Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI) To:

Hidden Aryl-Exchange Processes in Stable 16e Rh^{III} [RhCp*Ar₂]

Complexes, and their Unexpected Transmetalation Mechanism[†]

Marconi N. Peñas-Defrutos,^a Camino Bartolomé,^{a,*} Max García-Melchor,^{b,*} and Pablo Espinet^{a,*}

^a IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071, Valladolid, Spain

^b School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland

[†] Dedicated to Prof. Peter M. Maitlis on occasion of his forthcoming 85th birthday

*To whom correspondence should be addressed: <u>espinet@qi.uva.es</u>

Table of contents

Experimental general section	S2
Synthesis and characterization of the complexes	S2
Kinetic experiments for aryl exchange	S7
Computational section	S12
Notes and References	S25

Experimental general section

All reactions were performed under N₂ atmosphere. Solvents were purified according to standard procedures.¹ Ag(C₆F₅) and the analogous Ag(C₆Cl₂F₃)² were prepared according to the literature procedure for the former.³ The dimeric complex $(\mu$ -Cl)₂[Cp*RhCl]₂ was obtained using microwave techniques.⁴ The rest of the reactants are commercially available. The NMR spectra were recorded with Bruker Avance 400 Ultrashield and Agilent 500 NMR instruments equipped with One NMR and Cryo probes. ¹H NMR and ¹⁹F NMR spectra are referred to TMS and CFCl₃, respectively. The elemental analyses were performed with a Carlo Erba 1108 microanalyser (by Vigo University, Spain).

Synthesis and characterization of the complexes

Experimental procedure for X-ray crystallography: Each suitable crystal was attached to a glass fibre and transferred to an Agilent Supernova diffractometer with an Atlas CCD area detector. Data collection was performed with Mo-Ka radiation ($\lambda = 0.71073$ Å) or Cu-Ka ($\lambda = 1.54184$ Å). Data integration, scaling and empirical absorption correction was carried out using the CrysAlisPro program package.⁵ The crystal was kept at 294 K during data collection. The structure was solved using Olex2⁶ with the olex2.solve,⁷ and refined with Shelx program.⁸ The non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed at idealized positions and refined using the riding model. Refinement proceeded smoothly to give the residuals shown in Tables ESI1 and ESI2. CCDC 1582590-1582594 contain the supporting crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Cambridge CB2 1EZ, UK; fax: Road, (internat.) +44-1223/336-033;E-mail: deposit@ccdc.cam.ac.uk].

Synthesis of $[RhCp^*(C_6Cl_2F_3)_2]$ (2): Excess of Ag(C₆Cl₂F₃) (440 mg, 1.44 mmol) was added to a suspension of (µ-Cl)₂[Cp*RhCl]₂ (150 mg, 0.24 mmol) in dry Et₂O (100 mL) and the mixture was stirred for 3 hours at room temperature, shielded from the light. The deep red solution was then filtered on dry Celite, concentrated in vacuum and cooled to 253 K. A microcrystalline deep red solid was obtained, which was filtered, washed with *n*-hexane (3 × 5 mL) and vacuum dried. Yield: 0.190 g (62 %). Suitable single crystals for X-ray crystallography were obtained by layering hexane in a dichloromethane solution of **2** (Figure ESI1).

¹H NMR (400.14 MHz, CDCl₃, 293 K): δ 1.58 (s, 15H, Cp*).

¹⁹F NMR (376.47 MHz, CDCl₃, 293 K): δ –91.22 (d, ³*J*_{*F-Rh*} = 9.6 Hz, 4F_o), –118.38 (s, 2F_p).

Analysis for C₂₂H₁₅Cl₄F₆Rh: Calcd.:C, 41.41; H, 2.37. Found: C, 41.73; H, 2.16

Figure ESI1. X-ray structure of $[RhCp*Rf_2]$ (2). Selected bond lengths: (Å): Rh(1)-C(11) = 2.062(4); Rh(1)-C(21) = 2.072(4). Selected bond angles (°): C(11)-Rh(1)-C(21) = 93.74(15).

Synthesis of $[RhCp*(C_6F_5)_2(NCMe)]$ (3): Excess of Ag(C₆F₅) (400 mg, 1.44 mmol) was added to a suspension of (µ-Cl)₂[Cp*RhCl]₂ (150 mg, 0.24 mmol) in dry Et₂O (100 mL) and the mixture was stirred for 3 hours at room temperature, shielded from the light. The red solution was then filtered on dry Celite. The solution was concentrated in vacuum and cooled down to 253 K. The microcrystalline yellow solid obtained was filtered, washed with *n*-hexane (3 × 5 mL) and vacuum dried. Yield: 120 mg (42 %). Suitable single crystals of **3** for X-ray crystallography were obtained by layering hexane in a dichloromethane solution of the compound in the presence of 10 eq of MeCN (see Figure 1 left).

Addition of CDCl₃ to the yellow crystals at room temperature leads to a red solution. ¹H and ¹⁹F NMR spectra show an equilibrium between **3** and $[Cp*Rh(C_6F_5)_2]$ (**4**) (the chemical shifts of both species are averaged to one signal at room temperature). In the presence of an excess of MeCN, the solution turns yellow and the NMR spectrum shows only complex **3** as the unique species in solution.

¹H NMR (499.72 MHz, CDCl₃, 293 K): δ 1.61 (s, 15H, Cp*).

¹⁹F NMR (470.15 MHz, CDCl₃, 293 K): δ –113.40 (m, 4F_o), –162.51 (t, ³*J*_{*Fm-Fp*} = 20.5 Hz, 2F_p), –164.57 (m, 4F_m).

Analysis for C₂₄H₁₈F₁₀NRh: Calcd.: C, 47.00; H, 2.96; N, 2.28. Found: C, 46.87; H, 2.88; N, 2.18

Synthesis of [RhCp*(C₆F₅)₂] (4): [RhCp*(C₆F₅)₂(NCMe)] (3) (100 mg, 0.16 mmol) was heated at 353 K under vacuum for 24 hours. The solid obtained was recrystallized in CH₂Cl₂/*n*-hexane leading to a microcrystalline deep red solid, which was filtered, washed with *n*-hexane (3×5 mL) and vacuum dried. Yield: 80 mg (86 %). Suitable single crystals of 4 (Figure 1 right) for X-ray crystallography were obtained by layering hexane in a dichloromethane solution of 4.

¹H NMR (400.14 MHz, CDCl₃, 293 K): δ 1.57 (s, 15H, Cp*).

¹⁹F NMR (376.47 MHz, CDCl₃, 293 K): δ –116.82 (m, 4F_o), –159.87 (t, ³*J*_{*Fm-Fp*} = 20.0 Hz, 2F_p), –162.69 (m, 4F_m).

Analysis for C₂₂H₁₅F₁₀Rh: Calcd.: C, 46.18; H, 2.64. Found: C, 45.94; H, 2.43.

The refinement of the X-ray structures of 2, 3 and 4 give the residuals shown in Table ESI1.

	[RhCp*Rf2] (2)	[RhCn*Pf ₂ (NCMe)] (3)	[RhCp*Pf2] (4)
Empirical formula	C22H15F6Cl4Rh	C24H18F10NRh	$C_{22}H_{15}F_{10}Rh$
Formula weight	638.05	613.30	572.25
Temperature/K	294	294	294
Crystal system	orthorhombic	triclinic	orthorhombic
Space group	P212121	P-1	Pnma
a/Å	8.6634(2)	8.8736(4)	12.1906(2)
b/Å	13.9649(4)	9.2267(3)	18.7742(3)
c/Å	19.5079(6)	16.5011(7)	9.17539(17)
α/°	90	85.672(4)	90
β/°	90	75.218(4)	90
$\gamma/^{\circ}$	90	61.708(4)	90
Volume/Å ³	2360.15(12)	1148.61(9)	2099.96(6)
Z	4	2	4
$\rho_{calc}g/cm^3$	1.796	1.773	1.810
μ/mm^{-1}	1.233	6.899	7.480
F(000)	1256.0	608.0	1128.0
Crystal size/mm ³	$0.2947 \times 0.2086 \times 0.198$	$0.2505 \times 0.0998 \times 0.0601$	0.1811 × 0.1146 × 0.0272
Radiation	MoKa ($\lambda = 0.71073$)	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha (\lambda = 1.54184)$
2θ range for data collection/°	4.176 to 59.84	5.546 to 152.19	9.422 to 152.252
Index ranges	$\begin{array}{c} -11 \leq h \leq 11, -18 \leq k \leq 19, \\ -27 \leq l \leq 23 \end{array}$	$\begin{array}{c} -11 \leq h \leq 11, -7 \leq k \leq 11, - \\ 19 \leq l \leq 20 \end{array}$	$\begin{array}{c} -10 \leq h \leq 15, -14 \leq k \leq 23, \\ -11 \leq l \leq 11 \end{array}$
Reflections collected	20500	8234	6431
Independent reflections	$5933 [R_{int} = 0.0290, R_{sigma} = 0.0308]$	$\begin{array}{l} 4673 \; [R_{int} = 0.0251, R_{sigma} \\ = 0.0334] \end{array}$	$2249 [R_{int} = 0.0601, R_{sigma} = 0.0622]$
Data/restraints/parameters	5933/0/303	4673/0/331	2249/0/157
Goodness-of-fit on F ²	1.029	1.048	1.057
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0311, wR_2 = 0.0588$	$R_1 = 0.0309, wR_2 = 0.0780$	$R_1 = 0.0449, wR_2 = 0.1161$
Final R indexes [all data]	$R_1 = 0.0420, wR_2 = 0.0651$	$R_1 = 0.0337, wR_2 = 0.0805$	$R_1 = 0.0536, wR_2 = 0.1249$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.32	0.51/-0.96	0.73/-1.37

Table I	ESI1.	Crystal	data an	d structure	refinements	for con	plexes (2, 3	and 4 .
		2					1		

Characterization of (µ-OH)₂[RhCp*Rf]₂ (6) and (µ-OH)₂[RhCp*Pf]₂ (7)

Hydroxo complexes 6 and 7 could be isolated as by-products during the synthesis of 2 or 3 respectively, only when the reaction time was around 10 hours. They could be separated from 2 or 3 by extraction of the bisarylated major product in acetone, in which $(\mu$ -OH)₂[RhCp*R]₂ is only very sparingly soluble. The

signals of **6** and **7**, as well as RfH or PfH were also observed in old solutions of **2** or **4**. Single crystals of **6** (Figure 3) and **7** (Figure ESI2) suitable for X-ray crystallography were obtained by slow hydrolysis (one week) in wet acetone solutions of [RhCp*R₂].

Figure ESI2. X-ray structure of *syn*-(μ -OH)₂[RhCp*Pf]₂ (7). Selected bond lengths (Å) and angles (°): Rh(1)–C(11) = 2.075(3), Rh(1)–O(1) = 2.109(2), Rh(1)–O(2) = 2.100(3), Rh(2)–C(21) = 2.071(4), Rh(2)–O(1) = 2.113(2), Rh(2)–O(2) = 2.108(3); C(11)–Rh(1)–O(1) = 92.13(12), C(11)–Rh(1)–O(2) = 93.74(13), O(1)–Rh(1)–O(2) = 75.72(10), C(21)–Rh(2)–O(1) = 92.94(13), C(21)–Rh(2)–O(2) = 89.67(13), O(1)–Rh(2)–O(2) = 75.44(10).

NMR data for syn-(µ-OH)2[RhCp*Rf]2(6)

¹H NMR (499.72 MHz, CDCl₃, 293 K): δ 1.43 (s, 30H, 2Cp*), -1.52 (t, ²*J*_{*H*-*Rh*} = 5.2 Hz, 2O*H*).

¹⁹F NMR (470.15 MHz, CDCl₃, 293 K): δ –95.10 (m, 4F_o), –119.74 (s, 2F_p).

The *anti* isomer could be observed in solutions of **6** as a minor product (about 12%). Figure ESI3 shows the OH signals in the ¹H NMR spectrum for both isomers.

Figure ESI3. μ -OH signals of $(\mu$ -OH)₂[RhCp*Rf]₂ (6): *anti* isomer (left, -1.29 ppm) and *syn* isomer (right, -1.52 ppm). Both are triplets by coupling with two ¹⁰³Rh.

<u>NMR data for *syn*-(μ-OH)₂[RhCp*Pf]₂ (7)</u>

¹H NMR (499.72 MHz, CDCl₃, 293 K): δ 1.44 (s, 30H, 2Cp*), -1.50 (t, ${}^{2}J_{H-Rh} = 5.2$ Hz, 2OH). ¹⁹F NMR (470.15 MHz, CDCl₃, 293 K): δ -121.07 (m, 4F_o), -161.65 (t, ${}^{3}J_{Fm-Fp} = 20.0$ Hz, 2F_p), -163.67 (m, 4F_m).

The *anti* isomer could be also observed in solutions of **7** as minor product (about 15 %).

Refinement of the X-ray structures of 6 and 7 give the residuals shown in Table ESI2.

 Table ESI2. Crystal data and structure refinement for complexes 6 and 7.

	(µ-OH)2[RhCp*Rf]2 (6)	(µ-OH)2[RhCp*Pf]2 (7)
Empirical formula	$C_{32}H_{32}O_2F_6Cl_4Rh_2$	$C_{32}H_{32}O_2F_{10}Rh_2$
Formula weight	910.19	844.39
Temperature/K	294	294
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_1/n$
a/Å	11.1207(9)	10.8682(5)
b/Å	11.2919(8)	16.2215(7)
c/Å	16.0905(10)	18.4548(8)
α/°	89.827(6)	90
β/°	70.323(7)	92.287(4)
γ/°	65.775(8)	90
Volume/Å ³	1713.4(2)	3251.0(3)
Z	2	4
$ ho_{cale}g/cm^3$	1.764	1.725
μ/mm^{-1}	1.337	1.101
F(000)	904.0	1680.0
Crystal size/mm ³	$0.3352 \times 0.1289 \times 0.0865$	$0.445\times0.198\times0.107$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	4.174 to 59.182	4.276 to 58.994
Index ranges	$\begin{array}{c} -15 \leq h \leq 15, -15 \leq k \leq 11, \\ -21 \leq l \leq 20 \end{array}$	$\begin{array}{c} -14 \leq h \leq 11, \ -20 \leq k \leq 22, \\ -25 \leq l \leq 22 \end{array}$
Reflections collected	12210	17945
Independent reflections	$7832 [R_{int} = 0.0251, R_{sigma} \\= 0.0548]$	$7851 \ [R_{int} = 0.0327, R_{sigma} \\ = 0.0487]$
Data/restraints/parameters	7832/0/433	7851/0/433
Goodness-of-fit on F ²	1.070	1.043
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0372, wR_2 = 0.0720$	$R_1 = 0.0389, wR_2 = 0.0739$
Final R indexes [all data]	$R_1 = 0.0561, wR_2 = 0.0849$	$R_1 = 0.0662, wR_2 = 0.0882$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.85	0.52/-0.50

Kinetic experiments for aryl exchange (Scheme ESI1)

Scheme ESI1. Aryl/Aryl' exchange reaction ($Pf = C_6F_5$; $Rf = C_6Cl_2F_3$)

The kinetic experiments were monitored by ¹⁹F NMR. The NMR tube (5mm), placed in a cold bath at 195 K, was charged with [RhCp*(C₆Cl₂F₃)₂] (**2**) (3.06 mg, 5.00×10^{-3} mmol) and [RhCp*(C₆F₅)₂] (**4**) (2.86 mg, 5.00×10^{-3} mmol). Subsequently, freshly distilled CDCl₃ (0.50 mL) was added (concentration of 1.0×10^{-2} M for **2** and **4**).

¹⁹F NMR spectra were recorded at fixed time intervals depending on the temperature imposed by a thermostated probe: 15 min at 261 K, 10 min at 271 K, 5 min at 280 K, and 3 min at 289 K. Concentration-time data were obtained from the integrated areas of the Rf F_{ortho} signals of $[RhCp*(C_6Cl_2F_3)_2]$ (2) and $[RhCp*(C_6Cl_2F_3)(C_6F_5)]$ (5).⁹

The initial rate was obtained by linear fitting of the concentration-time curves in the interval 0-15% of consumption of the starting reagents. When the equilibrium was reached, the concentration of the three species was close to the statistical values (2:4:5 = 1:1:2 for a 1:1 mixture or 2 and 4).

The temperature of the sample was determined using methanol as chemical shift thermometer.¹⁰

Kinetic experiment for aryl exchange in the presence of 5 mol% of complex (μ -OH)₂[RhCp*Rf]₂ (6) as catalyst: 25 μ L of a 1.0 × 10⁻² M solution of 6 in distilled CDCl₃ was added to the NMR tube (placed in a cold bath at 195 K) with a solution of 2 and 4 in concentration 1.0 × 10⁻² M for both complexes. The reaction was monitored at 280 K.

Figures ESI4 and ESI5 display all the kinetic fits obtained from the NMR data.

Figure ESI4. Representation of half of the concentration of complex [RhCp*RfPf] (**5**) formed *vs* time.¹¹ The slope of each line corresponds to the initial rate, r_0 (in mol × L⁻¹ × s⁻¹).

Rate constants (k) are obtained from initial rates (r_0) as follows: $k = \frac{r_0}{[2]_0 \cdot [4]_0}$ ([2]_0 = [4]_0 = 1.0 \times 10^{-2} M).

Figure ESI5. Eyring plot based on the results obtained without 5 mol% of extra catalyst $(\mu$ -OH)₂[RhCp*Rf]₂ (6) added (lines blue, orange, grey and yellow of Figure ESI4). From the Eyring equation,¹² the *apparent* values for Δ H[‡] and Δ S[‡] were calculated.

19 F NMR data for [RhCp*(C₆Cl₂F₃)(C₆F₅)] (5)

Complex 5 was characterized from the reaction mixture shown in Scheme ESI1.

¹⁹F NMR (376.47 MHz, CDCl₃, 271 K): δ –91.36 (dt, ³*J*_{*F-Rh*} \approx *J*_{*F-FoPf*} \approx 9 Hz, 2F_o, Rf), –118.44 (s, 1F_p, Rf), –159.83 (t, ³*J*_{*Fm-Fp*} = 20.2 Hz, 1F_p, Pf). The signals for F_o of the Pf group and F_m of the Pf group were overlapped with the corresponding signals of [RhCp*Pf₂] (4). Figure ESI6 shows the overlapped triplets for F_p of the Pf groups of 4 and 5.

Figure ESI6. Appearance of the F_p signal of Pf in complex **5** during the kinetically monitored experiment registered at 271 K.

Detection of $(\mu$ -OH)₂[RhCp*Rf]₂ (**6**) as a contamination in a solution of [RhCp*Rf₂] (**2**) [RhCp*(C₆Cl₂F₃)₂] (**2**) (3.06 mg, 5.00 × 10⁻³ mmol) was dissolved in distilled CDCl₃ (0.50 mL) and a ¹⁹F NMR spectrum was registered at 280 K in an Agilent 500 NMR instrument equipped with a Cryo probe. Figure ESI7 highlights the position of the F₀ signal of the impurity **6**, which is expanded in the figure.

Figure ESI7. ¹⁹F NMR spectrum of complex 2 (crystalline fraction used for all the kinetic experiments).

Calculations of the concentration of non measurable [RhCp*Rf(OH)] (8) and [RhCp*Pf(OH)] (9) needed for the kinetic behavior observed.

Kinetic data for the formation of the aryl exchange product [RhCp*RfPf] (5)

• Initial rate (r_0) at 271 K = $1.66 \times 10^{-7} \text{ mol} \times \text{L}^{-1} \times \text{s}^{-1}$

It is assumed that the formation of **5** is produced by reaction of $[RhCp*Rf_2]$ (**2**) with **9**, or $[RhCp*Pf_2]$ (**4**) with **8** (catalytic cycle, Scheme 3). The rate constants (k) were obtained with the following mathematical expressions (first kinetic order for both reactants).

$$k = \frac{r_0}{[4] \cdot [8]} \qquad [4]_0 = 0.010 \text{ mol} \times L^{-1} \qquad \qquad k' = \frac{r_0}{[2] \cdot [9]} \qquad [2]_0 = 0.010 \text{ mol} \times L^{-1}$$

• Solving the equation:

$$\Delta G^{\ddagger} = -R \cdot T \cdot \ln\left(\frac{k \cdot h}{k_B \cdot T}\right)$$

 $h = 6.63 \times 10^{-34} \text{ J} \times \text{s} \qquad k_{B} = 1.38 \times 10^{-23} \text{ J} \times \text{K}^{-1} \qquad T = 271 \text{ K} \qquad R = 1.98 \times 10^{-3} \text{ kcal} \times \text{mol}^{-1} \times \text{K}^{-1} = 1.00 \text{ kcal} \times \text{mol}^{-1} \times \text{K}^{-1} = 1.00 \text{ kcal} \times 10^{-3} \text{$

a) $\Delta G^{\ddagger} = 10.7 \text{ kcal} \times \text{mol}^{-1}$ (calculated Gibbs energy profile, Figure 4).

$$[8] = 1.3 \times 10^{-9} \text{ M}$$

b) $\Delta G^{\ddagger} = 7.8 \text{ kcal} \times \text{mol}^{-1}$ (calculated Gibbs energy profile, Figure ESI8).

$$[9] = 5.0 \times 10^{-12} \text{ M}$$

Calculations of the concentration of non-detected [RhCp*Rf(OH)] (8) and [RhCp*Pf(OH)] (9) from the DFT calculated K_{dis} of the corresponding dimer.

In order to estimate the concentration of the dissociated species 8 and 9, the ΔG_0 values for the dissociation of $(\mu$ -OH)₂[RhCp*Rf]₂ (6) and $(\mu$ -OH)₂[RhCp*Pf]₂ (7) were calculated respectively (DFT, ω B97X-D) in CHCl₃ at 271 K.

Using the formula: $K_{eq} = e^{\frac{-\Delta G_0}{RT}}$ the equilibrium constants for the dissociation (K_{dis}) can be obtained.

a) For complex **6**: $\Delta G_{dis} = 22.3 \text{ kcal} \times \text{mol}^{-1}$ $K_{dis} = 8.9 \times 10^{-19}$

In the equilibrium: $complex6 \implies 2 \ complex8$ with $[6]_0 = 3 \times 10^{-5} \ mol \times L^{-1*}$

* In the kinetic experiments **6** is a contaminant of complex **2** (0.3 mol% in a solution 0.01 M, Figure ESI7).

$$K_{dis} = \frac{(2 \cdot [\mathbf{8}]_{eq})^2}{[\mathbf{6}]_0} \qquad [\mathbf{8}] = 2.6 \times 10^{-12} \text{ mol} \times \text{L}^{-1}$$

b) For complex 7: $\Delta G_{dis} = 22.7 \text{ kcal} \times \text{mol}^{-1}$

In the equilibrium:

$$d_{dis} = 22.7 \text{ Keal} \times 1101$$

$$K_{dis} = 4.2 \times 10^{-19}$$

$$K_{dis} = \frac{(2 \cdot [\mathbf{9}]_{eq})^2}{[\mathbf{7}]_0} \qquad [\mathbf{9}] = 1.8 \times 10^{-12} \text{ M}$$

*complex***7** \Longrightarrow 2 *complex***9** with $[\mathbf{7}]_0 = 3 \times 10^{-5} \text{ mol} \times L^{-1}$

Considerations about these figures

The calculated values using both methods have very different sources of error because the mathematical expressions used are exponential (1.5 kcal mol⁻¹ means roughly one order of magnitude difference in rate). In systems where DFT methods results can be contrasted with experimental values differences in the order 2-4 kcal mol⁻¹ are common. Thus, the exponential range 10^{-9} - 10^{-12} in concentrations corresponds essentially to the same order of magnitude 2-4 kcal mol⁻¹ in ΔG values (ΔG_0 or ΔG^{\ddagger}), and is within the expected range of uncertainty (in theoretical calculations the concept *error* cannot be applied) when calculations (particularly those containing entropy changes) are involved. It must be considered acceptable. Whatever the exact value, the range of values obtained confirms that concentration of the catalytic species is minuscule.

Computational Section

Density functional theory (DFT) calculations reported in this work were carried out using the dispersion corrected hybrid functional ω B97X-D developed by Head-Gordon and Chai,¹² and the Gaussian09 software.¹³ The choice of this level of theory is based on the satisfactory results obtained in previous theoretical studies on related Pd/Au and Au/Sn transmetalations.¹⁴⁻¹⁶ C and H atoms were described using the double- ζ basis set 6-31G(d,p), whereas the same basis set plus diffuse functions was employed to describe the more electronegative O, Cl and F atoms. The Rh metal was described using the effective core potential LANL2DZ^{17,18} including f-polarization functions (exponent = 1.350).¹⁹ Geometry optimizations in vacuum were performed without imposing any constraint and the nature of all the stationary points was further verified through vibrational frequency analysis. Furthermore, for transition states, geometry relaxations along the reaction coordinate were carried out to confirm that they connect the corresponding reaction energy minima.

The effect of the same solvent employed in experiments (CHCl₃, $\varepsilon = 4.711$) was introduced through single-point calculations at the optimized geometries in vacuum using the SMD solvation model.²⁰ The reported Gibbs energies in CHCl₃ were obtained by adding to the potential energies in solution the Gibbs energy corrections of the solute in vacuum calculated at the experimental temperature of 271 K and 1 atm.

Profile for the Rf/OH exchange (Figure ESI8)

Figure ESI8. Calculated Gibbs energy profile (in kcal \times mol⁻¹), in CHCl₃ at 271K, for the exchange between **2** and **9** (Scheme 2).

Relevant Calculated Structures

Figure ESI9. Direct mechanism: Diranti-TS (left) and Dirsyn-TS (right). Bond distances in Å.

Figure ESI10. OH-*I1* (left) and **OH***anti-TS1* (right). **OH-***I2*, **OH-***I3* and **OH-***I4* are similar to **OH-***I1*. Selected bond distances (Å). The hydrogen O–H····F bond is indicated with a red dashed line

Figure ESI11. OHanti-TS2. Selected bond distances (Å). The hydrogen bond is indicated with a red dashed line

Figure ESI12. OHsyn-TS1, with selected bond distances (Å).

Cartesian coordinates of all the calculated species

[RI	nCp*Rf ₂] (2)		6	3.572184	-1.817643	0.660920	6	3.643662	-2.056283	-0.524880
45	-0.087441	1.333304	0.107015	6	2.714147	-1.472709	1.701440	6	2.240544	3.040124	1.230491
17	4.489197	-1.708281	-1.888174	6	1.698509	-0.568071	1.415578	6	-2.891682	2.253602	1.101883
17	2.918391	-2.148428	3.277662	6	-1.337585	-0.278790	-0.094979	1	-1.093978	1.292236	3.130046
17	-2.237924	-3.287546	-2.633149	6	-1.349485	-1.173867	-1.153519	1	-0.352296	2.854745	3.527991
17	-4.473869	-1.687852	2.031260	6	-2.269557	-2.214112	-1.279606	1	0.660514	1.446405	3.138315
9	2.241340	0.141299	-2.053767	6	-3.226811	-2.366465	-0.282260	1	0.988272	4.781100	-1.892839
9	4.564666	-2.678980	0.887256	6	-3.271095	-1.499656	0.804605	1	-2.031180	4.328719	-1.973702
9	0.856238	-0.218961	2.418220	6	-2.323440	-0.481071	0.858595	1	0.901672	3.187876	-2.652240
9	-0.445055	-1.036317	-2.138879					1	-1.461949	2.821188	-2.704476
9	-4.120206	-3.351927	-0.372866	[RI	hCp*Pf2] (4)		1	2.244868	3.574536	-1.571980
9	-2.389312	0.369688	1.907809	45	-0.078045	1.062838	-0.150417	1	-2.912822	2.812079	-1.704396
6	0.375747	3.490997	0.488281	9	-0.495682	-1.269096	2.152549	1	2.977691	2.921975	0.434064
6	-1.083327	3.293425	0.477863	9	2.212209	-0.064919	2.118287	1	-3.533379	2.009889	0.253367
6	-1.465061	2.824137	-0.785999	9	-2.324682	0.023035	-2.021463	1	2.452651	2.291970	1.993987
6	-0.236189	2.600801	-1.541994	9	0.965043	-0.540240	-2.417924	1	-2.908113	1.400068	1.782502
6	0.882835	3.139414	-0.768290	9	-4.080270	-2.012032	-1.867086	1	2.373599	4.032182	1.675280
6	1.136847	4.012782	1.663834	9	3.016199	-2.279261	-2.789083	1	-3.322435	3.114799	1.622958
1	0.836468	3.503380	2.583383	9	-2.263240	-3.280326	2.292933	9	4.657807	-2.906371	-0.700799
1	0.945544	5.082878	1.798775	9	4.229310	-1.781043	1.739981				
			11190110								
1	2.210971	3.871565	1.536141	9	-4.064691	-3.677900	0.290925	[Rł	nCp*RfPf]	(5)	
1 6	2.210971 -1.961067	3.871565 3.585652	1.536141 1.650396	9 6	-4.064691 -1.319592	-3.677900 -0.556880	0.290925 0.045070	[R ł 45	n Cp*RfPf] -0.594687	(5) -1.055659	0.184415
1 6 1	2.210971 -1.961067 -2.960641	3.8715653.5856523.171669	1.536141 1.650396 1.517931	9 6 6	-4.064691 -1.319592 1.509254	-3.677900 -0.556880 -0.239152	0.290925 0.045070 -0.146646	[R] 45 9	•Cp*RfPf] -0.594687 -0.432735	(5) -1.055659 1.155183	0.184415 -2.264481
1 6 1 1	2.210971 -1.961067 -2.960641 -2.047740	3.871565 3.585652 3.171669 4.667858	1.536141 1.650396 1.517931 1.796046	9 6 6	-4.064691 -1.319592 1.509254 0.379258	-3.677900 -0.556880 -0.239152 3.213751	0.290925 0.045070 -0.146646 -0.571445	[Rh 45 9 9	Cp*RfPf -0.594687 -0.432735 1.861800	(5) -1.055659 1.155183 -0.681296	0.184415 -2.264481 -2.128383
1 6 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757	3.871565 3.585652 3.171669 4.667858 3.156198	1.536141 1.650396 1.517931 1.796046 2.564881	9 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599	-3.677900 -0.556880 -0.239152 3.213751 2.998937	0.290925 0.045070 -0.146646 -0.571445 -0.604781	[R] 45 9 9 9	+Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556	(5) -1.055659 1.155183 -0.681296 0.661315	0.184415 -2.264481 -2.128383 1.996648
1 6 1 1 1 6	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888	9 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934	[RH 45 9 9 9 9	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275	0.184415 -2.264481 -2.128383 1.996648 2.351365
1 6 1 1 1 6 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216	9 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739	[R] 45 9 9 9 9 9 9	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716
1 6 1 1 6 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023	9 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251	[Rh 45 9 9 9 9 9 9 17	-0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818
1 6 1 1 6 1 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258	9 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879	[RH 45 9 9 9 9 9 17 9	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198
1 6 1 1 6 1 1 1 1 6	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102	9 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293	[RH 45 9 9 9 9 9 17 9 17	<pre>hCp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219</pre>	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732
1 6 1 1 6 1 1 1 6 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095	9 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952	[RH 45 9 9 9 9 17 9 17 9	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494
1 6 1 1 1 6 1 1 6 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544	9 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994	[RH 45 9 9 9 9 9 17 9 17 9 17 9	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024
1 6 1 1 6 1 1 6 1 1 1 1 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332	9 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831	[RH 45 9 9 9 9 9 17 9 17 9 6 6	<pre>hCp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009</pre>	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925
1 6 1 1 6 1 1 1 6 1 1 1 1 6	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750	9 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565	[RH 45 9 9 9 9 17 9 17 9 6 6 6	<pre>hCp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534</pre>	(5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.731952
1 6 1 1 6 1 1 6 1 1 1 6 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039 3.003914	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089 3.139993	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750 -0.421398	9 6 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798 -2.261836	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074 -2.472805	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565 1.227505	[RH 45 9 9 9 9 9 17 9 17 9 6 6 6 6	Cp*RfPf -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534 -2.061975	 (5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047 -2.639664 	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.731952 0.737430
1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039 3.003914 2.455547	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089 3.139993 4.236911	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750 -0.421398 -1.699784	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798 -2.261836 3.422498	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074 -2.472805 -1.478667	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565 1.227505 0.717527	[RH 45 9 9 9 9 9 17 9 17 9 6 6 6 6 6 6	ACp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534 -2.061975 -1.192990 	 (5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047 -2.639664 1.599167 	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.731952 0.737430 -1.244627
1 6 1 1 6 1 1 6 1 1 1 6 1 1 1 1 1	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039 3.003914 2.455547 2.522654	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089 3.139993 4.236911 2.490913	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750 -0.421398 -1.699784 -1.987528	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798 -2.261836 3.422498 -0.267190	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074 -2.472805 -1.478667 1.963614	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565 1.227505 0.717527 2.895189	[RH 45 9 9 9 9 9 17 9 17 9 6 6 6 6 6 6 6	-Cp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534 -2.061975 -1.192990 2.186770	 (5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047 -2.639664 1.599167 -0.156996 	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.731952 0.737430 -1.244627 -0.929173
1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039 3.003914 2.455547 2.522654 1.482312	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089 3.139993 4.236911 2.490913 0.014833	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750 -0.421398 -1.699784 -1.987528 0.177529	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798 -2.261836 3.422498 -0.267190 1.174997	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074 -2.472805 -1.478667 1.963614 3.713529	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565 1.227505 0.717527 2.895189 -1.733467	[RH 45 9 9 9 9 9 17 9 17 9 6 6 6 6 6 6 6 6 6	-Cp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534 -2.061975 -1.192990 2.186770 -1.149263	 (5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047 -2.639664 1.599167 -0.156996 -2.352067 	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.737430 -1.244627 -0.929173 -1.351212
1 6 1 1 6 1 1 6 1 1 6 1 1 1 6 6 6	2.210971 -1.961067 -2.960641 -2.047740 -1.543757 -2.844216 -2.858289 -3.204825 -3.545587 -0.172757 0.757118 -0.232146 -0.998940 2.295039 3.003914 2.455547 2.522654 1.482312 2.369217	3.871565 3.585652 3.171669 4.667858 3.156198 2.520701 1.593693 3.329305 2.402839 2.162133 1.632570 3.038996 1.492801 3.254089 3.139993 4.236911 2.490913 0.014833 -0.369318	1.536141 1.650396 1.517931 1.796046 2.564881 -1.277888 -1.855216 -1.922023 -0.450258 -2.966102 -3.171095 -3.621544 -3.209332 -1.243750 -0.421398 -1.699784 -1.987528 0.177529 -0.812117	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-4.064691 -1.319592 1.509254 0.379258 -1.076599 -1.352775 2.367688 -0.292322 -2.265265 1.769053 0.846853 -1.496606 -3.188412 2.806798 -2.261836 3.422498 -0.267190 1.174997 -1.920735	-3.677900 -0.556880 -0.239152 3.213751 2.998937 -1.426311 -0.587156 2.369083 -0.793382 -0.842809 2.899284 2.558504 -1.828902 -1.735074 -2.472805 -1.478667 1.963614 3.713529 3.251142	0.290925 0.045070 -0.146646 -0.571445 -0.604781 1.124934 0.881739 1.460251 -0.941879 -1.367293 0.709952 0.657994 -0.887831 -1.586565 1.227505 0.717527 2.895189 -1.733467 -1.810517	IRH 45 9 9 9 9 17 9 17 9 6	-Cp*RfPf] -0.594687 -0.432735 1.861800 -2.439556 0.856114 -3.589776 3.416696 -1.599042 4.541219 -3.179786 -1.367605 1.278009 -0.710534 -2.061975 -1.192990 2.186770 -1.149263 -2.191166	 (5) -1.055659 1.155183 -0.681296 0.661315 0.303275 3.079028 1.614316 3.554986 0.464906 4.544858 0.820043 -0.220125 -3.223047 -2.639664 1.599167 -0.156996 -2.352067 1.362632 	0.184415 -2.264481 -2.128383 1.996648 2.351365 1.720716 3.012818 -2.525198 -2.159732 -0.541494 -0.111024 0.111925 0.731952 0.737430 -1.244627 -0.929173 -1.351212 0.864572

6	-0.182697	-3.113962	-0.559726	9	0.595738	2.342022	2.133702	6	-2.301916	3.645338	2.127973
6	-2.358787	-2.178626	-0.552337	6	1.334923	2.048163	1.039004	1	-2.442685	2.745255	2.732096
6	-2.803604	2.603357	0.749243	9	1.002387	-1.001150	2.368719	1	-1.343423	4.085740	2.402990
6	2.951837	0.940780	1.492160	6	-1.925366	-3.176426	1.596219	1	-3.096065	4.356994	2.380077
6	-1.789555	2.843746	-1.409398	6	-3.405971	-2.501744	-0.060035	1	-0.652170	0.280526	1.888329
6	3.450593	0.423748	-0.819751	6	-2.354278	-3.304906	-0.673123	1	-0.652217	-0.280361	-1.888248
6	-1.029078	-2.055802	-2.807929	6	-3.887287	-1.657352	2.358655	6	0.683696	-1.661510	0.124568
6	-0.069852	-3.847672	1.928845	1	-3.251314	-0.835491	2.707534	6	2.924240	1.471642	-1.127858
6	-2.938907	-2.597715	1.945558	1	-4.809937	-1.229845	1.961778	9	4.830819	1.978518	0.157265
6	-2.598172	3.351642	-0.401758	1	-4.140876	-2.291754	3.213214	6	1.533387	-1.384835	1.184371
6	3.819186	0.971881	0.403783	6	-1.356160	-3.417868	2.958814	6	-1.497007	-3.782486	0.363252
6	1.124799	-3.639007	-1.058358	1	-1.484675	-2.537526	3.592393	1	-1.849985	-4.267143	3.445002
6	-3.629071	-1.551611	-1.031081	6	-3.151967	-2.441581	1.321739	1	-0.286626	-3.629383	2.905448
1	-1.643743	-1.199739	-3.089054	6	-4.488022	-1.822567	-0.836368	1	-1.346480	-4.083134	-2.403511
1	-1.361035	-2.926563	-3.385465	1	-5.122096	-1.212696	-0.189895	6	1.333259	-2.049333	-1.038835
1	0.002046	-1.827801	-3.075802	1	-4.045550	-1.167812	-1.593384	17	3.910967	1.102692	-2.496870
1	-0.550837	-4.804000	2.161043	1	-5.122787	-2.554929	-1.345876	6	2.922983	-1.473639	1.127943
1	-3.336439	-3.596642	2.155921	6	-2.305203	-3.643467	-2.128130	6	-0.364003	-4.746348	0.207658
1	-0.167261	-3.204176	2.807336	1	-2.446901	-2.743530	-2.732241	6	2.714131	-2.176432	-1.173795
1	-2.379077	-2.266859	2.824012	1	-3.098925	-4.355737	-2.379875	9	0.593875	-2.342717	-2.133542
1	0.992377	-4.031095	1.762107	6	-3.149918	2.443952	-1.321759	6	3.503512	-1.876953	-0.069714
1	-3.776346	-1.913079	1.810016	6	-3.403749	2.504491	0.059995	17	3.909950	-1.105127	2.496890
1	1.863580	-3.698195	-0.257047	6	-2.351311	3.306808	0.672969	1	-0.724797	-5.768849	0.362079
1	-4.189909	-1.111356	-0.204743	6	-1.922629	3.177649	-1.596344	1	0.425118	-4.549730	0.935996
1	1.532004	-2.998238	-1.840379	6	-1.493690	3.783525	-0.363497	1	0.078174	-4.685990	-0.788329
1	-3.425776	-0.757321	-1.752117	6	-4.486167	1.826164	0.836565	17	3.434227	-2.711643	-2.649995
1	0.988776	-4.643083	-1.474323	1	-5.121014	1.216992	0.190198	9	4.829232	-1.981500	-0.157271
1	-4.263308	-2.299659	-1.517941	1	-4.044003	1.170876	1.593297				
9	5.023014	1.528978	0.539620	1	-5.120097	2.559002	1.346435	(μ-	OH)2[RhC	[p*Pf] ₂ (7)	
				6	-3.886009	1.660353	-2.358598	45	-1.068297	1.641396	0.133412
(μ-	OH)2[RhC	Cp*Rf]2 (6)		1	-3.250736	0.838052	-2.707695	45	-1.068656	-1.641201	-0.133542
45	-1.363736	-1.626394	0.246899	1	-4.808873	1.233461	-1.961542	8	-1.125735	0.102973	-1.327548
45	-1.362307	1.627293	-0.246913	1	-4.139356	2.295064	-3.213005	8	-1.125820	-0.102721	1.327410
17	3.436306	2.709392	2.650050	6	-0.359521	4.746069	-0.208177	9	1.291599	-1.172857	-2.326797
9	1.003345	1.000134	-2.368546	1	0.081743	4.686360	0.788256	9	0.928749	-2.176136	2.300440
8	-1.421742	-0.193574	-1.317725	1	0.429956	4.547341	-0.935571	9	1.291500	1.172841	2.326904
8	-1.421813	0.194536	1.317828	1	-0.718684	5.768887	-0.364235	9	0.929474	2.175242	-2.300571
6	0.685111	1.660703	-0.124378	6	-1.353154	3.418089	-2.959013	9	3.591756	-2.303592	2.465333
6	1.534596	1.383542	-1.184227	1	-0.283645	3.629724	-2.905548	9	5.141045	-1.851698	0.264148
6	3.505040	1.874645	0.069772	1	-1.481475	2.537223	-3.591901	9	3.952320	-1.284673	-2.121282
6	2.715873	2.174520	1.173896	1	-1.846937	4.266942	-3.445980	6	0.978856	-1.661942	-0.020347

9	3.952278	1.284441	2.121818	1	-1.225149	2.756666	3.418020	1	-0.936076	-2.575962	1.889146
6	-2.865291	2.522005	1.137694	1	-1.577235	4.474846	3.156113	6	-4.152475	-1.715303	-0.646749
6	-3.105728	2.499417	-0.247177	1	-0.012206	3.794410	2.676102	1	-4.676931	-1.238798	-1.475725
6	-2.044171	3.259995	-0.897510	6	-4.183446	1.779161	-0.991460	1	-4.892205	-2.182083	0.012383
9	3.592519	2.302450	-2.465057	1	-3.737407	1.095910	-1.720373	1	-3.524917	-2.505789	-1.065436
9	5.141428	1.850913	-0.263540	1	-4.824611	2.483973	-1.531001	6	-4.230972	1.528054	-0.812249
6	0.979184	1.661533	0.020346	1	-4.811679	1.192084	-0.318567	1	-3.625999	2.201736	-1.424811
6	-2.045138	-3.259362	0.897400	6	-3.615560	-1.806373	-2.213892	1	-4.892719	2.137499	-0.187908
6	-1.639279	3.269738	1.379631	1	-4.524364	-1.339822	-1.829489	1	-4.846531	0.930822	-1.485771
6	1.637734	-1.945832	1.168168	1	-3.895122	-2.499926	-3.012534	6	-2.048696	2.634127	1.151765
6	-3.106382	-2.498593	0.246761	1	-2.979834	-1.020578	-2.637064	1	-1.056853	2.804121	1.571282
6	-1.199704 -	-3.800951	-0.117873	6	-4.184139	-1.778076	0.990723	1	-2.794291	3.037631	1.846420
6	1.814337 -	1.453921	-1.107580	1	-3.738114	-1.095080	1.719890	1	-2.116064	3.192600	0.215861
6	1.638263	1.945106	-1.168136	1	-4.825769	-2.482734	1.529924	6	-0.659139	0.165783	2.679836
6	-2.865690 -	-2.521467	-1.138065	1	-4.811896	-1.190664	0.317667	1	0.045875	-0.664489	2.600612
6	-1.198770	3.801191	0.118007	6	-1.084172	-3.593623	-2.730465	1	-1.113856	0.137124	3.675223
6	1.814476	1.453636	1.107732	1	-1.225336	-2.756847	-3.418076	1	-0.084920	1.090255	2.593383
6	-1.639837 -	-3.269548	-1.379683	1	-1.577686	-4.474944	-3.155969	6	0.745430	-0.005566	-0.369414
6	3.811170	-1.794071	0.174837	1	-0.012644	-3.794645	-2.675858	6	1.481202	1.165079	-0.277206
6	3.019492	-2.017595	1.292244	6	-1.978725	3.511070	-2.369574	6	2.863228	1.210137	-0.100877
6	3.200875	1.506820	1.038725	1	-1.014111	3.926618	-2.661648	6	3.546894	0.001919	-0.015443
6	3.200721	-1.507205	-1.038350	1	-2.764740	4.212281	-2.671493	6	2.869995	-1.210020	-0.101733
6	-3.615592	1.807028	2.213290	1	-2.120739	2.577761	-2.920309	6	1.487564	-1.172632	-0.278145
1	-4.524419	1.340726	1.828639	1	-0.357871	-0.149791	1.904302	8	-1.193730	-0.077025	-2.442193
1	-3.895174	2.500614	3.011894	1	-0.357708	0.149873	-1.904493	1	-0.286584	-0.080456	-2.764120
1	-2.980217	1.021030	2.636611								
6	3.811536	1.793383	-0.174423	[Rł	nCp*Rf(OF	I)] (8)		[RI	nCp*Pf(O	H)] (9)	
6	3.020047	2.016742	-1.291997	45	-1.305362	-0.017571	-0.517369	45	-1.002631	-0.018031	-0.514758
6	-0.063510	-4.751784	0.085101	17	3.715654	2.709793	0.015929	9	3.818742	2.357986	0.000585
1	0.715222	-4.603560	-0.665548	17	3.730967	-2.704882	0.013273	9	3.831640	-2.355841	-0.003462
1	-0.425583	-5.782136	0.002492	9	0.834624	2.347859	-0.345998	9	1.151510	2.363755	-0.327707
1	0.391260	-4.625550	1.069177	9	4.870112	0.005607	0.154779	9	5.180737	0.004593	0.165940
6	-0.062298	4.751742	-0.084653	9	0.847413	-2.358399	-0.348409	9	1.164051	-2.375063	-0.333154
1	0.716296	4.603179	0.666074	6	-2.253386	-1.104193	1.047449	6	-1.963252	-1.102368	1.044738
1	-0.424056	5.782204	-0.001922	6	-3.324265	-0.731455	0.114083	6	-3.026368	-0.729622	0.102732
1	0.392568	4.625532	-1.068682	6	-3.359234	0.664718	0.041542	6	-3.059764	0.666581	0.028700
6	-1.979965	-3.510202	2.369514	6	-2.307067	1.181262	0.923756	6	-2.013671	1.182999	0.918010
1	-1.015432	-3.925783	2.661787	6	-1.712706	0.085260	1.620341	6	-1.425608	0.087077	1.620153
1	-2.766075	-4.211300	2.671428	6	-1.924532	-2.508723	1.433294	6	-1.638749	-2.507024	1.433744
1	-2.121975	-2.576773	2.920071	1	-1.936301	-3.169047	0.563728	1	-1.642929	-3.167238	0.564038
6	-1.083776	3.593523	2.730547	1	-2.663413	-2.878039	2.153588	1	-2.384501	-2.875863	2.147177

1	-0.654668	-2.575060	1.898761	6	1.977872	-0.657718	-3.241242	9	1.808431	-3.716990	2.526342
6	-3.850481	-1.713520	-0.662455	6	1.757229	0.766550	-3.254638	9	-5.488485	1.903824	-1.537336
1	-4.369931	-1.237374	-1.494763	6	-0.211422	2.313357	-3.805965	9	0.308655	-5.589897	1.255938
1	-4.594284	-2.179477	-0.007316	1	-1.297739	2.300709	-3.872459	6	0.098637	-1.573391	0.065135
1	-3.220937	-2.504654	-1.076892	1	0.194631	2.591397	-4.785520	6	-3.075261	-0.325795	0.083924
6	-3.925407	1.529726	-0.831418	1	0.082204	3.098498	-3.104603	6	-2.950770	-0.037200	2.867299
1	-3.316241	2.201913	-1.441422	6	-1.770435	-0.483574	-3.683250	6	-2.170614	-1.234576	3.047824
1	-4.589963	2.140728	-0.211586	1	-2.393802	-0.155953	-2.848608	6	0.888011	-2.027624	1.133814
1	-4.537878	0.932329	-1.507577	1	-1.990298	-1.535324	-3.870432	6	-3.785831	0.800732	-0.318064
6	-1.754704	2.635673	1.146291	1	-2.071602	0.082725	-4.570599	6	-0.782897	0.546668	3.536853
1	-0.763560	2.804659	1.567822	6	0.566890	-2.775346	-3.489942	6	-0.641476	-2.601453	-0.528818
1	-2.501529	3.040023	1.839140	1	1.065311	-3.324663	-2.686852	6	-3.670147	-1.523594	-0.299064
1	-1.819268	3.193960	0.210110	1	1.044099	-3.068075	-4.431574	6	-2.047390	1.062718	3.010708
6	-0.380159	0.167982	2.687545	1	-0.474674	-3.089711	-3.524181	6	-0.870137	-0.837328	3.584322
1	0.321473	-0.665912	2.617505	6	3.299809	-1.334119	-3.422595	6	-0.590248	-3.938265	-0.166236
1	-0.842772	0.146118	3.679443	1	4.116167	-0.757542	-2.984475	6	-4.765257	-1.609520	-1.150783
1	0.198712	1.089503	2.600925	1	3.499438	-1.436158	-4.496029	6	0.981131	-3.349883	1.540207
6	1.047393	-0.006030	-0.355531	1	3.310854	-2.331243	-2.981548	6	-4.880878	0.772151	-1.170713
6	1.779519	1.167674	-0.263151	6	2.807043	1.812438	-3.460006	6	0.313148	1.366868	4.126114
6	3.157836	1.198102	-0.089350	1	2.509503	2.769973	-3.031264	6	-4.437937	0.041538	2.736410
6	3.855768	0.001105	-0.003153	1	2.975529	1.955905	-4.534407	6	-2.675644	-2.639248	3.085846
6	3.164369	-1.199496	-0.091359	1	3.758538	1.526000	-3.009331	6	0.235231	-4.316690	0.881943
6	1.785764	-1.176339	-0.265428	6	2.796828	-0.071176	-0.545544	6	-5.366550	-0.449166	-1.612346
8	-0.878632	-0.078054	-2.438422	6	3.506424	-1.249870	-0.350217	6	-2.392957	2.513162	2.971494
1	0.030687	-0.081854	-2.754102	6	4.832132	-1.332435	0.068954	6	0.094914	-1.755026	4.254022
				6	5.522708	-0.147827	0.284474	1	1.292801	0.927717	3.936802
Dir	anti -TS			6	4.897950	1.073049	0.068954	1	0.164797	1.421536	5.211430
45	0.886843	-0.053255	-1.375154	6	3.567061	1.068646	-0.346453	1	0.314537	2.386106	3.743084
17	5.613525	-2.858758	0.295470	6	0.101271	1.510216	-0.103809	1	-4.867540	0.068718	3.744142
17	5.760791	2.552583	0.309009	6	-0.874054	2.331651	-0.672704	1	-2.794866	-2.954398	4.128888
17	-2.248585	4.625429	-1.233371	6	-1.063842	3.685201	-0.401137	1	-4.849424	-0.823139	2.215081
17	1.742491	4.261703	2.393977	6	-0.242183	4.268756	0.552434	1	-3.633446	-2.741377	2.578815
9	2.903305	-2.436836	-0.599050	6	0.704541	3.509555	1.232394	1	-4.754491	0.942561	2.210788
9	6.795241	-0.182978	0.684992	6	0.823032	2.159989	0.906085	1	-1.968761	-3.320733	2.605738
9	3.025699	2.284344	-0.567898	45	-1.446362	-0.178699	1.343310	1	-3.340773	2.691592	2.466937
9	-1.681043	1.815827	-1.610374	9	1.672028	-1.174757	1.808713	1	-0.055242	-2.793680	3.961128
9	-0.375410	5.561520	0.837139	9	-3.474198	2.014353	0.180138	1	-1.618969	3.082994	2.454082
9	1.741845	1.480083	1.598775	9	-1.450824	-2.329328	-1.560211	1	1.131437	-1.481763	4.058491
6	0.355528	0.979843	-3.428401	9	-3.235171	-2.700347	0.193644	1	-2.459448	2.897650	3.995721
6	-0.309749	-0.275326	-3.405374	9	-1.315603	-4.858954	-0.805134	1	-0.072215	-1.690485	5.335970
6	0.712536	-1.294029	-3.306579	9	-5.257962	-2.799796	-1.504086	9	-6.419113	-0.507364	-2.428331

Dir	syn -TS			6	4.375892	0.446111	-1.705970	1	-3.873610	-3.452887	2.884736
45	1.316547	-0.504698	1.289040	6	3.399545	-0.147364	-0.910304	1	-2.893172	-2.041562	3.301052
17	4.143099	4.233517	-0.437560	6	-0.349725	0.844108	1.221520	1	-5.957435	-0.826778	-1.423951
17	5.321375	-0.482850	-2.816930	6	-0.305499	2.073908	0.549988	1	-3.938157	-3.608382	-2.650455
17	-0.682016	4.743017	0.170735	6	-0.874727	3.253398	1.018106	1	-4.656659	-0.152361	-2.418550
17	-2.805752	1.922499	4.270977	6	-1.629654	3.199610	2.184724	1	-3.501983	-1.990060	-3.233072
9	2.242111	2.629120	1.018908	6	-1.833876	1.992124	2.837673	1	-5.143419	0.661770	-0.924099
9	5.519396	2.416392	-2.307460	6	-1.208463	0.861856	2.316258	1	-2.235802	-3.125550	-2.774456
9	3.285024	-1.491783	-1.041589	45	-1.939352	-0.904858	-0.239469	1	-4.602454	0.801385	1.339549
9	0.323561	2.159687	-0.621737	9	0.049325	-3.458303	1.070914	1	-1.931364	-4.708235	-0.999326
9	-2.197964	4.305364	2.656106	9	-3.228572	1.987254	-0.007437	1	-3.937834	-0.122957	2.693047
9	-1.440319	-0.292799	2.986088	9	0.821626	-0.019567	-2.102181	1	-1.812499	-4.811429	0.767696
6	2.423685	-2.207161	2.416455	9	-1.355029	-0.629821	-3.477917	1	-5.491488	-0.586665	1.992607
6	1.327564	-1.826065	3.267297	9	1.082772	-1.838065	-3.988471	1	-3.349832	-5.130708	-0.048302
6	1.524023	-0.461758	3.625491	9	-1.650736	1.398726	-5.151364	9	-2.740143	3.754600	-4.310672
6	2.698800	0.021457	2.981272	9	0.522453	-5.269517	-0.818063				
6	3.277789	-1.084762	2.259842	9	-3.553828	3.992604	-1.713456	OH	I -11 (Figure	e 5)	
6	2.783735	-3.581622	1.937062	9	0.976743	-4.487774	-3.380428	45	1.071357	-1.085329	-1.038968
1	1.999153	-4.308286	2.144262	6	0.448108	-1.610621	-0.373888	9	3.354752	-2.147947	0.982310
1	3.697656	-3.917034	2.439596	6	-2.111178	0.629185	-1.606761	9	6.482685	1.336520	0.956485
1	2.980785	-3.586892	0.861664	6	-4.038771	-1.159621	-0.615188	9	2.663675	1.714016	-1.727141
6	0.356378	-2.747367	3.936792	6	-3.291388	-2.282224	-1.113991	6	0.102782	-1.709772	-3.002141
1	-0.616725	-2.271970	4.063489	6	0.344669	-2.995243	-0.161460	6	-0.062232	-2.783272	-2.096339
1	0.726648	-3.018227	4.932855	6	-2.728798	1.823826	-1.254110	6	1.261142	-3.176169	-1.657772
1	0.218213	-3.670692	3.374044	6	-3.168342	-2.371592	1.196742	6	2.219971	-2.377703	-2.381886
6	0.793033	0.311224	4.679253	6	0.661872	-1.285550	-1.719731	6	1.508800	-1.435240	-3.175778
1	0.591083	1.337589	4.362810	6	-1.806824	0.526721	-2.957782	6	-0.979637	-0.944769	-3.683254
1	1.423808	0.367198	5.574124	6	-3.835203	-1.132709	0.801989	1	-1.964062	-1.364987	-3.471633
1	-0.150284	-0.155725	4.958910	6	-2.887903	-3.087033	0.038522	1	-0.825317	-0.950679	-4.767110
6	3.389576	1.305924	3.317218	6	0.834348	-2.224390	-2.739621	1	-0.972471	0.093035	-3.336420
1	4.103549	1.598490	2.546101	6	-1.985117	1.561135	-3.869985	6	-1.374506	-3.445116	-1.792989
1	3.943418	1.185401	4.256458	6	0.558350	-3.962650	-1.119334	1	-2.028805	-2.797179	-1.206966
1	2.681079	2.125301	3.442823	6	-2.940882	2.881397	-2.126068	1	-1.234291	-4.365920	-1.227373
6	4.665081	-1.129932	1.701313	6	-2.995627	-2.863946	2.594283	1	-1.891415	-3.695547	-2.725143
1	4.752050	-1.851114	0.887518	6	-4.991366	-0.310351	-1.392877	6	1.638819	-4.387406	-0.860832
1	5.355679	-1.434574	2.496930	6	-3.239393	-2.773560	-2.523307	1	2.331246	-4.127038	-0.058278
1	4.991581	-0.156311	1.332637	6	0.799017	-3.569250	-2.435311	1	2.131303	-5.117193	-1.513409
6	2.588035	0.521385	-0.000813	6	-2.545440	2.757033	-3.449698	1	0.768258	-4.859657	-0.409708
6	2.891173	1.873242	0.111336	6	-4.493130	-0.197445	1.758658	6	3.699714	-2.592010	-2.369037
6	3.854810	2.541168	-0.643334	6	-2.448070	-4.505997	-0.061417	1	4.242391	-1.660748	-2.542911
6	4.590070	1.810420	-1.566504	1	-2.114618	-3.501000	2.678661	1	3.969553	-3.298303	-3.162289

1	4.031901	-3.011127	-1.418040	6	1.450423	4.061556	0.866087	1	2.272001	3.108187	2.218754
6	2.081309	-0.430753	-4.125933	1	1.151994	4.359550	-1.963507	1	2.729425	4.183896	0.893163
1	1.448878	0.459473	-4.175832	1	-0.083135	5.605214	-2.209113	6	-0.508561	3.135175	2.834661
1	2.158647	-0.846648	-5.137191	1	-0.330023	3.976281	-2.849453	1	-1.404799	2.585880	3.129214
1	3.078271	-0.112263	-3.813786	1	-4.058438	4.278914	1.788772	1	-0.586170	4.152693	3.233980
6	2.853052	-0.266415	-0.389345	1	-0.837189	4.119528	3.460237	1	0.353053	2.654697	3.298270
6	3.687261	-0.928846	0.506315	1	-3.594037	2.619494	2.202351	6	-2.864115	3.740632	0.806989
6	4.893277	-0.417435	0.969360	1	-1.619932	2.538288	3.268546	1	-3.568117	3.401745	0.044843
6	5.327823	0.822580	0.524065	1	-4.361660	2.951968	0.653022	1	-2.967148	4.827591	0.900215
6	4.545916	1.514688	-0.386787	1	0.122204	2.692040	3.039767	1	-3.147284	3.290604	1.758565
6	3.354230	0.952043	-0.822716	1	-3.960531	3.534444	-1.474275	6	-1.646000	3.720595	-2.158511
8	0.097503	0.871283	-1.233567	1	1.752314	3.299812	1.585211	1	-1.164331	3.236417	-3.010541
45	-1.079752	2.071158	-0.141381	1	-2.646547	3.681260	-2.640607	1	-1.675841	4.799896	-2.347234
9	1.370359	1.019582	1.489957	1	2.089158	3.962733	-0.013270	1	-2.674065	3.356142	-2.105832
9	-3.037667	0.878528	-2.327656	1	-3.255000	5.126999	-1.813518	6	-2.457816	0.754077	-0.411443
9	-0.451617	-3.338476	0.870722	1	1.633675	5.044338	1.313611	6	-3.358387	0.593064	0.636252
9	-2.170006	0.221863	2.243133	9	-5.115843	-2.639596	-0.021399	6	-4.663170	0.129196	0.501645
9	-0.778098	-3.543678	3.470186	1	0.828321	1.409809	-1.552890	6	-5.109671	-0.204302	-0.772207
9	1.050597	0.755026	4.080180	17	-4.908017	-1.348249	-2.656667	6	-4.272301	-0.060075	-1.869929
9	-0.041355	-1.512882	5.147898	17	-3.909429	-2.092379	2.612940	6	-2.984347	0.426856	-1.650528
6	0.541425	-1.175095	0.991177	9	4.943087	2.714679	-0.834985	8	0.295663	0.380452	-1.630835
6	-2.461823	0.556588	-0.066382	9	5.644761	-1.107156	1.833609	45	1.155956	-1.298376	-0.719675
6	-2.311377	3.577175	0.775678					9	-1.842979	-1.788036	0.331631
6	-1.051954	3.505202	1.441889	OH	lanti- TS1 (Figure 5)		9	2.893633	0.670920	-2.591034
6	0.854934	-0.170452	1.903520	45	-0.556042	1.492416	-0.089208	9	1.564385	0.819045	2.362269
6	-3.176689	0.169351	-1.187014	17	-5.706469	-0.045283	1.867830	9	3.186774	-1.123602	1.788029
6	-0.594919	4.153938	-0.729524	17	-4.823737	-0.478120	-3.455231	9	1.000226	-0.284421	4.691219
6	-0.039206	-2.282002	1.603515	9	-2.956633	0.873176	1.895878	9	5.429792	0.253714	2.184253
6	-2.748409	-0.155498	1.085435	9	-6.351292	-0.660842	-0.941472	9	-2.381696	-2.873742	2.673251
6	-2.032520	3.881101	-0.598205	9	-2.212346	0.561575	-2.762955	9	5.112947	2.064545	-2.154006
6	0.003933	3.927702	0.515073	6	0.535380	3.355523	-0.770092	9	-0.975912	-2.150849	4.892230
6	-0.239612	-2.425069	2.971724	6	0.866634	3.194502	0.588702	6	-0.089782	-0.409963	1.180851
6	-3.624076	-1.237718	1.142119	6	-0.377579	3.177896	1.344413	6	2.838212	-0.182486	-0.367177
6	0.688377	-0.261759	3.278378	6	-1.451134	3.417446	0.441006	6	2.432967	-2.803851	-1.579700
6	-4.070032	-0.899808	-1.211916	6	-0.903723	3.429430	-0.892960	6	1.860550	-3.344183	-0.382090
6	0.076990	4.540942	-2.006886	6	1.472134	3.377752	-1.929428	6	-1.088684	-1.368858	1.369465
6	-3.655752	3.343132	1.387757	1	2.511373	3.442104	-1.602452	6	3.421923	0.606047	-1.352391
6	-0.835043	3.188533	2.881742	1	1.257695	4.231753	-2.578831	6	0.114438	-2.977912	-1.872235
6	0.136731	-1.404601	3.828538	1	1.354889	2.456802	-2.509746	6	0.586649	-0.101706	2.361029
6								6	3 581467	0.202001	
0	-4.274539	-1.605858	-0.030566	6	2.260415	3.224355	1.135795	0	5.561407	-0.293001	0.801699

6	0.443701	-3.530058	-0.621919	6	1.207556	-1.433436	-3.253264	6	-1.449198	3.326402	1.540179
6	0.315063	-0.654056	3.604443	6	-1.300235	-1.027511	-3.739716	6	0.569221	-0.282043	1.860289
6	4.771422	0.388245	1.028729	1	-2.266627	-1.492624	-3.539367	6	-3.488274	-0.013658	-1.161451
6	-1.405890	-1.961956	2.581086	1	-1.146423	-0.997712	-4.823163	6	-1.002466	4.014309	-0.622665
6	4.608229	1.308689	-1.170229	1	-1.336335	-0.000187	-3.364567	6	-0.297188	-2.396938	1.518031
6	-1.227902	-2.934742	-2.532487	6	-1.589285	-3.574017	-1.893081	6	-3.057674	-0.376462	1.111086
6	3.891464	-2.676715	-1.883394	1	-2.268335	-2.962394	-1.296399	6	-2.432652	3.704040	-0.498958
6	2.602659	-3.920917	0.782226	1	-1.412070	-4.498165	-1.343559	6	-0.401811	3.786414	0.620700
6	-0.694040	-1.598668	3.715446	1	-2.095881	-3.830114	-2.829260	6	-0.490844	-2.572361	2.883265
6	5.286531	1.208625	0.035527	6	1.455278	-4.407359	-0.974019	6	-3.899660	-1.481401	1.125138
6	1.458239	-1.926364	-3.848639	1	2.181212	-4.137835	-0.204993	6	0.418699	-0.408667	3.234473
6	-0.440660	-4.310914	0.292919	1	1.922528	-5.137496	-1.644672	6	-4.346394	-1.105297	-1.199302
1	-2.031455	-3.075580	-1.808935	1	0.608728	-4.881890	-0.481369	6	-0.334048	4.429726	-1.893055
1	-1.307346	-3.716624	-3.295595	6	3.445283	-2.519269	-2.478764	6	-4.047755	3.105318	1.477721
1	-1.396160	-1.975321	-3.029482	1	3.953076	-1.566289	-2.639847	6	-1.226075	2.990462	2.974959
1	4.249037	-3.613910	-2.323684	1	3.733041	-3.200429	-3.287610	6	-0.115423	-1.570255	3.762045
1	2.707740	-5.005870	0.666835	1	3.802451	-2.944179	-1.539443	6	-4.544840	-1.853976	-0.046506
1	4.472772	-2.480291	-0.981095	6	1.738673	-0.397819	-4.194245	6	-3.437376	3.877025	-1.588211
1	3.598949	-3.487619	0.872815	1	1.068032	0.464245	-4.239922	6	1.039933	3.955048	0.975284
1	4.086662	-1.871808	-2.593509	1	1.836324	-0.802515	-5.208311	1	0.744314	4.269186	-1.846870
1	2.078753	-3.725605	1.720135	1	2.720096	-0.038331	-3.877428	1	-0.514730	5.492450	-2.085517
1	2.408886	-1.414564	-3.996713	6	2.528462	-0.249750	-0.465961	1	-0.726017	3.864916	-2.742743
1	-0.229445	-4.093729	1.341666	6	3.399555	-0.888869	0.411135	1	-4.472854	4.028584	1.884536
1	0.661397	-1.204665	-4.043690	6	4.588903	-0.342265	0.889802	1	-1.256652	3.909566	3.571331
1	-1.498637	-4.133734	0.108085	6	4.946934	0.930077	0.461252	1	-3.972846	2.376446	2.286535
1	1.373005	-2.731286	-4.587062	6	4.141317	1.618536	-0.435640	1	-1.992208	2.309623	3.346943
1	-0.236487	-5.376274	0.135574	6	2.974847	0.997090	-0.874666	1	-4.741755	2.704866	0.736568
9	6.425687	1.877452	0.229923	8	-0.285490	0.782478	-1.257557	1	-0.254867	2.519511	3.126607
1	-0.400999	0.092337	-2.226386	45	-1.443592	1.913021	-0.069259	1	-4.336479	3.290743	-1.395909
				9	1.054016	0.928920	1.470551	1	1.359692	3.202717	1.696361
OH	I- <i>I2</i> (Figure	e 5)		9	-3.381445	0.711240	-2.298214	1	-3.031574	3.560799	-2.550734
45	0.773079	-1.128815	-1.108060	9	-0.706326	-3.440148	0.764197	1	1.683697	3.870760	0.097665
17	5.603256	-1.210269	1.987063	9	-2.502659	-0.026654	2.291692	1	-3.719382	4.933310	-1.663261
17	4.583997	3.204050	-0.975989	9	-1.027073	-3.702642	3.356408	1	1.198056	4.943309	1.420528
9	3.105062	-2.128786	0.848370	9	-4.104397	-2.175641	2.246502	9	-5.361356	-2.909033	-0.062467
9	6.074499	1.489879	0.903595	9	0.774933	0.593731	4.056430	1	0.408476	1.355740	-1.597048
9	2.234336	1.721672	-1.765283	9	-4.984779	-1.441324	-2.327264				
6	-0.185917	-1.763156	-3.077184	9	-0.282940	-1.710822	5.079441	OF	Isyn- TS1		
6	-0.305165	-2.855317	-2.187019	6	0.266044	-1.270081	0.926459	45	-0.504016	-1.626840	-0.876951
6	1.033853	-3.202318	-1.757723	6	-2.791923	0.367665	-0.026080	17	3.602461	-2.760079	2.933756
6	1.958520	-2.359284	-2.475585	6	-2.706849	3.375484	0.873087	17	5.025721	-0.292735	-1.663893

9	0.960361	-2.673262	1.747854	9	3.995973	2.867062	-1.704657	9	4.820251	3.131162	0.887193
9	5.419093	-1.466167	1.006903	9	-1.012547	-0.610489	4.476326	1	0.308292	0.443065	-2.213803
9	2.181955	-0.451478	-2.222131	9	3.005998	2.831618	2.898715				
6	-1.774835	-2.643969	-2.482456	9	-3.688811	-1.038579	4.273093	OH	I-<i>I3</i> (Figure	e ESI8)	
6	-2.259597	-3.146748	-1.270120	6	-1.408742	-0.381524	0.831097	45	0.752337	-0.882802	-1.379822
6	-1.139838	-3.709591	-0.529557	6	0.880485	2.026102	0.029928	9	3.177204	-2.197870	0.262804
6	0.002697	-3.692563	-1.386432	6	-1.345691	3.817177	-0.446866	9	6.175740	1.363831	0.757806
6	-0.346686	-2.931764	-2.552510	6	-1.733848	3.225544	-1.700611	9	2.214346	2.023680	-1.646713
6	-2.514070	-1.883266	-3.532628	6	-0.858678	-0.397700	2.114299	6	-0.334377	-1.193446	-3.351430
1	-3.545350	-1.685459	-3.235498	6	1.324269	2.285130	1.321538	6	-0.408910	-2.415684	-2.645093
1	-2.522509	-2.430675	-4.480899	6	-3.257798	2.533511	-0.115034	6	0.950038	-2.829919	-2.367535
1	-2.015540	-0.921248	-3.693745	6	-2.789481	-0.579522	0.812769	6	1.836953	-1.883984	-3.000373
6	-3.682533	-3.279020	-0.831636	6	1.834577	2.247404	-0.956142	6	1.048969	-0.842748	-3.566132
1	-4.348993	-2.607970	-1.371513	6	-2.208536	3.285077	0.558753	6	-1.479448	-0.363311	-3.821533
1	-3.802334	-3.095352	0.237472	6	-2.957645	2.467558	-1.479911	1	-2.436534	-0.846436	-3.619908
1	-4.007123	-4.309131	-1.019829	6	-3.570059	-0.820891	1.929378	1	-1.401246	-0.187479	-4.899359
6	-1.292061	-4.431086	0.772729	6	3.147518	2.623097	-0.702209	1	-1.471229	0.604642	-3.311739
1	-0.326721	-4.644255	1.229959	6	-1.594914	-0.608135	3.276170	6	-1.680220	-3.165154	-2.376861
1	-1.823373	-5.377959	0.622383	6	2.637062	2.618316	1.631935	1	-2.340056	-2.606429	-1.710542
1	-1.867273	-3.830209	1.482388	6	-4.499124	2.068302	0.572531	1	-1.486617	-4.131013	-1.912020
6	1.299981	-4.399779	-1.156204	6	-0.291335	4.859480	-0.251476	1	-2.215139	-3.341503	-3.316084
1	2.144059	-3.852085	-1.578626	6	-1.158640	3.493172	-3.053014	6	1.405994	-4.145104	-1.814656
1	1.256028	-5.382400	-1.638708	6	-2.960661	-0.829128	3.179215	1	2.193946	-4.005584	-1.072447
1	1.492490	-4.553579	-0.093615	6	3.563056	2.781486	0.611494	1	1.804150	-4.767848	-2.623909
6	0.505536	-2.682574	-3.755333	6	-2.248149	3.660718	2.007085	1	0.590129	-4.682506	-1.334427
1	0.324349	-1.683691	-4.159223	6	-3.700650	1.757084	-2.563439	6	3.319025	-2.045689	-3.118491
1	0.277825	-3.413867	-4.539473	1	-4.993512	1.254325	0.043977	1	3.825515	-1.081488	-3.193299
1	1.567299	-2.757666	-3.516980	1	-5.196780	2.911643	0.631414	1	3.548854	-2.622223	-4.021747
6	1.429807	-1.452502	-0.218593	1	-4.296149	1.747283	1.595627	1	3.730132	-2.582412	-2.261939
6	1.856379	-2.031026	0.971506	1	-0.750773	5.849534	-0.345512	6	1.521290	0.336963	-4.356626
6	3.172474	-2.039577	1.423342	1	-1.825967	4.152247	-3.619691	1	0.910010	1.217116	-4.140031
6	4.145799	-1.469747	0.611708	1	0.499513	4.779496	-0.998706	1	1.457016	0.139830	-5.432978
6	3.805353	-0.929947	-0.621098	1	-0.177905	3.963845	-2.989713	1	2.557734	0.586108	-4.119533
6	2.460970	-0.944509	-0.992870	1	0.168633	4.788945	0.735207	6	2.557763	-0.133566	-0.707559
8	-0.563483	0.238804	-1.861942	1	-1.047403	2.558112	-3.607711	6	3.463013	-0.905240	0.014353
45	-1.088008	1.666362	-0.414590	1	-1.303913	4.096212	2.332566	6	4.678209	-0.442643	0.517918
9	0.448839	-0.218107	2.300636	1	-3.024336	1.080856	-3.094397	6	5.025506	0.882033	0.283362
9	0.456196	2.301516	2.353563	1	-2.435835	2.786120	2.635004	6	4.183511	1.706200	-0.450649
9	-3.458170	-0.536979	-0.362610	1	-4.525317	1.166383	-2.162608	6	2.994534	1.162664	-0.929391
9	1.496339	2.165004	-2.266796	1	-3.046880	4.388896	2.189979	8	-0.288023	1.032670	-1.162218
9	-4.893679	-1.020411	1.833648	1	-4.105189	2.471940	-3.288136	45	-1.488271	1.947600	0.165589

4.657583	2.421628	1	-2.816368	-4.149541	-0.668018	
-2.775489	-0.551360	6	-2.731506	-1.104424	-0.142696	
1.657635	-1.388470	6	-3.677286	-0.374862	-0.856517	
3.362265	-0.738708	6	-5.006012	-0.241413	-0.482410	
-1.474353	1.414997	6	-5.453104	-0.861933	0.676302	
0.362929	4.243893	6	-4.555187	-1.605986	1.424321	
-4.418171	2.900231	6	-3.237535	-1.715370	0.994215	
-2.532710	1.757983	8	0.016096	-1.430677	1.088295	
-0.888901	-2.501351	45	0.753354	0.462814	1.555155	
		9	-2.313359	1.378138	0.816839	
Figure ESI	8)	9	2.598506	-2.173436	1.724813	
-1.305034	-0.833082	9	1.335897	0.844330	-2.117247	
0.481343	-1.215957	9	2.780965	2.071222	-0.300891	
-2.214717	2.544771	17	1.127911	3.403701	-3.415173	
0.296380	-1.974786	17	5.281193	1.677833	-1.722459	
-0.746734	1.061007	17	-3.170293	3.954475	-0.173573	
-2.476215	1.793740	17	5.066111	-3.204602	0.602357	
-3.112343	-1.496838	9	-1.221588	4.731140	-2.229378	
-2.081375	-2.398970	6	-0.470513	0.945976	-0.606392	
-1.622802	-3.016960	6	2.505009	-0.073674	0.639608	
-2.438037	-2.543682	6	1.928028	1.192928	3.203824	
-3.314833	-1.531358	6	1.225956	2.306568	2.650305	
-3.859798	-0.601427	6	-1.502693	1.784738	-0.177937	
-3.629123	-0.824237	6	3.135344	-1.291630	0.864431	
-4.938166	-0.713334	6	-0.373864	0.850733	3.500483	
-3.585660	0.441052	6	0.307522	1.533750	-1.603568	
-1.706963	-2.775554	6	3.239465	0.816552	-0.132399	
-1.360092	-1.913872	6	0.941106	0.237677	3.644042	
-0.919114	-3.527660	6	-0.186504	2.118656	2.932573	
-2.581989	-3.190076	6	0.103216	2.790008	-2.167205	
-0.610092	-4.112436	6	4.459496	0.521109	-0.737692	
-0.048593	-4.018345	6	-1.800455	3.039508	-0.702998	
-1.111533	-5.086714	6	4.356037	-1.657339	0.294275	
0.099406	-4.099924	6	-1.666305	0.229191	3.926790	
-2.504937	-3.107916	6	3.408792	1.069036	3.370724	
-2.762037	-2.344835	6	1.812936	3.583845	2.137217	
-3.284410	-3.877545	6	-0.975503	3.533398	-1.707398	
-1.562456	-3.567511	6	5.005034	-0.738400	-0.521672	
-4.406213	-0.816450	6	1.196531	-1.067215	4.325078	
-4.587547	0.165797	6	-1.203252	3.193920	2.750382	
-5.339712	-1.389316	1	-2.504884	0.629067	3.354253	

1.153202	0.797550	1.401480	1	0.949465	4.65758
-3.555331	1.199668	-2.160823	9	-5.461132	-2.77548
-0.600787	-3.430900	0.220310	1	0.407359	1.65763
-2.378235	-0.447771	2.114801	17	4.603002	3.36226
0.044814	-2.306987	4.706410	17	5.735174	-1.47435
0.359205	-1.312523	0.638624	17	1.191640	0.36292
-2.823000	0.405718	-0.047830	17	-0.944639	-4.4181′
-2.862620	3.309370	1.093773	9	-4.031585	-2.53271
-1.750184	3.101515	1.952030	9	-5.205900	-0.88890
0.704684	-0.451933	1.677980			
-3.602141	0.264403	-1.183593	OF	lanti-TS2 (Figure E
-0.908994	4.097999	0.030986	45	-0.792018	-1.30503
-0.164000	-2.514117	1.105157	9	-5.858355	0.48134
-3.020126	-0.552857	0.933050	9	-4.963334	-2.21471
-2.337940	3.834087	-0.144592	9	-3.315923	0.29638
-0.547253	3.645012	1.304021	9	-6.726848	-0.74673
-0.292261	-2.883827	2.443730	9	-2.435452	-2.47621
-3.886175	-1.629808	0.786732	6	0.393645	-3.11234
0.636834	-0.753996	3.036762	6	0.732946	-2.08137
-4.485691	-0.789915	-1.377197	6	-0.498175	-1.62280
-0.016388	4.682493	-1.016190	6	-1.566655	-2.43803
-4.298941	3.013573	1.387523	6	-1.033431	-3.31483
-1.775018	2.536543	3.332154	6	1.322074	-3.85979
0.131846	-1.988401	3.413734	1	2.365268	-3.62912
-4.621927	-1.751530	-0.384961	1	1.174256	-4.93816
-3.128985	4.227475	-1.346324	1	1.131298	-3.58566
0.810797	3.691789	1.923304	6	2.134135	-1.70696
1.035914	4.497846	-0.794113	1	2.704112	-1.36009
-0.168457	5.764594	-1.086117	1	2.152539	-0.91911
-0.231914	4.252816	-1.998258	1	2.646214	-2.58198
-4.793395	3.903690	1.789584	6	-0.621284	-0.61009
-1.643207	3.340099	4.065098	1	-1.553013	-0.04859
-4.393069	2.208300	2.117817	1	-0.622508	-1.11153
-2.716631	2.028237	3.539070	1	0.206507	0.09940
-4.829067	2.702221	0.485529	6	-2.949535	-2.50493
-0.967221	1.816294	3.475434	1	-3.686421	-2.76203
-4.082130	3.700875	-1.388927	1	-2.978299	-3.28441
0.937323	2.901701	2.663743	1	-3.246947	-1.56245
-2.583027	4.009415	-2.266195	6	-1.765395	-4.40621
1.598128	3.576525	1.175692	1	-1.324113	-4.58754
-3.326001	5.305111	-1.311528	1	-1.720861	-5.33971

1	-1.853708	0.415589	4.989880	1	1.282683	-3.978733	1.828420	6	-1.039014	-0.372758	-1.702173
1	-1.652864	-0.854025	3.782448	1	2.029128	-3.182008	3.219650	6	3.329507	0.436306	1.118869
1	3.697267	1.504092	4.333713	6	-1.618290	-4.065616	1.845278	6	0.584452	4.223867	-0.104477
1	1.743637	4.367294	2.900496	1	-2.389790	-3.950922	1.081945	6	-0.178817	-2.443813	-1.143137
1	3.947149	1.597657	2.582431	1	-2.036109	-4.657369	2.667667	6	2.712663	-0.427941	-0.961928
1	2.861371	3.460066	1.866155	1	-0.794557	-4.623286	1.403498	6	2.016780	3.967264	0.057711
1	3.730862	0.026631	3.356790	6	-3.532746	-1.985088	3.165143	6	0.208722	3.752406	-1.366396
1	1.283050	3.928616	1.246306	1	-4.054966	-1.029008	3.236663	6	-0.092296	-2.820841	-2.483265
1	2.212882	-1.419016	4.150110	1	-3.730653	-2.550939	4.082531	6	3.600237	-1.494460	-0.829928
1	-1.048314	3.741739	1.819673	1	-3.952490	-2.542798	2.326364	6	-0.999338	-0.676886	-3.061468
1	0.514686	-1.838374	3.959315	6	-1.750261	0.443854	4.333340	6	4.240873	-0.597705	1.324176
1	-2.223215	2.813666	2.764185	1	-1.159903	1.331612	4.091112	6	-0.295157	4.821290	0.946202
1	1.042595	-0.957937	5.404247	1	-1.657264	0.261308	5.410144	6	3.961771	3.129978	-1.484874
1	-1.090733	3.912347	3.570828	1	-2.796148	0.671810	4.117232	6	1.416262	2.613410	-3.389597
9	6.167136	-1.063303	-1.089411	6	-2.866002	-0.094133	0.709321	6	-0.520256	-1.919522	-3.446004
1	-0.691278	-1.656510	1.698414	6	-3.770225	-0.904375	0.029336	6	4.358002	-1.567856	0.334506
				6	-5.019029	-0.479766	-0.409179	6	2.819514	4.384313	1.243598
OH- <i>I4</i> (Figure ESI8)			6	-5.424174	0.824242	-0.164698	6	-1.156104	3.784855	-1.971414	
45	-1.029705	-0.792157	1.350873	6	-4.567963	1.669280	0.523152	1	-1.350115	4.641901	0.733832
9	-5.838678	-1.314046	-1.056796	6	-3.335635	1.189479	0.944270	1	-0.135922	5.902881	1.007452
9	-4.933154	2.935611	0.770128	8	-0.039199	1.149437	1.100353	1	-0.073998	4.396354	1.929053
9	-3.469943	-2.192665	-0.240574	45	1.167094	2.072576	-0.215421	1	4.447172	4.013987	-1.910800
9	-6.619290	1.256363	-0.576587	9	-1.480608	0.876821	-1.416655	1	1.277015	3.405351	-4.133767
9	-2.566664	2.105621	1.609226	9	3.273861	1.397892	2.066352	1	4.049621	2.311227	-2.200906
6	0.107966	-1.062616	3.296256	9	0.261608	-3.364749	-0.265226	1	2.355847	2.101905	-3.597891
6	0.187993	-2.289383	2.597762	9	2.033520	-0.336657	-2.120895	1	4.505888	2.838240	-0.584634
6	-1.169567	-2.733466	2.363195	17	0.495555	-4.378392	-2.951056	1	0.606947	1.891232	-3.512944
6	-2.057294	-1.797323	3.010060	17	3.772785	-2.682587	-2.067766	1	3.777337	3.866140	1.282441
6	-1.275897	-0.736878	3.545730	17	-1.565977	0.443785	-4.260044	1	-1.288172	2.981589	-2.696619
6	1.248273	-0.209916	3.735291	17	5.200862	-0.686874	2.759603	1	2.286564	4.176286	2.173363
1	2.208502	-0.678891	3.515672	9	-0.468833	-2.243138	-4.739489	1	-1.934157	3.679390	-1.213110
1	1.191473	-0.030042	4.813817	6	-0.675602	-1.233715	-0.669592	1	3.007307	5.462802	1.189696
1	1.211324	0.755448	3.222275	6	2.517925	0.546039	0.003592	1	-1.303821	4.741327	-2.484819
6	1.467091	-3.012100	2.295028	6	2.528336	3.426305	-1.177416	9	5.213032	-2.576643	0.501875
1	2.098856	-2.435347	1.616750	6	1.405430	3.200566	-2.018655	1	-0.753742	1.759924	1.307307

- (1) D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, 3rd ed., Pergamon Press, Oxford, UK, 1988.
- (2) ¹⁹F NMR (470.15 MHz, THF, acetone- d_6 capillary, 293K): δ –76.08 (br, 2F_o), -109.64 (br, 1F_p).
- (3) K. K. Sun and W. T. Miller, J. Am. Chem. Soc., 1970, 32, 6985.
- (4) J. Tönnemann, J. Risse, Z. Grote, R. Scopelliti and K. Severin, Eur. J. Inorg. Chem., 2013, 4558.
- (5) CrysAlisPro Software system, version 1.171.33.51, 2009, Oxford Diffraction Ltd, Oxford, UK.
- (6) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.
- (7) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Cryst.*, 2015, A71, 59.
- (8) G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3.
- (9) For complex 5, only the right side of the F_{ortho} signal was integrated for the Rf group (the signal assigned to Rf in 5 is symmetrical) because in the spectra used to calculate the initial rate constant (less than 15% progress of aryl exchange), the effect of the overlapping with the corresponding signal of Rf in complex 2 was not negligible in the left side of the signal (see Figure 2). This value was multiplied by 2.
- (10) C. Ammann, P. Meier and A. E. Merbach, J. Magn. Reson., 1982, 46, 319.
- (11) Two equivalents of complex **5** were formed from the reaction of one equivalent of **2** and **4** (Scheme ESI1).
- (12) Eyring-Polanyi equation: $ln\frac{k}{T} = \frac{-\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + ln\frac{k_B}{h} + \frac{\Delta S^{\ddagger}}{R}$
- (12) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- (13) Gaussian 09, Revision E.01, Frisch, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- (14) J. delPozo, D. Carrasco, M. H. Pérez-Temprano, M. García-Melchor, R. Álvarez, J. A. Casares and P. Espinet, *Angew. Chem. Int. Ed.*, 2013, **52**, 2189.

- (15) M. H. Pérez-Temprano, J. A. Casares, A. R. de Lera, R. Álvarez and P. Espinet, *Angew. Chem. Int. Ed.*, 2012, **51**, 4917.
- (16) D. Carrasco, M. García-Melchor, J. A. Casares and P. Espinet, Chem. Commun., 2016, 52, 4305.
- (17) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- (18) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- (19) A. W. Ehlers, M. Biihme, S. Dapprich, A. Gobbi, A. Hijllwarth, V. Jonas, K. F. Kiihler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 111.
- (20) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.