Supporting Information

Palladium-Catalyzed Primary Amine-Directed Regioselective Mono- and Di-Alkynylation of Biaryl-2-Amines

Guangbin Jiang, Weigao Hu, Jianxiao Li, Chuanle Zhu, Wanqing Wu,* Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: cewuwq@scut.edu.cn; jianghf@scut.edu.cn

List of Contents

A. General Information	
B. Optimization of Reaction Conditions	S3
C. General Procedure for the Synthesis of 3 and 4	S5
D. Intermolecular Kinetic Isotope Effect Experiment	S6
E. X-ray Crystallographic Analysis	
F. Characterization Data for All Products	S12
G. The Preparation of Palladacycle Intermediate A ¹	
H. Further Synthetic Applications	S35
I. Copies of ¹ H and ¹³ C NMR spectra	S38

A. General Information

All purchased reagents and solvents were used without further purification unless otherwise noted. Melting points were measured with a melting point instrument and were uncorrected. ¹H and ¹³C NMR spectra were recorded using a Bruker DRX-400 spectrometer using CDCl₃ or DMSO- d_6 as solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. GC-MS was obtained using electron ionization. TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was effected at 254 nm. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer.

B. Optimization of Reaction Conditions

	NH2 + X	TIPS palladium(II) catalyst TIPS additive, solvent	NH ₂	
	2a 2b 1a 2c	ı, X = Br,), X = Cl ;, X = I	3a	
entry	catalyst	additive	solvent	yield $(\%)^b$
1	$Pd(OAc)_2$	Cu(OAc) ₂	toluene	n.d.
2	$Pd(OAc)_2$	AgOAc	toluene	76
3	PdCl ₂	AgOAc	toluene	54
4	Pd(PPh ₃) ₂ Cl ₂	AgOAc	toluene	62
5	$Pd(OAc)_2$	AgOAc	DCE	53
6	$Pd(OAc)_2$	AgOAc	CH ₃ CN	trace
7	-	AgOAc	toluene	n.d.
8	$Pd(OAc)_2$	-	toluene	n.d.
9c	Pd(OAc) ₂	AgOAc	toluene	84(80)
10^d	$Pd(OAc)_2$	AgOAc	toluene	69(63)
11 ^e	$Pd(OAc)_2$	AgOAc	toluene	37(31)

Table S1. Optimization of Reaction Conditions for Monoalkynylation^a

^{*a*} Reaction conditions: a mixture of **1a** (0.2 mmol), **2a** (0.2 mmol), additive (0.4 mmol, 2 equiv), catalyst (0.01 mmol, 5 mol %) and solvent (1.5 mL) was sealed in a 25 mL Schlenk tube at 100 °C for 12 h under N₂. ^{*b*} Determined by GC using dodecane as an internal standard. Numbers in parentheses are yields of isolated products. n.d. = not detected. ^{*c*} **1a** (0.2 mmol), **2a** (0.14 mmol), AgOAc (0.28 mmol, 2 equiv) and catalyst (0.007 mmol, 5 mol %) were used. ^{*d*} Using the corresponding alkynyl chloride (**2b**). ^{*e*} Using the corresponding alkynyl iodide (**2c**).

H H + Br TIPS Pd(OAc) ₂ (5 mol%) AgOAc (4 equiv), Toluene TIPS					
	1a	2a		4a	
entry	1a (mmol)	2a (mmol)	AgOAc (mmol)	solvent	yield ^{b} (%)
1	0.2	0.14	0.56	toluene	< 5
2	0.2	0.2	0.8	toluene	9
3	0.2	0.25	0.8	toluene	12
4	0.2	0.3	0.8	toluene	31
5	0.2	0.35	0.8	toluene	52
6	0.2	0.4	0.8	toluene	64
7	0.2	0.45	0.8	toluene	72
8	0.2	0.5	0.8	toluene	82
9	0.2	0.55	0.8	toluene	81

Table S2. Optimization of Reaction Conditions for Dialkynylation^a

^{*a*}Reaction conditions: a mixture of **1a** (0.2 mmol), **2a** (0.14-0.55 mmol), AgOAc (4 equiv), $Pd(OAc)_2$ (5 mol %) and toluene (1.5 mL) were sealed in a 25 mL Schlenk tube at 100 °C for 12 h under N₂. ^{*b*} isolated yield.

		IH ₂ + TIPS <u>Pc</u> AgOAd 2a	I(OAc) ₂ (5 mol%) c (2-4.5 equiv), Toluene	NH ₂ TIPS	
entry	1a (mmol)	2a (mmol)	AgOAc (mmol)	solvent	yield ^{b} (%)
1	0.2	0.5	0.4	toluene	< 21
2	0.2	0.5	0.5	toluene	36
3	0.2	0.5	0.6	toluene	53
4	0.2	0.5	0.7	toluene	67
5	0.2	0.5	0.8	toluene	82
6	0.2	0.5	0.9	toluene	81

^aReaction conditions: a mixture of 1a (0.2 mmol), 2a (0.5 mmol), AgOAc (2-4.5 equiv), Pd(OAc)₂
(5 mol %) and toluene (1.5 mL) were sealed in a 25 mL Schlenk tube at 100 °C for 12 h under N₂.
^bisolated yield.

C. General Procedure for the Synthesis of 3 and 4

1. Monoalkynylation of Biaryl-2-amines

Biaryl-2-amines 1 (0.2 mmol), (bromoethynyl)triisopropylsilane 2a (0.14 mmol), $Pd(OAc)_2$ (0.007 mmol, 5 mol %), AgOAc (0.28 mmol, 2 equiv) and toluene (1.5 mL) were sealed in a Schlenk tube under N₂ atmosphere. After this, the mixture was stirred at 100 °C (oil bath temperature) for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **3** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

2. Dialkynylation of Biaryl-2-amines

Biaryl-2-amines **1** (0.2 mmol), (bromoethynyl)triisopropylsilane **2a** (0.5 mmol), $Pd(OAc)_2$ (0.01 mmol, 5 mol %), AgOAc (0.8 mmol, 4 equiv) and toluene (1.5 mL) were sealed in a Schlenk tube under N₂ atmosphere. After this, the mixture was stirred at 100 °C (oil bath temperature) for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **4** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

D. Intermolecular Kinetic Isotope Effect Experiment

[1,1'-biphenyl]-2-amine **1a** (0.2 mmol), [1,1'-biphenyl]-2',3',4',5',6'-*d*₅-2-amine **1a**-*d*₅ (0.2 mmol), (bromoethynyl)triisopropylsilane **2a** (0.14 mmol), Pd(OAc)₂ (0.007 mmol, 5 mol %), AgOAc (0.28 mmol, 2 equiv) and toluene (1.5 mL) were sealed in a Schlenk tube under N₂ atmosphere. After this, the mixture was stirred at 100 °C (oil bath temperature) for 1.5 h, the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. Then the resulting residue was purified by column chromatography on silica gel with petroleum ether/EtOAc (40/1) as eluent to afford a mixture of **3a** and **3a**-*d*₄ in 25% isolated yield (12.2 mg). The KIE value (K_H/K_D = 2) was determined on the basis of ¹H NMR analysis. Data for compounds **3a**/**3a**-*d*₄: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 0.7H), 7.35 (m, *J* = 14.8, 7.4, 6.0 Hz, 2H), 7.15-7.09 (m, 2H), 6.78 (m, *J* = 7.6, 0.8 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 3.44 (s, 2H), 0.97 (s, 21H).

2'-((Triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** (0.2 mmol), 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-3',4',5',6'- d_4 -2-amine **3a**- d_4 (0.2 mmol), (bromoethynyl)triisopropylsilane **2a** (0.5 mmol), Pd(OAc)₂ (0.01 mmol, 5 mol %), AgOAc (0.8 mmol, 4 equiv) and toluene (1.5 mL) were sealed in a Schlenk tube under N₂ atmosphere. After this, the mixture was stirred at 100 °C (oil bath temperature) for 1.5 h, the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. Then the resulting residue was purified by column chromatography on silica gel with petroleum ether/EtOAc (40/1) as eluent to afford a mixture of **4a** and **4a**- d_3 in 21% isolated yield (15.6 mg). The KIE value (K_H/K_D = 5) was determined on the basis of ¹H NMR analysis. Data for compounds **4a**/**4a**- d_3 : ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.8 Hz, 1.7H), 7.29 (d, *J* = 6.5 Hz, 0.8H), 7.08 (m, J = 7.6, 7.2, 2.2 Hz, 2H), 6.76 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H),

3.43 (s, 2H), 0.97 (s, 42H).

E. X-ray Crystallographic Analysis

1. X-ray Crystallographic Analysis for Product 30

The X-ray crystallographic structures for **30**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 1560805.

Empirical formula	C ₃₃ H ₃₅ NSi
Formula weight	473.71
Temperature	373(10) K
Wavelength	0.71073 <i>Å</i>
Crystal system, space group	Triclinic, P.1
Unit cell dimensions	a = 9.0089(6) (2) \mathring{A} alpha = 98.702 (4) deg. b = 13.9567 (6) \mathring{A} beta = 99.193 (4) deg. c = 22.3783 (10) \mathring{A} gamma = 99.700 (4) deg.
Volume	2691.6 (2) Å ³
Z, Calculated density	4, 1.169 Mg/m ³
Absorption coefficient	0.109 mm ⁻¹
F(000)	1016
Crystal size	0.14×0.12×0.10 mm
Theta range for data collection	3.315 to 29.544 deg.

Limiting indices	$-11 \le h \le 12, -17 \le k \le 17, -28 \le l \le 30$
Reflections collected / unique	25384 / 12544 [R(int) = 0.1029]
Completeness to theta $= 25.00$	99.8%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	25385 / 15 / 651
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	$R_1 = 0.0728, wR_2 = 0.1708$
R indices (all data)	$R_1 = 0.1029, wR_2 = 0.1909$

2. X-ray Crystallographic Analysis for Product 4b

The X-ray crystallographic structures for **4b**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 1560853.

Empirical formula	C ₄₀ H ₅₅ N Si ₂
Formula weight	606.03
Temperature	378(10) K
Wavelength	0.71073 <i>Å</i>
Crystal system, space group	Monoclinic, P_1

Unit cell dimensions	a = 15.3730 (8) (2) \mathring{A} alpha = 90.000 (4) deg. b = 7.7388 (4) \mathring{A} beta = 101.174 (4) deg. c = 32.2857 (16) \mathring{A} gamma = 90.000 (4) deg.
Volume	3768.2 (3) Å ³
Z, Calculated density	4, 1.068 Mg/m ³
Absorption coefficient	0.120 mm ⁻¹
F(000)	1320
Crystal size	0.18×0.16×0.12 mm
Theta range for data collection	3.264 to 24.999 deg.
Limiting indices	$-17 \le h \le 18, -9 \le k \le 8, -38 \le l \le 38$
Reflections collected / unique	16703 / 6618 [R(int) = 0.1200]
Completeness to theta $= 25.00$	99.6%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	16703 / 0 / 400
Goodness-of-fit on F ²	1.014
Final R indices [I>2sigma(I)]	$R_1 = 0.0955, wR_2 = 0.2496$
R indices (all data)	$R_1 = 0.1200, wR_2 = 0.2730$

F. Characterization Date for All Products

2'-((Triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3a)

3a as a brown oil (39.1 mg, 80% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.8 Hz, 1H), 7.40-7.28 (m, 3H), 7.15-7.08 (m, 2H), 6.78 (m, J = 7.4, 3.8 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 3.11 (s, 2H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 142.3, 133.2, 130.6, 130.2, 128.7, 128.6, 127.2, 127.0, 123.3, 118.4, 115.7, 105.4, 94.0, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3470, 3059, 2939, 2863, 2154, 1616, 1464, 1263, 752, 666, 454; HRMS (ESI) m/z: calcd for C₂₃H₃₂NSi [M+H]⁺ 350.2299; found 350.2304.

2'-((Triisopropylsilyl)ethynyl)-[1,1':4',1''-terphenyl]-2-amine (3b)

1H), 6.75 (d, J = 7.8 Hz, 1H), 3.60 (s, 2H), 0.99 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 141.2, 140.3, 140.1, 140.0, 131.7, 130.6, 128.8, 128.7, 127.6, 127.5, 127.1, 126.6, 123.7, 118.4, 115.6, 105.4, 94.1, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3472, 3306, 3029, 2933, 2863, 2152, 1674, 1546, 1383, 1304, 1257, 748, 667, 458; HRMS (ESI) m/z: calcd for C₂₉H₃₆NSi [M+H]⁺ 426.2621; found 426.2618.

4'-Ethyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3c)

Hz, 1H), 3.38 (s, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.3, 139.6, 132.4, 130.7, 130.1, 128.5, 128.4, 127.0, 123.1, 118.3, 115.5, 105.8, 93.3, 28.4, 18.5, 15.4, 11.2; v_{max} (KBr)/cm⁻¹ 3487, 3396, 2944, 2865, 2152, 1456, 1254, 1178, 980, 916, 881, 670, 459; HRMS (ESI) m/z: calcd for C₂₅H₃₆NSi [M+H]⁺ 378.2621; found 378.2616.

4'-Fluoro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3d)

1H), 3.20 (s, 2H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 160.3, 143.8, 138.4, 131.8 (d, J = 8.6 Hz), 130.7 , 128.7, 125.9, 125.1 (d, J = 9.6 Hz), 119.5 (d, J = 22.6 Hz), 117.0 (d, J = 227.8 Hz), 116.1 (d, J = 22.0 Hz), 104.2, 95.4, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3475, 3387, 2940, 2863, 2152, 1612, 1470, 1381, 1260, 1151, 999, 957, 751, 667, 460; HRMS (ESI) m/z: calcd for C₂₃H₃₁FNSi [M+H]⁺ 368.2204; found 368.2210.

4'-(Trifluoromethyl)-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3e)

7.6 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 3.20 (s, 2H), 0.97 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 143.5, 130.8, 130.3, 129.9 (q, J = 4.5 Hz), 129.6, 129.2, 127.8, 125.6, 125.1 (q, J = 3.5 Hz), 124.3, 122.4, 117.2 (d, J = 268.6 Hz), 103.8, 96.3, 18.4, 11.1; v_{max}

(KBr)/cm⁻¹ 3390, 2943, 2865, 2156, 1617, 1460, 1404, 1330, 1169, 1130, 902, 751, 670, 457; HRMS (ESI) m/z: calcd for C₂₄H₃₁F₃NSi [M+H]⁺ 418.2172; found 418.2177.

1-(2'-Amino-2-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (3f)

3f as a brown oil (41.6 mg, 76% yield);
$$R_f = 0.2$$
 (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, $J = 1.8$ Hz, 1H), 7.94 (dd, $J = 8.0, 2.0$ Hz, 1H), 7.45 (d, $J = 8.0$ Hz, 1H), 7.14 (m, $J = 7.8, 1.5$

Hz, 1H), 7.09 (dd, J = 7.6, 1.5 Hz, 1H), 6.79 (m, J = 7.6, 1.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 3.42 (s, 2H), 2.64 (s, 3H), 0.97 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 147.0, 143.4, 136.1, 133.1, 130.6, 130.2, 129.1, 128.2, 125.9, 124.0, 118.5, 115.9, 104.4, 95.5, 26.7, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3473, 3372, 2932, 2863, 2153, 1687, 1617, 1459, 1358, 998, 885, 744, 673, 451; HRMS (ESI) m/z: calcd for C₂₅H₃₄NOSi [M+H]⁺ 392.2404; found 392.2406.

2'-((Triisopropylsilyl)ethynyl)-4'-vinyl-[1,1'-biphenyl]-2-amine (3g)

3g as a brown oil (43.6 mg, 83% yield);
$$R_f = 0.4$$
 (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, $J = 1.8$ Hz, 1H), 7.43 (dd, $J = 8.0$, 1.8 Hz, 1H), 7.31 (d, $J = 8.0$ Hz, 1H), 7.16-7.06 (m, 2H),

6.74 (m, J = 17.4, 8.6 Hz, 3H), 5.81 (d, J = 17.6 Hz, 1H), 5.31 (d, J = 11.1 Hz, 1H), 3.53 (s, 2H), 0.97 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 141.6, 136.7, 135.7, 130.9, 130.6, 130.4, 128.6, 126.6, 126.4, 123.5, 118.3, 115.6, 114.7, 105.3, 94.0, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3473, 3385, 2936, 2863, 2150, 1616, 1459, 1382, 1296, 1155, 1069, 992, 749, 669, 458; HRMS (ESI) m/z: calcd for C₂₅H₃₄NSi [M+H]⁺ 376.2455; found 376.2452.

3',5'-Dichloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3h)

3h as a brown oil (44.4 mg, 76% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v)¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 2.2 Hz, 1H), 7.26 (s, 1H), 7.15 (m, J = 8.0, 1.4 Hz, 1H), 7.06 (dd, J = 7.6, 1.3 Hz, 1H), 6.78 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 3.30 (s, 2H), 0.97 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 143.4, 137.8, 134.2, 130.2, 129.3, 128.7, 128.2, 125.2, 122.1, 118.6, 115.9, 102.0, 100.5, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3474, 3382, 2939, 2864, 2158, 1673, 1619, 1498, 1429, 1256, 881, 742, 672, 472; HRMS (ESI) m/z: calcd for C₂₃H₃₀Cl₂NSi [M+H]⁺ 418.1519; found 418.1523.

3',5'-Dimethyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3i)

H₂N TIPS

3i as a brown oil (41.2 mg, 78% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.07 (m, 2H), 7.05 (s,

1H), 6.99 (s, 1H), 6.77 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 3.35 (s, 2H), 2.51 (s, 3H), 2.35 (s, 3H), 0.97 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 142.5, 141.2, 138.3, 130.4, 129.3, 128.3, 128.1, 127.7, 120.23, 118.3, 115.6, 104.1, 97.5, 21.3, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3472, 3382, 2942, 2864, 2149, 1613, 1497, 1460, 11217, 1157, 996, 799, 670, 604, 453; HRMS (ESI) m/z: calcd for C₂₅H₃₆NSi [M+H]⁺ 378.2621; found 378.2616.

2'-Methoxy-4'-methyl-6'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3j)

3j as a yellow solid (40.2 mg, 73% yield); mp 82-83 °C; $R_f = 0.2$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.4

Hz, 1H), 7.11 (m, *J* = 7.8, 1.6 Hz, 1H), 7.05 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.88 (d,

J = 8.4 Hz, 1H), 6.79 (m, *J* = 7.4, 1.0 Hz, 1H), 6.74 (dd, *J* = 8.0, 0.8 Hz, 1H), 3.72 (s, 3H), 3.51 (s, 2H), 2.46 (s, 3H), 0.95 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 144.1, 133.3, 131.0, 130.7,

129.3, 128.4, 125.0, 123.7, 118.5, 115.6, 111.6, 103.8, 98.5, 56.1, 20.6, 18.5, 11.1; *v*_{max} (KBr)/cm⁻¹ 3470, 3379, 2941, 2864, 2149, 1677, 1616, 1499, 1384, 1164, 1108, 923, 742, 670, 476; HRMS (ESI) m/z: calcd for C₂₅H₃₆NOSi [M+H]⁺ 394.2561; found 394.2568.

2'-Fluoro-6'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3k)

3k as a brown oil (44.7 mg, 87% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 1H), 7.27 (m, J = 8.2, 5.6 Hz, 1H), 7.16-7.07 (m, 3H), 6.79 (m, J = 7.6, 0.9 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 3.38 (s, 2H), 0.94 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 158.9, 144.2, 131.0, 129.4, 129.3, 129.0, 128.9 (d, J = 2.8 Hz), 126.1 (d, J = 4.5 Hz), 120.0, 117.1 (d, J = 270.3 Hz), 116.2 (d, J = 22.9 Hz), 104.1 (d, J = 4.2 Hz), 95.3, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3477, 3390, 3066, 2943, 2864, 2152, 1618, 1564, 1456, 1264, 987, 795, 745, 461; HRMS (ESI) m/z: calcd for C₂₃H₃₁FNSi

[M+H]⁺ 368.2204; found 368.2208.

2-(2-((Triisopropylsilyl)ethynyl)naphthalen-1-yl)aniline (3l)

31 as a brown oil (46.4 mg, 83% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 17.4, 8.3 Hz, 2H), 7.67 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.51-7.46 (m, 1H), 7.44-7.38 (m, 1H), 7.23 (m, J = 8.0, 1.5 Hz, 1H), 7.12 (dd, J = 7.6, 1.4 Hz, 1H), 6.88 (m, J = 7.4, 0.8 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 3.27 (s, 2H), 1.00 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 140.4, 133.3, 132.1, 131.2, 129.2, 128.8, 128.0, 127.6, 126.8, 126.6, 126.5, 124.5, 121.2, 118.5, 115.6, 106.1, 94.6, , 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3474, 3383, 3057, 2943, 2864, 2147, 1615, 1497, 1458, 1070, 989, 926, 819, 747, 459; HRMS (ESI) m/z: calcd for C₂₇H₃₄NSi [M+H]⁺ 400.2455; found 400.2461.

2-(Methoxy-2-((triisopropylsilyl)ethynyl)naphthalen-1-yl)aniline (3m)

3m as a yellow solid (31.8 mg, 53% yield); mp 108-109 °C; $R_f = 0.2$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.72-7.68 (m, 2H), 7.18-7.12 (m, 5H), 6.80 (m, J = 7.4, 0.8 Hz, 1H), 6.75 (d, J =8.0 Hz, 1H), 3.93 (s, 3H), 3.50 (s, 2H), 0.99 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 144.1, 136.5, 133.4, 132.0, 130.9, 129.3, 128.8, 128.7, 128.5, 126.9, 121.9, 119.9, 118.3, 115.54, 105.8, 105.2, 93.9, 55.3, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3462, 3372, 3056, 2932, 2861, 2146, 1617, 1494, 1457, 881, 807, 748, 671, 463; HRMS (ESI) m/z: calcd for C₂₈H₃₆NOSi [M+H]⁺ 430.2561; found 430.2563.

2-(3-((triisopropylsilyl)ethynyl)benzo[b]thiophen-2-yl)aniline (3n)

3n as a brown oil (28.9 mg, 51% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.39 (dd, J = 6.8, 5.6 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 7.20

7.8 Hz, 1H), 6.79 (dd, J = 17.6, 8.0 Hz, 2H), 3.58 (s, 2H), 1.07 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 144.7, 140.2, 138.5, 131.8, 130.1, 125.0, 124.9, 123.1, 122.1, 118.7, 118.2, 116.8, 116.0, 99.7, 97.0, 18.6, 11.3; v_{max} (KBr)/cm⁻¹ 3488, 3374, 2944, 2864, 2155, 1702, 1620, 1466, 1368, 1306, 1109, 833, 670; HRMS (ESI) m/z: calcd for C₂₅H₃₂NSSi [M+H]⁺ 406.2019; found 406.2021.

2-(2-((Triisopropylsilyl)ethynyl)pyren-1-yl)aniline (30)

30 as a brown solid (47.7 mg, 72% yield); mp 113-114 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.11 (dd, J = 10.8, 7.6 Hz, 2H), 8.06-8.00 (m, 2H), 7.98-7.93 (m, 2H), 7.76 (d, J = 9.2 Hz, 1H), 7.25 (m, J = 7.8, 1.5 Hz, 1H), 7.21-7.18 (m, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 3.40 (s, 2H), 1.01 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 136.7, 131.6, 131.4, 131.1, 130.5, 129.8, 128.9, 128.9, 128.1, 128.0, 126.7, 126.4, 125.5, 125.4, 125.3, 124.8, 124.6, 124.5, 121.7, 118.6, 115.6, 106.2, 94.3, 18.6, 11.2; v_{max} (KBr)/cm⁻¹ 3473, 3382, 3043, 2942, 2863, 2149, 1613, 1500, 1460, 1293, 1072, 993, 746, 683, 464; HRMS (ESI) m/z: calcd for C₃₃H₃₆NSi [M+H]⁺ 474.2612; found 474.2615.

5'-Chloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3p)

3p as a brown oil (32.7 mg, 61% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 2.2 Hz, 1H), 7.29 (dd, J = 8.4, 2.2 Hz, 1H), 7.13 (m, J = 8.0, 1.6 Hz, 1H), 7.07 (dd, J = 7.6, 1.4 Hz, 1H), 6.78 (m, J = 7.5, 0.8 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 3.32 (s, 2H), 0.96 (s, 22H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.6, 134.4, 134.2, 130.4, 130.3, 129.0, 127.5, 125.6, 121.9, 118.4, 115.8, 104.3, 95.2, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3475, 3386, 3027, 2944, 2864, 2155, 1616, 1583, 1230, 1206, 1012, 921, 883, 823, 747, 675, 466; HRMS (ESI) m/z: calcd for C₂₃H₃₁NClSi [M+H]⁺ 384.1909; found 384.1915.

4-Methyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3q)

3q as a brown oil (38.6 mg, 76% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 7.6, 0.6 Hz, 1H), 7.39-7.27 (m, 3H), 7.00 (d, J = 7.6 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.56 (s, 1H), 3.53 (s, 2H), 2.29 (s, 3H), 0.98 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 142.4, 138.3, 133.1, 130.4, 130.2, 128.6, 127.1, 124.3, 123.5, 119.3, 116.3, 105.6, 93.8, 21.2, 18.4, 11.2; v_{max} (KBr)/cm⁻¹ 3473, 3383, 2941, 2864, 2154, 1618, 1514, 1466, 1381, 1300, 1071, 998, 801, 700, 454; HRMS (ESI) m/z: calcd for C₂₄H₃₄NSi [M+H]⁺ 364.2455; found 364.2460.

5-Methyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3r)

3r as a brown oil (37.1 mg, 73% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 6.0 Hz, 1H), 7.36-7.23 (m, 3H), 6.91 (t, J = 6.0 Hz, 2H), 6.67-6.57 (m, 1H), 3.18 (s, 2H), 2.21 (s, 3H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 141.1, 133.1, 131.0, 130.1, 129.1, 128.6, 127.4, 127.1, 127.1, 123.3, 115.9, 105.6, 93.8, 20.4, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3468, 3380, 3017, 2940, 2863, 2154, 1621, 1504, 1468, 918, 882, 825, 757, 669, 460; HRMS (ESI) m/z: calcd for C₂₄H₃₄NSi [M+H]⁺ 364.2455; found 364.2462.

Ethyl 2-amino-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-carboxylate (3s)

Hz, 2H), 7.16 (d, J = 7.8 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 3.49 (s, 2H), 1.39 (t, J = 7.2 Hz, 3H), 0.94 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 143.9, 141.3, 133.2, 131.2, 130.7, 130.6, 129.6, 128.8, 127.7, 123.1, 119.3, 116.3, 104.9, 94.6, 60.7, 18.4, 14.3, 11.1; v_{max} (KBr)/cm⁻¹ 3479, 3380, 2943, 2865, 2154, 1716, 1622, 1466, 1426,, 1296, 1233, 1106, 831, 722, 461; HRMS (ESI) m/z: calcd for C₂₆H₃₆NO₂Si [M+H]⁺ 422.2510; found 422.2515.

Ethyl 6-amino-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-3-carboxylate (3t)

H₂N TIPS 3t as a brown oil (49.5 mg, 84% yield); R_f = 0.3 (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.62

(d, J = 7.6 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.32 (dd, J = 9.0, 7.8 Hz, 2H), 6.69 (d, J = 8.4 Hz, 1H), 4.29 (dd, J = 7.1, 4.6 Hz, 2H), 3.98 (s, 2H), 1.33 (t, J = 7.1 Hz, 3H), 0.94 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 148.2, 141.0, 133.2, 132.6, 130.8, 130.1, 128.8, 127.7, 125.5, 123.5, 119.8, 114.3, 105.0, 94.5, 60.2, 18.4, 14.4, 11.1; v_{max} (KBr)/cm⁻¹ 3487, 3374, 2944, 2865, 2155, 1703, 1620, 1465, 1369, 1237, 1151, 1109, 833, 670, 460; HRMS (ESI) m/z: calcd for C₂₆H₃₆NO₂Si [M+H]⁺ 422.2510; found 422.2513.

5-Fluoro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3u)

3u as a brown oil (37.5 mg, 73% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 6.6, 2.4 Hz, 1H), 7.41-7.37 (m, 1H), 7.33 (t, J = 6.8 Hz, 2H), 6.86 (m, J = 11.2, 4.3 Hz, 2H), 6.66 (dd, J = 8.3, 4.8 Hz, 1H), 3.25 (s, 2H), 0.98 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 154.9, 141.1, 139.9, 133.2, 128.8, 128.7 (d, J = 222.5 Hz), 127.9 (d, J = 7.5 Hz), 123.2, 117.0 (d, J = 22.5 Hz), 116.5 (d, J = 7.7 Hz), 115.0 (d, J = 22.2 Hz), 105.0, 94.5, 18.4, 11.2; v_{max} (KBr)/cm⁻¹ 3469, 3382, 3061, 2942, 2864, 2154, 1614, 1501, 1471, 1264, 1177, 995, 879, 827, 704, 459; HRMS (ESI) m/z: calcd for C₂₃H₃₁FNSi [M+H]⁺ 368.2204; found 368.2211.

5-(Trifluoromethyl)-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3v)

3v as a brown oil (37.4 mg, 64% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 7.5, 1.2 Hz, 1H), 7.43-7.29 (m, 5H), 6.75 (d, J = 8.2 Hz, 1H), 3.75 (s, 2H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 140.6, 133.3, 128.8 (d, J = 207 Hz), 128.9, 127.7 (q, J = 3.8 Hz), 126.2, 125.9 (q, J = 3.7 Hz), 123.5, 123.4, 120.8, 119.9 (q, J = 32.4 Hz), 114.7, 104.7, 94.7, 18.4, 11.1; v_{max}

(KBr)/cm⁻¹ 3494, 3401, 2946, 2866, 2156, 1625, 1464, 1332, 1273, 1244, 1151, 1115, 880, 760, 670, 459; HRMS (ESI) m/z: calcd for C₂₄H₃₁F₃NSi [M+H]⁺ 418.2172; found 418.2177.

3,5-Dichloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3w)

2.4 Hz, 1H), 3.97 (s, 2H), 0.98 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 139.6, 133.2, 129.7, 128.9, 128.8, 128.7, 128.2, 128.1, 123.3, 122.1, 119.7, 104.5, 95.3, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3489, 3394, 3063, 2944, 2864, 2155, 1612, 1459, 1107, 920, 880, 759, 718, 467; HRMS (ESI) m/z: calcd for C₂₃H₃₀Cl₂NSi [M+H]⁺ 418.1519; found 418.1523.

2',6'-Bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4a)

4a as a brown oil (86.7 mg, 82% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.8 Hz, 2H), 7.24 (d, J = 6.4 Hz, 1H), 7.06-6.99 (m, 2H), 6.71 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 3.42 (s, 2H), 0.93 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 143.7, 132.8, 130.3, 128.6, 127.1, 125.8, 124.5, 118.5, 115.7, 104.8, 94.4, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3478, 3390, 2942, 2864, 2151, 1617, 1458, 1069, 978, 922, 881, 744, 709, 671, 459; HRMS (ESI) m/z: calcd for C₃₄H₅₂NSi₂ [M+H]⁺ 530.3633; found 530.3639.

2',6'-Bis((triisopropylsilyl)ethynyl)-[1,1':4',1''-terphenyl]-2-amine (4b)

6.3 Hz, 1H), 7.07 (dd, J = 10.2, 4.1 Hz, 2H), 6.77-6.73 (m, 1H), 6.69 (dd, J = 8.4, 0.8 Hz, 1H), 3.45 (s, 2H), 0.95 (s, 51H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 143.7, 140.5, 139.5, 131.5, 130.4, 128.9, 128.6, 127.8, 127.1, 125.5, 124.9, 118.5, 115.8, 104.9, 94.5, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3479, 3389, 3029, 2941, 2863, 2152, 1615, 1501, 1460, 1251, 1070, 1003, 920, 745, 672, 461; HRMS (ESI) m/z: calcd for C₄₀H₅₆NSi₂ [M+H]⁺ 606.3946; found 606.3950.

4'-Ethyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4c)

2H), 2.63 (t, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H), 0.94 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.2, 142.3, 132.4, 130.5, 128.4, 125.8, 124.2, 118.5, 115.7, 105.2, 93.7, 28.2, 18.5, 15.3, 11.2; v_{max} (KBr)/cm⁻¹ 3478, 3389, 2940, 2864, 2153, 1616, 1501, 1461, 1068, 997, 881, 743, 718, 458; HRMS (ESI) m/z: calcd for C₃₆H₅₆NSi₂ [M+H]⁺ 558.3946; found 558.3952.

4'-Isopropyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4d)

2H), 1.29 (d, J = 6.8 Hz, 6H), 1.06 (d, J = 5.6 Hz, 1H), 0.93 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 143.8, 142.5, 131.1, 130.5, 128.4, 125.9, 124.2, 118.5, 115.7, 105.3, 93.7, 33.7, 23.7, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3477, 3389, 2949, 2865, 2151, 1616, 1502, 1461, 1298, 1073, 1000, 882, 744, 672, 461; HRMS (ESI) m/z: calcd for C₃₇H₅₈NSi₂ [M+H]⁺ 572.4102; found 572.4104.

4'-Methoxy-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4e)

4e as a brown solid (63.7 mg, 57% yield); mp 83-84 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.08 (s, 2H), 7.04-6.99 (m, 2H), 6.71-6.67 (m, 1H), 6.64 (d, J = 8.0 Hz,

1H), 3.84 (s, 3H), 3.31 (s, 2H), 0.93 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 144.1, 137.6, 130.8, 128.4, 125.5, 125.3, 118.5, 118.4, 115.6, 104.8, 94.2, 55.6, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3476, 3387, 2941, 2863, 2150, 1615, 1501, 1461, 1194, 1153, 1061, 1003, 921, 743, 671, 463; HRMS (ESI) m/z: calcd for C₃₅H₅₄NSi₂ [M+H]⁺ 560.3738; found 560.3743.

4'-Fluoro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4f)

4f as a brown oil (72.2 mg, 66% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 2.6 Hz, 2H), 7.10-7.05 (m, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.74 (t, J = 7.4 Hz, 1H),

6.68 (d, J = 8.0 Hz, 1H), 3.42 (s, 2H), 0.96 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 159.7, 143.9, 141.1, 130.5, 128.8, 126.1 (d, J = 10.2 Hz), 124.8, 119.6 (d, J = 22.5 Hz), 117.1 (d, J = 279.1 Hz), 103.7 (d, J = 3.1 Hz), 95.8, 18.4, 17.7, 11.1; v_{max} (KBr)/cm⁻¹ 3478, 3392, 2942, 2864, 2159, 1617, 1579, 1312, 1131, 1070, 1000, 744, 670, 460; HRMS (ESI) m/z: calcd for $C_{34}H_{51}FNSi_2$ [M+H]+ 548.3539; found 548.3533.

4'-(Trifluoromethyl)-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4g)

= 8.0 Hz, 1H), 2.87 (s, 2H), 0.94 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 143.5, 130.0 (q, J = 32.9 Hz), 129.9, 129.0, 129.0 (q, J = 3.7 Hz), 125.5, 124.6, 123.4 (q, J = 271.0 Hz), 118.6,

115.9, 103.3, 96.7, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3479, 3392, 2946, 2865, 2155, 1618, 1502, 1462, 1233, 1169, 1136, 889, 739, 672, 464; HRMS (ESI) m/z: calcd for $C_{35}H_{51}F_3NSi_2$ [M+H]⁺ 598.3507; found 598.3515.

1-(2'-Amino-2,6-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (4h)

4h as a yellow solid (87.9 mg, 77% yield); mp 99-100 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 15/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 3H), 7.06 (dd, J = 10.9, 4.5 Hz, 1H), 7.00 (dd, J = 7.6, 1.3 Hz,

1H), 6.73 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 3.25 (s, 2H), 2.64 (s, 3H), 0.94 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 149.3, 143.4, 136.1, 132.2, 129.9, 129.0, 125.2, 124.9, 118.6, 115.9, 103.85, 95.9, 26.7, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3475, 3381, 2939, 2864, 2152, 1691, 1619, 1461, 1306, 1070, 1006, 884, 744, 714, 672, 462; HRMS (ESI) m/z: calcd for C₃₆H₅₄NOSi₂ [M+H]⁺ 572.3788; found 572.3741.

2',6'-Bis((triisopropylsilyl)ethynyl)-4'-vinyl-[1,1'-biphenyl]-2-amine (4i)

TIPS

4i as a brown oil (93.2 mg, 84% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 2H), 7.06-7.00 (m, 2H), 6.74-6.64 (m, 3H), 5.82 (d, J = 17.6 Hz, 1H), 5.33 (d, J = 10.8 Hz, 1H), 3.43 (s, 2H), 0.94 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 142.8, 135.8, 134.1, 129.4, 129.3, 127.6, 124.5, 123.7, 117.4, 114.7, 114.4, 103.8, 93.3, 17.5, 10.1; v_{max} (KBr)/cm⁻¹ 3477,

3389, 2943, 2864, 2152, 1616, 1500, 1461, 1298, 1068, 916, 802, 671, 460; HRMS (ESI) m/z: calcd for C₃₆H₅₄NSi₂ [M+H]⁺ 556.3789; found 556.3794.

3',5'-Dichloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4j)

4j as a brown solid (85.9 mg, 72% yield); mp 103-104 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.08-7.04 (m, 1H), 6.98 (dd, J = 7.6, 1.4 Hz, 1H), 6.73 (t,

J = 7.2 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 2.91 (s, 2H), 0.94 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.3, 136.6, 129.9, 129.1, 128.8, 125.1, 123.0, 118.8, 116.0, 102.1, 100.2, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3463, 3383, 2940, 2862, 2160, 1618, 1497, 1459, 1148, 1067, 919, 790, 751, 672, 470; HRMS (ESI) m/z: calcd for C₃₄H₅₀Cl₂NSi₂ [M+H]⁺ 530.3633; found 530.3639.

3',5'-Dimethyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4k)

4k as a brown solid (76.9 mg, 69% yield); mp 137-138 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (s, 3H), 7.09 (s, 1H), 7.04-6.99 (m, 2H), 6.71 (t, *J* = 7.4 Hz, 1H),

6.76-6.61 (m, 2H), 6.66 (d, J = 8.0 Hz, 1H), 2.87 (s, 2H), 2.47 (s, 6H), 0.93 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 143.5, 141.0, 130.3, 129.8, 128.3, 127.0, 121.6, 118.6, 115.8, 103.6, 97.9, 21.4, 18.5, 11.2; v_{max} (KBr)/cm⁻¹ 3374, 2940, 2864, 2150, 1615, 1459, 1378, 1074, 995, 883, 743, 672, 603, 463; HRMS (ESI) m/z: calcd for C₃₆H₅₆NSi₂ [M+H]⁺ 558.3946; found 558.3940.

3'-Chloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (41)

41 as a yellow solid (38.3 mg, 34% yield); mp 79-80 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ

7.44 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.077.02 (m, 1H), 6.99

 $(dd, J = 7.6, 1.3 Hz, 1H), 6.72 (t, J = 7.6 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 2.80 (s, 2H), 0.93 (d, J = 9.4 Hz, 42H); ¹³C NMR (100 MHz, CDCl₃) <math>\delta$ 146.7, 143.5, 136.9, 132.8, 130.1, 128.9, 128.2, 125.4, 124.4, 122.9, 118.6, 115.9, 103.9, 101.3, 101.0, 95.4, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3479,

3389, 2940, 2864, 2153, 1679, 1616, 1547, 1460, 1259, 1071, 991, 921, 818, 742, 676, 470; HRMS (ESI) m/z: calcd for C₃₄H₅₁ClNSi₂ [M+H]⁺ 564.3243; found 564.3239.

2-(6-Methoxy-1,3-bis((triisopropylsilyl)ethynyl)naphthalen-2-yl)aniline (4m)

4m as a brown solid (57.2 mg, 47% yield); mp 111-112 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 9.2 Hz, 1H), 7.99 (s, 1H), 7.25-7.21 (m, 1H), 7.11-7.04 (m, 3H),

6.74 (t, J = 7.4 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 3.93 (s, 3H), 3.43 (s, 2H), 0.99 (s, 21H), 0.95 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 144.0, 140.5, 133.4, 132.0, 130.7, 128.9, 128.5, 128.2, 126.3, 122.4, 121.5, 120.3, 118.5, 115.7, 105.7, 105.3, 102.8, 99.9, 94.1, 55.4, 18.6, 18.5, 11.2, 11.2; v_{max} (KBr)/cm⁻¹ 3 76, 3383, 2939, 2864, 2150, 1686, 1496, 1459, 1230, 1164, 1000, 882, 822, 671, 462; HRMS (ESI) m/z: calcd for C₃₉H₅₆NOSi₂ [M+H]⁺ 610.3895; found 610.3890.

5-Chloro-3-fluoro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4n)

(m, 1H), 3.47 (s, 2H), 0.97 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.4, 141.9 (d, J = 3.1 Hz), 132.7, 131.6 (d, J = 12.8 Hz), 128.4 (d, J = 4.4 Hz), 126.1 (d, J = 374.7 Hz), 125.6 (d, J = 3.0 Hz), 121.8 (d, J = 10.6 Hz), 114.8 (d, J = 22.4 Hz), 104.0, 95.5, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3488, 3396, 2945, 2865, 2152, 1573, 1456, 1255, 1178, 1074, 980, 916, 881, 803, 670, 461; HRMS (ESI) m/z: calcd for C₃₄H₅₀ClFNSi₂ [M+H]⁺ 582.3149; found 582.3154.

5-Methyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (40)

40 as a yellow solid (82.5 mg, 76% yield); mp 60-61 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ

7.52 (d, J = 7.8 Hz, 2H), 7.25 (d, J = 4.0 Hz, 1H), 6.84 (d, J = 9.8 Hz, 2H),

6.57 (d, J = 8.0 Hz, 1H), 3.24 (s, 2H), 2.18 (s, 3H), 0.93 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 141.2, 132.7, 130.5, 129.1, 127.4, 127.0, 126.1, 124.4, 116.1, 104.9, 94.3, 20.3, 18.4, 11.2; v_{max} (KBr)/cm⁻¹ 3471, 3384, 2941, 2864, 2151, 1620, 1505, 1458, 1318, 979, 920, 882, 804, 741, 671, 459; HRMS (ESI) m/z: calcd for C₃₅H₅₄NSi₂ [M+H]⁺ 544.3789; found 544.3785.

4-Methyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4p)

4p as a brown oil (79.3 mg, 73% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 2H), 7.32-7.27 (m, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H),

6.54 (s, 1H), 3.42 (s, 2H), 2.28 (s, 3H), 0.99 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 143.5, 138.1, 132.7, 130.2, 127.0, 124.6, 123.2, 119.5, 116.4, 105.0, 94.2, 21.1, 18.4, 11.2; v_{max} (KBr)/cm⁻¹ 3478, 3389, 2943, 2865, 2151, 1620, 1515, 1459, 1071, 978, 922, 882, 755, 671, 457; HRMS (ESI) m/z: calcd for C₃₅H₅₄NSi₂ [M+H]⁺ 544.3789; found 544.3779.

4-Chloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4q)

2.0 Hz, 1H), 6.59 (d, J = 1.8 Hz, 1H), 3.42 (s, 2H), 0.87 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 143.6, 134.1, 132.7, 131.5, 127.5, 124.5, 124.2, 118.3, 115.2, 104.4, 94.9, 18.4, 11.2; v_{max} (KBr)/cm⁻¹ 3483, 3393, 2944, 2865, 2151, 1615, 1567, 1497, 1238, 1070, 980, 883, 843, 754, 671, 460; HRMS (ESI) m/z: calcd for C₃₄H₅₁ClNSi₂ [M+H]⁺ 564.3243; found 564.3243.

Ethyl 6-amino-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-3-carboxylate (4r)

(d, J = 8.4 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.71 (s, 2H), 1.32 (t, J = 7.2 Hz, 4H), 0.91 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 148.3, 143.4, 132.8, 132.7, 130.9, 127.6, 124.6, 124.4, 120.0, 114.4, 104.4, 95.0, 60.0, 18.4, 14.4, 11.1; v_{max} (KBr)/cm⁻¹ 3490, 3375, 2944, 2865, 2151, 1705, 1620, 1573, 1459, 1368, 1298, 1150, 1109, 981, 917, 465; HRMS (ESI) m/z: calcd for C₃₇H₅₆NO₂Si₂ [M+H]⁺ 602.3844; found 602.3850.

Ethyl 2-amino-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-carboxylate (4s)

Hz, 1H), 7.28 (t, J = 6.2 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 3.21 (s, 2H), 1.38 (t, J = 7.2 Hz, 3H), 0.92 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 144.0, 143.8, 132.7, 130.7, 130.5, 130.3, 127.6, 124.1, 119.6, 116.5, 104.3, 95.1, 60.5, 18.4, 14.4, 11.1; v_{max} (KBr)/cm⁻¹ 3480, 3381, 2943, 2865, 2151, 1719, 1622, 1569, 1460, 1431, 1369, 1297, 1232, 979, 714, 463; HRMS (ESI) m/z: calcd for C₃₇H₅₅NNaO₂Si₂ [M+Na]⁺ 624.3664; found 624.3674.

5-(Trifluoromethyl)-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4t)

4t as a yellow solid (80.0 mg, 67% yield); mp 78-79 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate = 35/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ

7.56 (d, J = 7.8 Hz, 2H), 7.34-7.27 (m, 3H), 6.71 (d, J = 8.2 Hz, 1H), 3.72

(s, 2H), 0.92 (s, 42H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 142.9, 132.9, 127.9, 127.6 (q, J = 4.1 Hz), 126.0 (q, J = 3.6 Hz), 125.0, 124.9 (q, J = 269.0 Hz), 124.6, 120.1 (q, J = 32.3 Hz), 114.8, 104.1, 95.2, 18.4, 11.1; v_{max} (KBr)/cm⁻¹ 3494, 3402, 2945, 2865, 2151, 1625, 1513, 1460, 1381, 1150, 1116, 980, 883, 670, 457; HRMS (ESI) m/z: calcd for C₃₅H₅₁F₃NSi₂ [M+H]⁺ 598.3507; found 598.3512.

2'-Ethynyl-[1,1'-biphenyl]-2-amine (5a)

5a as a yellow oil (35.1 mg, 91% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.8 Hz, 1H), 7.41 (m, J = 7.6, 1.3 Hz, 1H), 7.36-7.30 (m, 2H), 7.18 (m, J = 7.8, 1.5 Hz, 1H), 7.12 (dd, J = 7.5, 1.6 Hz, 1H), 6.82 (m, J = 7.5, 0.8 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 3.38 (s, 2H), 2.99 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 142.2, 133.5, 130.6, 130.3, 129.2, 128.8, 127.4, 126.4, 121.9, 118.3, 115.6, 82.3, 80.2; v_{max} (KBr)/cm⁻¹ 3474, 3383,3301, 3060, 2939, 2864, 2150, 1676, 1617, 1500, 1462, 1381, 1253, 1077, 1000, 802, 670, 458; HRMS (ESI) m/z: calcd for C₁₄H₁₂N [M+H]⁺ 194.0964; found 194.0968.

6-Methylphenanthridine (6a)

6a as a yellow solid (30.2 mg, 78% yield); mp 85-86 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate = 5/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.4 Hz,

1H), 8.55 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 8.2 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.90-7.82 (m, 1H),

7.76-7.67 (m, 2H), 7.66-7.60 (m, 1H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 143.6, 132.6, 130.6, 129.3, 128.7, 127.3, 126.6, 126.4, 125.9, 123.8, 122.3, 122.0, 23.3; v_{max} (KBr)/cm⁻¹ 3307, 2926, 2859, 2312, 1675, 1636, 1599, 1544, 1308, 1253, 1087, 806, 753, 654, 576, 455; HRMS (ESI) m/z: calcd for C₁₄H₁₂N [M+H]⁺ 194.0964; found 194.0968.

5-Thiocyanato-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (7a)

7a as a yellow oil (108.1 mg, 89% yield); $R_f = 0.4$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.4, 1.2 Hz, 1H), 7.41 (m, J = 7.5, 1.4 Hz, 1H), 7.38-7.33 (m, 2H), 7.32-7.27 (m, 2H), 6.74 (d, J = 8.4 Hz, 1H), 3.88 (s, 2H), 0.96 (s, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 140.0, 135.01, 133.3, 133.3, 129.8, 128.9, 128.1, 123.4, 116.6, 112.1, 109.3, 104.7, 94.9, 18.5, 11.1; v_{max} (KBr)/cm⁻¹ 3484,

3383, 2941, 2863, 2154, 1620, 1495, 1468, 1402, 1306, 919, 882, 670; HRMS (ESI) m/z: calcd

for C₂₄H₃₀N₂NaSSi [M+Na]⁺ 429.1791; found 429.1794.

2'-(1-Benzyl-1H-1,2,3-triazol-4-yl)-[1,1'-biphenyl]-2-amine (8a)

8a as a yellow oil (56.7 mg, 87% yield); $R_f = 0.3$ (petroleum ether/ethyl acetate = 20/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, J = 7.8, 1.1 Hz, 1H), 7.48 (m, J = 7.6, 1.4 Hz, 1H), 7.41 (m, J = 7.6, 1.4 Hz, 1H), 7.30 (ddd, J = 9.0, 6.6, 1.8 Hz, 4H), 7.09 (ddd, *J* = 9.2, 7.8, 2.8 Hz, 3H), 6.95 (dd, *J* = 7.6, 1.4 Hz, 1H), 6.71 (t, *J* = 7.4 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.46 (s, 1H), 5.32 (s, 2H), 3.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 143.5, 136.4, 134.6, 130.5, 130.1, 130.0, 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 127.8, 126.7, 121.9, 118.5, 115.1, 53.8; v_{max} (KBr)/cm⁻¹ 3464, 3363, 3058, 2927, 2861, 2151, 1615, 1452, 1348, 1299, 1223, 1073, 1044, 809, 753, 507; HRMS (ESI) m/z: calcd for C₂₁H₁₈N₄Na [M+Na]⁺ 349.1424; found 349.1434.

1-(2'-Amino-[1,1'-biphenyl]-2-yl)ethan-1-one (9a)

9a as a yellow oil (31.7 mg, 75% yield); $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1, v/v); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.87-7.81 (m, 1H), 7.70 (m, J = 8.2, 1.2 Hz, 2H), 7.65-7.58 (m, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 143.6, 132.6, 130.5, 129.3, 128.6, 127.3, 126.5, 126.3, 125.9, 123.8, 122.3, 121.9, 23.3; v_{max} (KBr)/cm⁻¹ 3462, 3068, 2922, 2853, 2309, 1614, 1580, 1444, 1375, 1316, 860, 753, 720, 614, 436; HRMS (ESI) m/z: calcd for C₁₄H₁₃NNaO [M+Na]⁺ 234.0889; found 234.0891.

G. The Preparation of Palladacycle Intermediate A¹

Palladacycle Intermediate A: [1,1'-biphenyl]-2-amine **1a** (0.6 mmol), PdCl₂ (0.6 mmol), and MeOH (4 mL) were sealed in a Schlenk tube under N₂ atmosphere. After this, the mixture was stirred at room temperature for 24 h. The precipitate was filtered, washed with 10 mL MeOH, 10 mL diethylether and dried under vacuum. Palladacycle **A**¹ as a brown solid (119.3 mg, 68% yield); ¹H NMR (400 MHz, DMSO) δ 7.70-7.37 (m, 10H), 7.30-7.14 (m, 4H), 6.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 138.3, 138.2, 135.0, 130.3, 129.8, 129.4, 128.6, 127.6, 127.4, 125.2, 124.8; v_{max} (KBr)/cm⁻¹ 3241, 3183, 3096, 1567, 1480, 1453, 1314, 1287, 1129, 1178, 826, 760, 701, 520. HRMS (ESI) Calcd for C₂₄H₂₀N₂ClPd₂ [M-Cl]⁺ 584.9388; Found, 584.9382.

Page 1/1

H. Further Synthetic Applications

(a) 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** (0.2 mmol), TBFA (1 M in THF, 0.4 ML) and THF (1.0 mL) were sealed in a Schlenk tube under N_2 atmosphere. After this, the mixture was stirred at room temperature for 3 h. After the reaction was completed (monitored by TLC), the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **5a** were obtained after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

(b) i) 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** was hydrolyzed to **5a**. ii) **5a** (0.1 mmol), PdCl₂ (5 mol %) and CH₃CN (1 mL) were sealed in a Schlenk tube under N₂ atmosphere . After this, the mixture was stirred at 100 °C for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **6a** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

(c) 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** (0.3 mmol), KSCN (2 equiv), Cu(OTf)₂ (20 mol%), TMEDA (20 mol%) and BF₃.Et₂O were mixed in DMSO to stir under an O₂ balloon at 80 °C. Aftre the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **7a** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

(d) i) 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** was hydrolyzed to **5a**. ii) **5a** (0.2 mmol), Benzylazide (0.2 mmol), CuI (10 mol %) and DMF (1 mL) were sealed in a Schlenk tube under N_2 atmosphere . After this, the mixture was stirred at 80 °C for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **8a** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

(e) 2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine **3a** (0.2 mmol) and KOH (3 equiv) were sealed in a Schlenk tube under N_2 atmosphere. After this, the mixture was stirred at 100 °C for 12 h. Aftre the reaction was completed (monitored by TLC), the resulting mixture were cooled to room temperature and extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired products **9a** were obtained in the corresponding yields after purified by column chromatography on silica gel with mixture of petroleum ether and ethyl acetate.

I. Copies of ¹H and ¹³C NMR Spectra

2'-((Triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3a)

2'-((Triisopropylsilyl)ethynyl)-[1,1':4',1''-terphenyl]-2-amine (3b)

4'-Ethyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3c)

4'-Fluoro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3d)

4'-(Trifluoromethyl)-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3e)

1-(2'-Amino-2-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (3f)

3',5'-Dichloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3h)

3',5'-Dimethyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3i)

2'-Methoxy-4'-methyl-6'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3j)

2'-Fluoro-6'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3k)

2-(Methoxy-2-((triisopropylsilyl)ethynyl)naphthalen-1-yl)aniline (3m)

2-(2-((Triisopropylsilyl)ethynyl)pyren-1-yl)aniline (30)

5'-Chloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3p)

4-Methyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3q)

5-Methyl-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3r)

Ethyl 2-amino-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-carboxylate (3s)

Ethyl 6-amino-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-3-carboxylate (3t)

5-Fluoro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3u)

5-(Trifluoromethyl)-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3v)

3,5-Dichloro-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (3w)

2',6'-Bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4a)

2',6'-Bis((triisopropylsilyl)ethynyl)-[1,1':4',1"-terphenyl]-2-amine (4b)

4'-Ethyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4c)

4'-Isopropyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4d)

4'-Methoxy-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4e)

4'-Fluoro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4f)

4'-(Trifluoromethyl)-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4g)

1-(2'-Amino-2,6-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (4h)

2',6'-Bis((triisopropylsilyl)ethynyl)-4'-vinyl-[1,1'-biphenyl]-2-amine (4i)

3',5'-Dichloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4j)

3',5'-Dimethyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4k)

3'-Chloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4l)

2-(6-Methoxy-1,3-bis((triisopropylsilyl)ethynyl)naphthalen-2-yl)aniline (4m)

5-Chloro-3-fluoro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4n)

5-Methyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (40)

4-Methyl-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4p)

4-Chloro-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4q)

Ethyl 6-amino-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-3-carboxylate (4r)

Ethyl 2-amino-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-4-carboxylate (4s)

5-(Trifluoromethyl)-2',6'-bis((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (4t)

2'-Ethynyl-[1,1'-biphenyl]-2-amine (5a)

6-Methylphenanthridine (6a)

5-Thiocyanato-2'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-amine (7a)

¹H NMR (400 MHz, CDCI₃)

