO₂). Visualization was accomplished with UV light.

Solvents: Tetrahydrofuran (THF), dioxane, toluene, ethyl acetate (EtOAc) and hexane used as solvents for reaction were taken directly from the Pure Solvent MD-7 purification system (Innovative Technology). Solvents for filtration, transfers and chromatography, were dichloromethane (CH₂Cl₂) (ACS grade, amylene stabilized), EtOAc (Fisher, ACS grade), acetone (ACS grade) and hexane (Fisher, ACS grade).

Chemicals: All reagents were purchased from Sigma-Aldrich Company unless otherwise noted. All liquid aldehydes were distilled prior to use. Other chemicals were used without further purification:

Ni(COD)₂: bis(1,5-cyclooctadiene)nickel(0)

[Ru(p-cymene)Cl₂]₂: dichloro(p-cymene)ruthenium(II) dimer, CAS No. 52462-29-0

<u>Pd(acac)</u>: palladium(II) acetylacetonate

Pd(OAc)₂: palladium(II) acetate

<u>PdCl₂(PPh₃)₂: bis(triphenylphosphine)palladium(II) dichloride</u>

Pd₂(dba)₃: tris(dibenzylideneacetone)dipalladium(0), CAS No. 51364-51-3

<u>PEPPSI™-IPr catalyst</u>: [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3chloropyridyl)palladium(II) dichloride, CAS No. 1070663-78-3

NiCl₂: nickel(II) chloride

Ni(acac)₂: nickel(II) acetylacetonate

<u>NiBr₂</u>: nickel(II) bromide

<u>NiF₂</u>: nickel fluoride

<u>Ni(PPh₃)</u>₄: tetrakis(triphenylphosphine)nickel(0)

Ni(CO)₂(PPh₃)₂: bis(triphenylphosphine)dicarbonylnickel, CAS No. 13007-90-4

<u>Cul</u>: copper(I) iodide

CuBr: copper(I) bromide

<u>Cu₂Se</u>: copper(I) selenide

CuCN: copper(I) cyanide

Cu(OAc)₂: copper(II) acetate

<u>Cu(acac)</u>₂: copper(II) acetylacetonate

<u>CoCl₂</u>: cobalt(II) chloride

<u>Co(acac)</u>₂: cobalt(II) acetylacetonate

<u>FeCl₃</u>: iron(III) chloride

<u>Fe(acac)</u>₃: iron(III) acetylacetonate

<u>Fe(otf)</u>₂: iron(III) trifluoromethanesulfonate

<u>PMe₃</u>: trimethylphosphine

PPhMe2: dimethylphenylphosphine

<u>PPh₂Me</u>: methyldiphenylphosphine

<u>PPh</u>₃: triphenylphosphine

PEt₃: triethylphosphine

PCy3: tricyclohexylphosphine

dmpe: 1,2-bis(dimethylphosphino)ethane

<u>dppp</u>: 1,3-bis(diphenylphosphino)propane

<u>BPy</u>: 2,2'-bipyridine

BrettPhos: 2-(dicyclohexylphosphino)3,6-dimethoxy-2',4',6'-triisopropyl-1,1'-

biphenyl, CAS No. 1070663-78-3

<u>RuPhos</u>: 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl, CAS No. 787618-22-8

<u>XPhos</u>: 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl, CAS No. 564483-18-7

<u>(1R,1'R,2S,2'S) DuanPhos</u>: (1R,1'R,2S,2'S)-2,2'-di-tert-butyl-2,3,2',3'-tetrahydro-1H,1H-(1,1')biisophosphindolyl, CAS No. 528814-26-8 Xantphos: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, CAS No. 161265-

03-8

BPhen: bathophenanthroline, CAS No. 1662-01-7

KO^tBu: potassium tert-butoxide

KOH: potassium hydroxide

<u>K₃PO₄: potassium phosphate</u>

N₂H₄·H₂O: hydrazine hydrate, 64–65 wt%

DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene

1,3,5-trimethoxylbenzene

<u>Na₂SO₄</u>: anhydrous sodium sulfate, Merck

<u>4Å molecule sieve particles:</u> 4–8 mesh, ACP Chemicals

NMR spectroscopy: Nuclear magnetic resonance (¹H, ¹³C and ¹⁹F NMR) spectra were recorded on a Bruker AV500 equipped with a 60-position Sample Xpress sample changer (¹H, 500 MHz; ¹³C, 126 MHz; ¹⁹F, 467 MHz), a Varian MERCURY plus-500 spectrometer (¹H, 500 MHz; ¹³C, 126 MHz; ¹⁹F, 467 MHz). Chemical shifts for both ¹H NMR and ¹³C NMR spectra are expressed in parts per million (ppm) units downfield from TMS, with the solvent residue peak as the chemical shift standard (CDCl₃: δ 7.28 ppm in ¹H NMR; δ 77.00 ppm in ¹³C NMR). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, quin = quintet, sep = septet, m = multiplet, br = broad singlet), coupling constants *J* (Hz), and integration.

Mass spectrometry: Mass spectrometry (GC-MS) was obtained from Agilent Technologies 7890B GC system coupled with 5977A MSD. High resolution mass spectra (HRMS) were recorded using atmospheric pressure chemical ionization APCI (+/-), performed on a Bruker Daltonics Maxis Impact quadrupole-time of flight (QTOF) mass spectrometer.

Characterization of products: Only the product labeled as "**3qa**" was newly synthesized in this work, for which we report the data of both NMR spectra and HRMS. The rest are known compounds which were noted with references in spectroscopic data section and we only reported the NMR data for them.

II. Experimental procedures and results

i. Preparation of hydrazone solution

$$\begin{array}{c} \text{R-CHO} \\ \textbf{1} \end{array} \xrightarrow[\text{solvent, T, time}]{} \text{NH}_2 \\ \text{NH}_$$

Typically, 450 µL of solvent and 75 mg of anhydrous Na₂SO₄ were added in a small bottle with a stir bar. Then, N₂H₄·H₂O was added into the bottle. After that, aldehyde **1** was added dropwise into the stirred solution and the mixture was stirred for 30 min. After being stirred at 25 °C for another 1 h (Table 1 and 3; Table 1S, 2S, 3S, 4S, 5S; Scheme 1S), or at 50 °C for another 5 h (Table 2 and Scheme 2), the so-formed solution was transferred into another small bottle with 55–100 mg of activated 4 Å molecule sieve particles to further remove water. The solution was kept for additional 2 hours. In this way, the hydrazone solution was obtained. (Please note that removing water to the greatest extent by molecule sieve particles is key to success of the following cross-coupling reaction, hence molecule sieve must be activated at high temperature before use.)

ii. General procedure for cross-coupling

$$\mathbb{R}^{NH_2} \xrightarrow{\text{Ni}(\text{COD})_2, \text{ ligand, base}}_{\text{solvent, T, time}} \mathbb{R}^{NH_2}$$

In glove box, metal (ruthenium, palladium, copper, cobalt, iron or nickel) salt and ligand (if applicable) were added into a flamed-dried V-shaped reaction vial with a stir bar. Then, 75 μ L of solvent (the type is the same as that for the above-mentioned hydrazone preparation) was added. The mixture was stirred for 30 min at room temperature to form complex solution. The prepared hydrazone solution was taken into glove box and added to the complex solution. Then, base (organic or inorganic) and alkyl halide **2** were added. The vial was covered by aluminum seal and then taken out from glove box. The reaction proceeded at a desired temperature for a desired time. After the completion of reaction, 1,3,5-trimethoxylbenzene (11.2 mg, 0.067 mmol) was added into the mixture as internal standard. The reaction mixture was filtered through a plug of silica gel with EtOAc (5 mL) as eluent, concentrated,

diluted by EtOAc to do GC-MS and HRMS tests, or diluted by $CDCI_3$ to do ¹H NMR, ¹³C NMR and ¹⁹F NMR tests.

iii. Control experiment results of cross-coupling

Table 1S. Optimization of ruthenium-catalyzed cross-coupling of benzaldehyde hydrazone with iodobenzene

СНО -	N ₂ H ₄ ·H ₂ O THF, 25 °C 90 min	N ⁻ NH ₂ ruthenium ca THF, 50 °C, 3	2 a atalyst, ligand, base 36 h	Jaa
entry	metal catalyst	ligand	base	3aa(%)
1	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PMe ₃	DBU	0
2	[Ru(<i>p</i> -cymene)Cl ₂] ₂	PMe ₃	KO ^t Bu	0
3	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dmpe	DBU	0
4	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dmpe	KO ^t Bu	0
5	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dmpe	K ₃ PO ₄	0
6	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dppe	DBU	0
7	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dppp	DBU	0
8	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dppp	KO ^t Bu	0
9	[Ru(<i>p</i> -cymene)Cl ₂] ₂	dppp	K ₃ PO ₄	0
10	[Ru(<i>p</i> -cymene)Cl ₂] ₂	ВРу	DBU	0

Reaction conditions: **1a** (0.4 mmol), N₂H₄·H₂O (0.48 mmol), **2a** (0.1 mmol), [Ru(*p*-cymene)Cl₂]₂ (0.005 mmol), and add such amount of ligand that the amount of P or N atom in it is 0.03 mmol, base (0.2 mmol), THF (450 μ L), 50 °C, 36 h, under N₂. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

	Γ	NH2 - 2a		
<i>С</i> сно				
\/ 1a	THF, 25 °C	_ THF, 50 ℃, 36 h		3aa
entry	metal catalyst	ligand	base	3aa(%)
1	Pd(acac) ₂	PMe ₃	DBU	trace
2	Pd(acac) ₂	PMe ₃	KO ^t Bu	0
3	Pd(acac) ₂	dmpe	DBU	0
4	Pd(acac) ₂	dmpe	KO ^t Bu	0
5	Pd(acac) ₂	dppe	DBU	trace
6	Pd(acac) ₂	dppp	DBU	trace
7	Pd(acac) ₂	dppp	KO ^t Bu	0
8 ^a	Pd(acac) ₂	Ruphos	K₃PO₄	0
9 ^a	Pd(acac) ₂	Xantphos	K₃PO₄	0
10 ^a	Pd(acac) ₂	Xphos	K₃PO₄	0
11	Pd(acac) ₂	BPy	DBU	0
12	Pd(acac) ₂	BPhen	DBU	0
13	Pd(OAc) ₂	PMe ₃	DBU	0
14	Pd(OAc) ₂	PMe ₃	KO ^t Bu	0
15	Pd(OAc) ₂	dmpe	DBU	0
16	Pd(OAc) ₂	dmpe	KO ^t Bu	0
17	Pd(OAc) ₂	dppe	DBU	0
18	Pd(OAc) ₂	BPy	DBU	0
19 ^a	Pd(OAc) ₂	Xantphos	DBU	0
20 ^a	Pd(OAc) ₂	(1R,1'R,2S,2'S)-DuanPhos	DBU	0
21	PdCl ₂ (PPh ₃) ₂	PMe ₃	DBU	0
22	PdCl ₂ (PPh ₃) ₂	dmpe	DBU	0
23	PdCl ₂ (PPh ₃) ₂	dppe	DBU	0
24	PdCl ₂ (PPh ₃) ₂	BPy	DBU	0
25	Pd₂(dba)₃	PMe ₃	DBU	0
26	Pd ₂ (dba) ₃	dmpe	DBU	0
27	Pd ₂ (dba) ₃	dppe	DBU	0
28	Pd ₂ (dba) ₃	BPy	DBU	0
29 ^a	PEPPSI [™] -IPr catalyst	-	DBU	0
30 ^a	PEPPSI [™] -IPr catalyst	-	K ₃ PO ₄	0

Table 2S. Optimization of palladium-catalyzed cross-coupling of benzaldehydehydrazone with iodobenzene^a

Reaction conditions: **1a** (0.4 mmol), N₂H₄·H₂O (0.48 mmol), **2a** (0.1 mmol), Pd atom in catalyst (0.01 mmol), and add such amount of ligand that the amount of P or N atom in it is 0.03 mmol, base (0.2 mmol), THF (450 μ L), 50 °C, 36 h, under N₂. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard. ^a The reaction was carried out at 25 or 50 °C.

			2a	
	N₂H₄·H₂O	matal cataly	vst, ligand, base	
1a	THF, 25 °C 90 min	THF, 50 °C	, 36 h	3aa
entry	metal catalyst	ligand	base	3 aa(%)
1	Cul	dppp	K ₃ PO ₄	0
2	CuBr	dppp	K₃PO₄	0
3	Cu ₂ Se	dppp	K ₃ PO ₄	0
4	CuCN	dppp	K ₃ PO ₄	0
5	Cu(OAc) ₂	dppp	K₃PO₄	0
6	Cu(acac) ₂	dppp	DBU	0
7	Cu(acac) ₂	Ruphos	DBU	0
8	Cu(acac) ₂	BPy	DBU	0
9	CoCl ₂	dppp	K ₃ PO ₄	0
10	Co(acac) ₂	dppp	K ₃ PO ₄	0
11	Co(acac) ₂	dppp	DBU	0
12	Co(acac) ₂	Ruphos	DBU	0
13	Co(acac) ₂	BPy	DBU	0
14	FeCl ₃	dmpe	DBU	0
15	FeCl ₃	dmpe	KO ^t Bu	0
16	FeCl ₃	dppp	K₃PO₄	0
17	Fe(acac) ₃	dppp	DBU	0
18	Fe(acac) ₃	Ruphos	DBU	0
19	Fe(acac) ₃	BPy	DBU	0
20	Fe(otf) ₂	dppp	DBU	0
21	Fe(otf) ₂	Ruphos	DBU	0
22	Fe(otf) ₂	ВРу	DBU	0

Table 3S. Optimization of other transition metal catalyzed cross-coupling ofbenzaldehyde hydrazone with iodobenzene

Reaction conditions: **1a** (0.4 mmol), N₂H₄·H₂O (0.48 mmol), **2a** (0.1 mmol), metal catalyst (0.01 mmol), and add such amount of ligand that the amount of P or N atom in it is 0.03 mmol, base (0.2 mmol), THF (450 μ L), 50 °C, 36 h, under N₂. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

Table 4S. Optimization of nickel-catalyzed cross-coupling of benzaldehyde
hydrazone with iodobenzene

	Γ		2a	
	N ₂ H ₄ ·H ₂ O	nickel catalys	st, ligand, base	
≪≻−сно		THF, 50 °C,	→ (36 h	
1a	90 min L			3aa
entry	metal catalyst	ligand	base	3aa(%)
1	NiCl ₂	PMe ₃	DBU	trace
2	NiCl ₂	PMe ₃	KO ^t Bu	0
3	NiCl ₂	dmpe	DBU	0
4	NiCl ₂	dmpe	KO ^t Bu	0
5	NiCl ₂	dmpe	K₃PO₄	0
6	NiCl ₂	dppe	DBU	trace
7	NiCl ₂	dppe	K ₃ PO ₄	0
8	NiCl ₂	dppp	DBU	trace
9	NiCl ₂	dppp	KO ^t Bu	0
10	NiCl ₂	dppp	K ₃ PO ₄	0
11	NiCl ₂	dppp	КОН	0
12	NiCl ₂	dppp	NaOH	0
13	NiCl ₂	BPy	DBU	0
14	NiCl ₂	BPhen	DBU	0
15	Ni(acac) ₂	PMe ₃	DBU	0
16	Ni(acac) ₂	dmpe	DBU	0
17	Ni(acac) ₂	dppe	DBU	0
18	Ni(acac) ₂	dppp	DBU	0
19	Ni(acac) ₂	BPy	DBU	0
20	NiBr ₂	dppp	K₃PO₄	0
21	NiF ₂	dppp	K₃PO₄	0
22	Ni(PPh ₃) ₄	-	K₃PO₄	0
23	Ni(CO) ₂ (PPh ₃) ₂	dppp	DBU	0
24	Ni(CO) ₂ (PPh ₃) ₂	Ruphos	DBU	0
25	Ni(CO) ₂ (PPh ₃) ₂	Вру	DBU	0

Reaction conditions: **1a** (0.4 mmol), N₂H₄·H₂O (0.48 mmol), **2a** (0.1 mmol), Ni atom in catalyst (0.01 mmol), and add such amount of ligand that the amount of P or N atom in it is 0.03 mmol, base (0.2 mmol), THF (450 μ L), 50 °C, 36 h, under N₂. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

Table 5S. Optimization of nickel-catalyzed cross-coupling of benzaldehydehydrazone with iodobenzene

CHO w mmol 1a	N ₂ H ₄ ·H ₂ O x mmol THF, 25 °C, 90 min	N ^{NH} 2	I 2a (0.1 mmol) Ni(COD) ₂ (10 mol%) PMe ₃ /Ni(COD) ₂ (y) DBU (2 equiv) solvent, 50 °C, 36 h	
entry	W	x	У	3aa(%)
1	0.40	0.48	4	61
2	0.40	0.48	3	49
3	0.40	0.48	2	34
4	0.35	0.42	5	62
5	0.30	0.36	5	58
6	0.25	0.30	5	51

Reaction conditions: **1a** (w mmol), N_2H_4 · H_2O (x mmol), **2a** (0.1 mmol), Ni(COD)₂ (0.01 mmol), PMe₃ (0.01y mmol), DBU (0.2 mmol), THF (450 µL), 50 °C, 36 h, under N₂. See supporting information for experiment details. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

Scheme 1S Ni(PPh₃)₄-catalyzed cross-coupling of benzaldehyde hydrazone with iodobenzene. Reaction conditions: **1a** (0.4 mmol), N₂H₄·H₂O (0.48 mmol), **2a** (0.1 mmol), Ni(PPh₃)₄ (0.01 mmol), THF (450 μ L), 50 °C, 36 h, under N₂. See supporting information for experiment details. Yield was determined by GC-MS and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

III. Spectroscopic data of products

Diphenylmethane.^[1] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.37–7.33 (m, 4H), 7.29–7.24 (m, 6H), 4.05 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 141.2, 129.1, 128.6, 126.2, 42.1.

GC-MS: C₁₃H₁₂, calculated mass is 168.1, found mass is 168.1.

1-benzyl-4-methoxybenzene.^[1] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.24–7.19 (m, 3H), 7.13 (d, *J* = 8.5

Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 3.96 (s, 2H), 3.81 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 158.0, 141.6, 133.3, 130.0, 128.8, 128.4, 126.0, 113.9, 55.3, 41.0.

GC-MS: C₁₄H₁₄O, calculated mass is 198.3, found mass is 198.1.

1-benzyl-2-methoxybenzene.^[2] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.27–7.19 (m, 4H), 7.12–7.09 (m, 1H), 6.94–6.89 (m, 2H), 4.02 (s, 2H), 3.86 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 157.4, 141.0, 130.3, 129.7, 129.0, 128.3, 127.4, 125.8, 120.5, 110.4, 55.4, 35.9.

GC-MS: C₁₄H₁₄O, calculated mass is 198.3, found mass is 198.1.

1-benzyl-3-methoxybenzene^[3] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.34–7.21 (m, 6H), 6.84–6.76 (m, 3H), 3.99 (s, 2H), 3.80 (s, 3H).

 ^{13}C NMR (126 MHz, CDCl_3): δ 159.7, 142.7, 140.9, 129.4, 128.9, 128.5, 126.1, 121.4, 114.8, 111.3, 55.2, 42.0.

GC-MS: C₁₄H₁₄O, calculated mass is 198.3, found mass is 198.1.

5-benzyl-1,2,3-trimethoxybenzene.^[4] White solid. Mp. 37–38 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.35–7.30 (m, 2H), 7.26–7.20 (m, 3H), 6.43 (s, 2H), 3.95 (s, 2H), 3.85 (s, 3H), 3.83 (s, 6H).

 ^{13}C NMR (126 MHz, CDCl_3): δ 153.2, 140. 9, 136.7, 136.3, 128.8, 128.5, 126.2, 106.0, 60.9, 56.1, 42.2.

GC-MS: C₁₆H₁₈O₃, calculated mass is 258.3, found mass is 258.1.

5-Benzyl-1,3-benzodioxole.^[5] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.34–7.28 (m, 2H), 7.25–7.19 (m, 3H), 6.79–6.74 (m, 1H), 6.71–6.67 (m, 2H), 5.94 (s, 2H), 3.92 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 147.7, 145.9, 141.3, 135.0, 128.8, 128.5, 126.1, 121.7, 109.4, 108.2, 100.8, 41.6.

GC-MS: C₁₄H₁₂O₂, calculated mass is 212.3, found mass is 212.1.

1-benzyl-4-methylbenzene.^[5] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.24–7.19 (m, 3H), 7.15–7.10 (m, 4H), 3.98 (s, 2H), 2.35 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 141.4, 138.1, 135.6, 129.2, 128.9, 128.8, 128.4, 126.0, 41.5, 21.0.

GC-MS: C₁₄H₂₄, calculated mass is 182.3, found mass is 182.2.

3ha

1-benzyl-2-methylbenzene.^[3] Colorless oil.

¹¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.25–7.13 (m, 7H), 4.03 (s, 2H),
 2.28 (s, 3H).

 ^{13}C NMR (126 MHz, CDCl_3): δ 140.4, 138.9, 136.7, 130.3, 130.0, 128.8, 128.4, 126.5, 126.0, 125.9, 39.5, 19.7.

GC-MS: C₁₄H₂₄, calculated mass is 182.3, found mass is 182.2.

1-benzyl-2-fluorobenzene.^[6] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.29–7.16 (m, 5H), 7.11–7.05 (m, 2H), 4.05 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 161.0 (d, *J*_{C-F} = 245.8 Hz), 139.9, 131.1 (d, *J*_{C-F} = 4.8 Hz), 128.8, 128.5, 128.1 (d, *J*_{C-F} = 16.2 Hz), 128.0 (d, *J*_{C-F} = 8.0 Hz), 126.2, 124.1 (d, *J*_{C-F} = 3.6 Hz), 115.3 (d, *J*_{C-F} = 22.0 Hz), 34.8 (d, *J*_{C-F} = 2.8 Hz).

¹⁹F NMR (467 MHz, CDCl₃): δ -117.9.

GC-MS: C₁₃H₁₁F, calculated mass is 186.2, found mass is 186.1.

1-benzyl-2-chlorobenzene.^[3] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.42–7.39 (m, 1H), 7.35–7.30 (m, 2H), 7.27–7.16 (m, 6H), 4.14 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 139.5, 138.7, 134.3, 131.0, 129.5, 129.0, 128.5, 127.7, 126.8, 126.2, 39.2.

GC-MS: C₁₃H₁₁Cl, calculated mass is 202.1, found mass is 202.1.

1-benzyl-3-fluorobenzene.^[7] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.36–7.31 (m, 2H), 7.29–7.20 (m, 4H), 7.03–6.99 (m, 1H), 6.95–6.88 (m, 2H), 4.01 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 163.0 (d, J_{C-F} = 245.4 Hz), 143.7 (d, J_{C-F} = 7.2 Hz), 140.3, 129.8 (d, J_{C-F} = 8.2 Hz), 128.9, 128.6, 126.4, 124.5 (d, J_{C-F} = 2.8 Hz), 115.8 (d, J_{C-F} = 21.6 Hz), 113.0 (d, J_{C-F} = 21.0 Hz), 41.6 (d, J_{C-F} = 1.4 Hz).

¹⁹F NMR (467 MHz, CDCl₃): δ -113.6.

GC-MS: C₁₃H₁₁F, calculated mass is 186.2, found mass is 186.2.

1-benzyl-3-chlorobenzene.^[3] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.36–7.31 (m, 2H), 7.28–7.19 (m, 6H), 7.12–7.08 (m, 1H), 3.98 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 143.2, 140.2, 134.3, 129.7, 129.0, 128.9, 128.6, 127.1, 126.4, 126.3, 41.6.

GC-MS: C₁₃H₁₁Cl, calculated mass is 202.1, found mass is 202.1.

1-benzyl-4-fluorobenzene.^[3] Yellow liquid.

¹H NMR (500 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.27–7.15 (m, 5H), 7.03–6.98 (m, 2H), 3.99 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 161.4 (d, J_{C-F} = 244.0 Hz), 141.0, 136.7 (d, J_{C-F} = 2.8

Hz), 130.3 (d, *J*_{C-F} = 7.6 Hz), 128.8, 128.5, 126.2, 115.2 (d, *J*_{C-F} = 20.2 Hz), 41.1.

¹⁹F NMR (467 MHz, CDCl₃): δ -117.4.

GC-MS: C₁₃H₁₁F, calculated mass is 186.2, found mass is 186.2.

1-benzyl-4-chlorobenzene.^[6] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.35–7.23 (m, 5H), 7.21–7.17 (m, 2H), 7.16–7.11 (m, 2H), 3.98 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 140.6, 139.6, 131.9, 130.3, 128.9, 128.6, 128.6, 126.3, 41.3.

GC-MS: C₁₃H₁₁Cl, calculated mass is 202.1, found mass is 202.1.

1-benzyl-4-(trifluoromethyl)benzene.^[3] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.37–7.30 (m, 4H), 7.28–7.23

(m, 1H), 7.23–7.18 (m, 2H), 4.07 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 145.2, 140.0, 129.2, 128.9, 128.7, 128.4 (q, *J*_{C-F} = 32.4 Hz), 126.5, 125.4 (t, *J*_{C-F} = 3.6 Hz), 124.2 (q, *J*_{C-F} = 277 Hz), 41.7.

¹⁹F NMR (467 MHz, CDCl₃): δ -62.4.

GC-MS: $C_{14}H_{11}F_3$ calculated mass is 236.2, found mass is 236.2.

1-benzyl-2,3-dichlorobenzene. Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.38–7.31 (m, 3H), 7.28–7.23 (m, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.17–7.11 (m, 1H), 7.09–7.06 (m, 1H), 4.17 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 141.1, 138.9, 133.3, 132.5, 129.1, 129.0, 128.6, 128.5, 127.1, 126.5, 40.1.

HRMS (APCI): C₁₃H₁₀Cl₂ calculated mass is 236.0, found mass is 236.0.

4-benzyl-1,2-dichlorobenzene.^[8] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.40–7.24 (m, 5H), 7.21–7.17 (m, 2H), 7.07–7.03 (m, 1H), 3.96 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 141.4, 139.7, 132.4, 130.8, 130.4, 130.1, 128.9, 128.7, 128.3, 126.6, 41.0.

GC-MS: C₁₃H₁₀Cl₂, calculated mass is 236.0, found mass is 236.1.

1-benzylnaphthalene.^[3] Yellow liquid.

¹H NMR (500 MHz, CDCl₃): δ 8.07–8.03 (m, 1H), 7.93–7.89 (m, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.54–7.45 (m, 3H), 7.37–7.29 (m, 3H), 7.27–7.21 (m, 3H), 4.51 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 140.7, 136.7, 134.0, 132.2, 128.8, 128.7, 128.5, 127.4, 127.2, 126.1, 126.0, 125.6, 125.6, 124.3, 39.1.

GC-MS: C₁₇H₁₄, calculated mass is 218.3, found mass is 218.2.

3ta

9-benzylphenanthrene.^[9] Brown solid. Mp. 155–157 °C.

¹H NMR (500 MHz, CDCl₃): 8.07–8.03 (m 1H), 7.93–7.89 (m, 1H), 7.84–7.79 (d, *J* = 8.0 Hz, 1H), 7.53–7.45 (m, 3H), 7.36–7.29 (m, 3H), 7.28–7.21 (m, 3H), 4.51 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 140.3, 134.8, 131.8, 131.4, 130.8, 130.0, 128.8, 128.5, 128.3, 127.9, 126.7, 126.6, 126.3, 126.2, 125.0, 123.1, 122.5, 39.6.

GC-MS: C₂₁H₁₆, calculated mass is 268.3, found mass is 268.1.

2-Benzylfuran.^[10] Yellow liquid.

¹H NMR (500 MHz, CDCl₃): 7.36–7.31 (m, 3H), 7.29–7.24 (m, 3H), 6.34–6.31 (m, 1H), 6.03 (d, *J* = 3.2 Hz, 1H), 4.00 (s, 2H).

 ^{13}C NMR (126 MHz, CDCl_3): δ 154.6, 141.5, 138.2, 128.7, 128.5, 126.5, 110.2, 106.2, 34.5.

GC-MS: C₁₁H₁₁O, calculated mass is 158.2, found mass is 158.2.

3-benzylthiophene.^[10] White solid. Mp. 30–32 °C.

¹H NMR (500 MHz, CDCl₃): 7.36–7.31 (m, 2H), 7.30–7.27 (m, 1H), 7.27–7.22 (m, 3H), 6.97–6.93 (m, 2H), 4.02 (s, 2H).

 ^{13}C NMR (126 MHz, CDCl_3): δ 141.5, 140.6, 128.7, 128.5, 128.5, 126.2, 125.6, 121.3, 36.6.

GC-MS: C₁₁H₁₀S, calculated mass is 174.2, found mass is 174.1.

Prop-1-ene-1,3-diyldibenzenee.^[7] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.43–7.23 (m, 10H), 6.52 (d, *J* = 16.0 Hz, 1H), 6.45– 6.38 (m, 1H), 3.61 (d, *J* = 7.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 140.2, 137.5, 131.1, 129.3, 128.7, 128.5, 128.5, 127.1, 126.2, 126.1, 39.4.

GC-MS: C₁₅H₁₄, calculated mass is 194.3, found mass is 194.2.

4-benzylaniline. ^[11] White solid. Mp. 35–37 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.23–7.19 (m, 3H), 7.03–6.99 (m, 2H), 6.68–6.64 (m, 2H), 3.91 (s, 2H), 3.55 (br, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 144.5, 141.9, 131.2, 129.8, 128.8, 128.4, 125.9, 115.3, 41.1.

GC-MS: C₁₃H₁₃N, calculated mass is 183.3, found mass is 183.2.

1-benzyl-3-(trifluoromethyl)benzene.^[7] Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.51–7.47 (m, 2H), 7.45–7.37 (m, 2H), 7.36–7.31 (m, 2H), 7.28–7.24 (m, 1H), 7.22–7.19 (m, 2H), 4.07 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 142.0, 140.0, 132.3, 130.7 (q, *J*_{C-F} = 31.7 Hz), 128.9, 128.8, 128.7, 126.4, 125.6 (q, *J*_{C-F} = 3.8 Hz), 124.1 (d, *J*_{C-F} = 277.5 Hz), 123.0 (q, *J*_{C-F} = 3.9 Hz), 41.7.

¹⁹F NMR (467 MHz, CDCl₃): δ -62.6.

GC-MS: C₁₄H₁₁F₃, calculated mass is 236.2, found mass is 236.2.

1,2,3-trimethoxy-5-(4-methoxybenzyl)benzene.^[12] White solid. Mp. 66–67 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.14 (d, *J* = 8.5, 2H), 6.87 (d, *J* = 8.5, 2H), 6.41 (s, 2H), 3.89 (s, 2H), 3.85 (s, 3H), 3.83 (s, 6H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 158.0, 153.2, 137.2, 136.3, 133.0, 129.8, 113.9, 105.80, 60.9, 56.1, 55.3, 41.3.

GC-MS: $C_{17}H_{20}O_4$, calculated mass is 288.3, found mass is 288.3.

IV. Reference

- [1] C.-R. Chen, S. Zhou, D. B. Biradar, H.-M. Gau, *Adv. Synth. Catal.* **2010**, *352*, 1718–1727.
- [2] A. Vasilopoulos, S. L. Zultanski, S. S. Stahl, J. Am. Chem. Soc. 2017, 139, 7705–7708.
- [3] D. Srimani, A. Bej, A. Sarkar, J. Org. Chem. 2010, 75, 4296–4299.
- [4] L. K. G. Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, *Chem. Sci.* 2015, 6, 1115–1119.
- [5] S. Yoon, M. C. Hong, H. Rhee, J. Org. Chem. 2014, 79, 4206–4211.
- [6] V. Ramakrishna, N. D. Reddy, *Dalton Trans.* 2017, 46, 8598–8610.
- [7] P. Zhang, J. Xu, Y. Gao, X. Li, G. Tang, Y. Zhao, Synlett 2014, 25, 2928– 2932.
- [8] G. K. S. Prakash, C. Do, T. Mathew, G. A. Olah, *Catal. Lett.* 2011, 141, 507– 511.
- [9] A. Kumar, A. P. Prakasham, M. K. Gangwar, P. Vishnoi, R. J. Butcher, P. Ghosh, *Eur. J. Inorg. Chem.* 2017, 2017, 2144–2154.
- [10] M. J. Burns, I. J. S. Fairlamb, A. R. Kapdi, P. Sehnal, R. J. K. Taylor, Org. Lett. 2007, 9, 5397–5400.
- [11] K. Nakajima, S. Nojima, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 14106–14110.
- [12] M. Cushman, D. Nagarathnam, D. Gopal, H. M. He, C. M. Lin, E. Hamel, J. Med. Chem. 1992, 35, 2293–2306.

V. HRMS, GC-MS and NMR Spectra of Products

	Ma	ss Spectrum Sn	nartForr	mula Report	
Analysis Info				Acquisition Date 10/2	6/2017 11:09:14 AM
Analysis Name Method Sample Name Comment	D:\Data\Li\2017-10 APCI_Tune_pos_L 2017-10-26 Li-Tan	-26 Li-Tang JT-AL-21 APCI .ow_AW.m g JT-AL-21 APCI +ve	+ve.d	Operator AWAHBA Instrument maXis imp	eact 282001.00044
Acquisition Para	meter				
Source Type Focus Scan Begin Scan End	APCI Not active 100 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4000 V -500 V 2000 V 4000 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valv Set APCI Heat	4.0 Bar 150 °C 1.5 l/min e Source er 450 °C
Intens. x10 ⁶		201.0456	2017-10-26	Li-Tang JT-AL-21 APCI +ve.d: +MS	, 1.7-1.8min #104-107
1.5				CI	
1.0				30	
0.5	8.9750	Ţ	236.0	0142	
1	ht.			257.2467 271.3	2622
0.0					

3-

2

238.0114

2017-10-26 Li-Tang JT-AL-21 APCI +ve.d				
Bruker Compass DataAnalysis 4.2	printed:	10/26/2017 12:16:32 PM	by: AWAHBA	Page 1 of 1

(a) GC-MS of the crude reaction mixture for 3wa. (b) m/z peaks of 3wa.

(a) GC-MS of the crude reaction mixture for 3xa. (b) m/z peaks of 3xa.

