Electronic Supplementary Information

Capture of SO₃ Isomers in the Oxidation of Sulfur Monoxide with Molecular Oxygen

Zhuang Wu,^a Bo Lu,^a Ruijuan Feng,^a Jian Xu,^a Yan Lu,^a Huabin Wan,^a André K. Eckhardt,^b Peter R. Schreiner,^b Changjian Xie,^c Hua Guo^c and Xiaoqing Zeng^{a,*}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 China
^bInstitute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
^cDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
*E-mail: xqzeng@suda.edu.cn

Table of Contents:

Experimental and calculation details	S3
Matrix-isolation IR spectra (Figures S1–S6)	S5
Calculated relative energies (Figure S7)	S11
TD-DFT computed vertical transitions of SO ₃ isomers (Table S1)	S12
CCSD(T)/cc-pVTZ computed IR spectra of cyclic OS(=O)O (Table S2)	S13
References	S14
Computed atomic coordinates and energies of SO ₃ isomers	S15

Experimental details

Sample preparation. Ethylene episulfoxide were prepared according to the published protocols^[1]. The purity was checked by using ¹H and ¹³C NMR spectroscopy (Bruker Avance III HD 400 spectrometer). Ar (\geq 99.999%, Messer), N₂ (\geq 99.999%, Messer), Ne (\geq 99.999%, Messer), and O₂ (\geq 99.999%, Messer) gases were used without further purification. For the labeling experiments, ¹⁸O₂ (97 atom %, Aldrich) was used.

Matrix-isolation IR spectroscopy. Matrix IR spectra were recorded on a FT-IR spectrometer (Bruker 70V) in a reflectance mode by using a transfer optic. A KBr beam splitter and liquid-nitrogen cooled broadband MCT detector were used in the mid-IR region (4000–400 cm⁻¹). Typically, 200 scans at a resolution of 0.5 cm⁻¹ were co-added for each spectrum. Gaseous ethylene episulfoxide was mixed by passing a flow of Ar, N₂, or Ne gas through a U-trap containing ca. 20 mg of ethylene episulfoxide at -27 °C. Then the mixture (estimated ratio of 1:1000) was passed through an aluminum oxide furnace (o.d. 2.0 mm, i.d. 1.0 mm), which can be heated over a length of ca. 25 mm by a tantalum wire (o.d. 0.4 mm, resistance 0.4 Ω), deposited (2 mmol h^{-1}) in a high vacuum (~10⁻⁶ pa) onto the Rh-plated Cu block matrix support (2.8 K for Ne or 15.0 K for Ar and N₂) using a closed-cycle helium cryostat (Sumitomo Heavy Industries, SRDK-408D2-F50H) inside the vacuum chamber. Temperatures at the second stage of the cold head were controlled and monitored using a LakeShore 335 digital cryogenic temperature controller a Silicon Diode (DT-670). The voltage and current used in the pyrolysis experiments are 5.0 V and 3.45 A, respectively. Photolysis experiments were performed using an Nd³⁺: YAG laser (266 nm, MPL-F-266, 10 mW), LED light (830 nm, FU830AD100-BXS22130, 100mW), and UV flashlight (365 nm, Boyu T648, 20 W).

Matrix-isolation UV/Vis spectroscopy.

The cryostat used was an APD Cryogenics HC-2 closed-cycle refrigerator system with CsI windows for IR and BaF₂ windows for UV/Vis measurements. IR spectra were recorded with a Bruker IFS 55 FT-IR spectrometer (spectral range of 4000–350 cm⁻¹ with a resolution of 0.7 cm⁻¹, 50 scans per measurement), UV/Vis spectra with a Jasco V670 spectrometer (spectral range of 190–850 nm with a scanning speed of 1

nm s⁻¹). For the combination of high-vacuum flash pyrolysis with matrix isolation, a small, home-built, water-cooled oven directly connected to the vacuum shroud of the cryostat was used. The pyrolysis zone consisted of a completely empty quartz tube (inner diameter 8 mm, length of heating zone 50 mm) resistively heated by a coax heating wire. The temperature was controlled through a Ni/CrNi thermocouple. A gas mixture of ethylene episulfoxide and Ar (1:1000) was prepared in a 2 L storage bulb and evaporated at room temperature into the quartz pyrolysis tube. Immediately after leaving the tube, at a distance of ca. 50 mm, all pyrolysis products were condensed (typically 30 to 60 mbar in one hour) on the surface of the 12.0 K matrix window. For irradiation, LED light (850 nm), UV light (365 nm), and low-pressure mercury lamp (254 nm) were used.

Computational details

Molecular structures and IR frequencies of stationary points were computed using UB3LYP/6-311+G(3df),^[2] UCCSD(T)/cc-pVTZ^[3] and UCCSD(T)-F12/VTZ-F12.^[4] Local minima were confirmed by vibrational frequency analysis. The time-dependent TD-B3LYP method was performed for the prediction of vertical excitations.^[5] These computations were performed using the Gaussian 09 software package.^[6] The CCSD(T) and CCSD(T)-F12 computations were performed using the CFOUR^[7] and MOLPRO^[8] packages, respectively.

Figure S1. A) IR difference spectrum showing the change of the FVP (1000 K) products of a mixture of $e/O_2/N_2$ (1:50:1000) upon 830 nm LED irradiation (20 min) at 15.0 K. B) IR difference spectrum showing the change of the matrix upon 266 nm laser irradiation (10 min). IR bands of *cis*-OSOO (**b**), dioxathiirane (**c**), SO₃ (**d**), CH₂CH₂ (**f**), SO₂ (**g**), O₃ (**i**), CH₃C(O)H (**j**), and H₂O (*) are labeled.

Figure S2. A) IR spectrum of matrix isolated HVFP (1000 K) products of a mixture of $e/O_2/N_2$ (1:50:1000) at 15.0 K. B) Part of spectrum A expanded 10 times. IR bands of *cis*-OSOO (**b**), dioxathiirane (**c**), SO₃ (**d**), CH₂CH₂ (**f**), SO₂ (**g**), O₃ (**i**), CO₂ (**k**), and H₂O (*) are labeled.

Figure S3. A) IR spectrum of matrix isolated HVFP (1000 K) products of a mixture of $e^{/18}O_2/N_2$ (1:50:1000) at 15.0 K. IR bands of *cis*-OS¹⁸O¹⁸O (**b**'), doubly ¹⁸O labeled SO₃ (**d**'), CH₂CH₂ (**f**), OS¹⁸O (**g**'), and H₂O (*) are labeled.

Figure S4. A) IR spectrum of matrix isolated HVFP (1000 K) products of ethylene episulfoxide (e) in Ar (1:1000) at 15.0 K. B) IR spectrum of matrix isolated HVFP (1000 K) products of a mixture of $e/O_2/Ar$ (1:50:1000) at 15.0 K. IR bands of SO (a), *cis*-OSOO (b), SO₃ (d), CH₂CH₂ (f), SO₂ (g), and H₂O (*) are labeled.

Figure S5. A) IR difference spectrum showing the change of the Ar-matrix isolated HVFP (1000 K) products of a mixture of $e/O_2/Ar$ (1:50:1000) upon 830 nm LED irradiation (20 min). IR difference spectrum showing the change of the Ar-matrix isolated HVFP (1000 K) products of a mixture of $e/{^{18}O_2/Ar}$ (1:50:1000) upon 830 nm LED irradiation (20 min). IR bands of *cis*-OSOO (b), *cis*-OS¹⁸O¹⁸O (b'), cyclic OS(=O)O (c), cyclic OS(=¹⁸O)¹⁸O (c'), cyclic ${^{18}O_2/Ar}$ (1:50:1000) upon 830 nm (LED irradiation (20 min). IR bands of *cis*-OSOO (b), *cis*-OS¹⁸O¹⁸O (b'), cyclic OS(=O)O (c), cyclic OS(={^{18}O})^{18}O (c'), cyclic {^{18}OS(=O)^{18}O (c''), SO_3 (d), OS({^{18}O})_2 (d), CH_2CH_2 (f), SO_2 (g), OS^{18}O (g'), S^{18}O_2 (g''), O_3 (i), OO^{18}O (i'), O^{18}O^{18}O (i''), are labeled.

Figure S6. A) IR spectrum of matrix isolated HVFP (1000 K) products of a mixture of $e/O_2/Ne$ (1:50:1000) at 2.8 K. B) IR difference spectrum showing the change of the matrix upon 830 nm LED irradiation (20 min). IR bands of *cis*-OSOO (**b**), SO₃ (**d**), CH₂CH₂ (**f**), SO₂ (**g**), O₃ (**i**), and H₂O (*) are labeled.

Figure S7. Calculated relative energies for the SO_3 isomers at the CCSD(T)-F12/VTZ-F12 level.

species	energy (nm)	oscillator strength (<i>f</i>)	
cis-OSOO	699	0.0001	
	349	0.0962	
	270	0.0016	
	242	0.0014	
	229	0.0246	
	214	0.0002	
	197	0.0732	
	191	0.0018	
	176	0.0391	
dioxathiirane	290	0.0015	
	246	0.0026	
	232	0.0035	
	203	0.0029	
	198	0.0059	
	176	0.0024	
	172	0.0340	
	164	0.0018	

Table S1. TD-DFT B3LYP/6-311+G(3df) calculated vertical excitation energy of SO_3 isomers..

cyclic ${}^{16}OS(={}^{16}O){}^{16}O$ cyclic ${}^{18}OS(={}^{16}O){}^{18}O$		cyclic ¹⁸ OS(= ¹⁸ O) ¹⁶ O			
harmonic	anharmonic	harmonic	anharmonic	harmonic	anharmonic
1308.5 (155)	1291.9 (138)	1261.4 (150)	1256.7 (128)	1308.0 (153)	1293.2 (126)
947.1 (46)	925.3 (38)	925.1 (45)	911.8 (38)	905.0 (49)	898.1 (43)
672.8 (44)	658.1 (40)	659.8 (41)	646.5 (18)	647.9 (39)	641.6 (38)
630.9 (19)	618.4 (18)	616.2 (19)	608.5 (18)	603.4 (18)	598.8 (18)
449.7 (17)	444.9 (17)	433.7 (16)	430.2 (15)	441.1 (16)	437.6 (16)
342.0 (5)	337.6 (5)	330.4 (5)	326.2 (5)	331.0 (5)	327.1 (15)

Table S2. Calculated IR frequencies (cm^{-1}) and intensities $(km mol^{-1}, in parentheses.) of dioxathiirane at the CCSD(T)/cc-pVTZ level.$

References:

[1] Hartzell, G. E.; Paige, J. N. J. Am. Chem. Soc. 1966, 88, 2616–2617.

- [2] Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
- [3] a) Purvis III, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910–1918; b) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479–483; c) Watts, J. D.; Gauss, J.; Bartlett, R. J.; J. Chem. Phys. 1993, 98, 8718–8733.
- [4] a) Adler, T. B.; Knizia, G.; Werner, H.-J.; J. Chem. Phys. 2007, 127, 221106; b) Knizia, G.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, 054104; c) Peterson, K. A.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2008, 128, 084102.
- [5] a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.
 b) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96, 135-149.
- [6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, A.1; Gaussian, Inc.: Wallingford CT, 2009.
- [7] Stanton, J. F.; Gauss, J.; Cheng, L.; Harding, M. E.; Matthews, D. A.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Christiansen, O.; Engel, F.; Faber, R.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. -C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale, W. J.; Lipparini, F.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach, W.; Simmons, C.; Stopkowicz, S.; Tajti, A.; Vázquez, J.; Wang, F.; Watts' J. D. and the integral packages MOLECULE (Almlöf, J. and Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P. and Olsen, J.), and ECP routines by Mitin, A. V. and Wüllen, C. van For the current version, see http://www.cfour.de.
- [8] Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–3253.

Computed atomic coordinates (in Angstroms) and energies (in Hartrees).

<i>cis</i> -OSOO	246)			
S	0 68063000	-0.45832600	-0.00004700	
0 0	1.19548500	0.88892600	0.00005000	
0	-0.91031600	-0.53408900	0.00010200	
0	-1.64642900	0.56181400	-0.00005900	
Zero-point corre	ction=		0.009468	
Thermal correcti	on to Energy=		0.013509	
Thermal correcti	on to Enthalpy=		0.014453	
Thermal correcti	on to Gibbs Free Er	nergy= -0	0.017534	
Sum of electroni	c and zero-point En	ergies=	-623.794533	
Sum of electroni	c and thermal Energy	gies=	-623.790493	
Sum of electroni	c and thermal Entha	alpies=	-623.789549	
Sum of electroni	c and thermal Free	Energies=	-623.821536	
CCSD(T)/cc-pVT	Z Energy=	-622.93928815348	6	
0	-2.11179494	1.76848503	0.00000000	
S	-1.34925082	-0.88433064	0.00000000	
0	1.78646287	-1.09401999	0.00000000	
0	3.02233568	1.09321440	0.00000000	
CCSD(T)-F12/VT	Z-F12 ENERGY	=-623.07600224		
S -0.00	07047893	0.8345707707	0.0000000000	
O -0.98	335286247	-0.4616812480	0.0000000000	
O -0.39	93940401	-1.6520116250	0.0000000000	
0 1.3	836274539	0.4308461024	0.0000000000	
dioxathiirane				
B3LYP/6-311+G(3df)			
0	-1.02061100	-0.75567800	-0.19502600	
S	0.30545200	-0.00001600	0.42543100	
0	1.42806300	-0.00067900	-0.46059900	
0	-1.01835600	0.75639000	-0.19523700	
Zero-point corre	ction=		0.010013	
Thermal correcti	on to Energy=		0.013799	
Thermal correcti	on to Enthalpy=		0.014743	
Thermal correction	on to Gibbs Free E	nergy= -0	0.016442	
Sum of electroni	c and zero-point En	ergies=	-623.826770	
Sum of electronic and thermal Energies=		-623.822984		
Sum of electronic and thermal Enthalpies=		-623.822040		
Sum of electroni	c and thermal Free	Energies=	-623.853225	
CCSD(T)/cc-pVTZ Energy=-622.973772480117				
0	0.37559094	1.92442772	-1.45354951	
S	-0.81310980	-0.56894223	0.00000000	
0	0.37559095	1.92442772	1.45354951	

S	-0.2906853711	0.0004637471	0.4206392981
0	1.0092427062	0.7674848899	-0.1955427453
0	1.0089639762	-0.7683876736	-0.1938434845
0	-1.4124003114	-0.0003099634	-0.4611810683