Electronic Supplementary Information

Assembly of $[Cu_2(COO)_4]$ and $[M_3(\mu_3-O)(COO)_6]$ (M = Sc, Fe, Ga, and In) Building Blocks into Porous Frameworks towards Ultra-High C_2H_2/CO_2 and C_2H_2/CH_4 Separation Performance

Jian-Wei Zhang,^{ab} Man-Cheng Hu,^a Shu-Ni Li,^a Yu-Cheng Jiang,^a Peng Qu^b and Quan-Guo Zhai*^a

^aKey Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.
^bHenan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P.R. China.
*E-mail: zhaiqg@snnu.edu.cn (Q. G. Zhai)

S1. Experimental Section in Electronic Supplementary Information

Materials and methods

All chemicals were purchased from commercial sources and used as received without further purification. The powder X-ray diffraction (PXRD) patterns were collected on a Rigaku MiniFlex600 (40 kV, 15 mA) diffractometer Cu K α (λ = 1.54056 Å) at room temperature. Thermogravimetric analyses (TGA) were carried out on a NETZSCH STA 449C thermal analyzer at a heating rate of 2 °C/min under nitrogen. Scanning Electron Microscope (SEM) images were taken on a Philips-FEI Quanta 200. The semi-quantitative elemental analyses of different samples were performed by using Philips-FEI Quanta 200) equipped with energy dispersive spectroscopy (EDS) detector. The Zeta potential analysis was done by the Malvern Zetasizer. The solid state ¹³C crosspolarization magicangle spinning (CP/MAS) NMR spectroscopy was performed by Bruker AVANCE III 400 Solid State NMR.

Synthesis of $[M_3Cu_6(O)(H_2O)_8(OH)(PTC)_6]$ (M = Sc, Fe, Ga and In) (SNNU-65s)

Prior to synthesis, 0.2 M aqueous solution of $Cu(NO_3)_2$, $Sc(NO_3)_3$, $Fe(NO_3)_3$, $Ga(NO_3)_3$ and $In(NO_3)_3$ were firstly prepared.

Synthesis of SNNU-65-Cu-Ga

 H_3 PTC (10 mg, 0.035 mmol) was added to DMF/dioxane (2.4 mL/0.4 mL), after clear, 0.14 mL freshly prepared 0.2 M solution of Ga(NO₃)₃ was added, followed by the addition of 0.4 mL 0.2 M solution of Cu(NO₃)₂, and then 0.5 mL acetic acid was added. The mixture was sealed in a 20 mL glass vial and ultrasonicated to give a clear solution, and placed in an oven preheated at 85 °C for 20 h. After that, it was cooled down to room temperature. The resulting crystals were washed with DMF and CH₂Cl₂ and then dried in air. The yield was about 60% based on H₃PTC.

Synthesis of SNNU-65-Cu-Sc and -Cu-Fe

SNNU-65-Cu-Sc and **SNNU-65-Cu-Fe** were obtained by a procedure similar to that of **SNNU-65-Cu-Ga**, except that $Sc(NO_3)_3$ and $Fe(NO_3)_3$ were used in place of $Ga(NO_3)_3$, respectively. The yield were about 82% and 78% (based on H₃PTC), respectively.

Synthesis of SNNU-65-Cu-In

 H_3 PTC (30 mg, 0.10 mmol) was added to DMF/dioxane (2.4 mL/0.4 mL), after clear, 0.42 mL freshly prepared 0.2 M aqueous solution of $In(NO_3)_3$ was added, followed by the addition of 1.2 mL 0.2 M solution of $Cu(NO_3)_2$, and then 0.5 mL acetic acid was added. The followed procedure was similar to that of **SNNU-65-Cu-Ga**. The yield was about 75% based on H_3 PTC.

Single-Crystal X-ray Crystallograpic Determination

Single crystal X-ray data collection for porous coordination compound was performed on Bruker D8 Photon 100 CMOS diffractometer equipped with a graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The SADABS program was used for absorption correction. The structures were solved by Patterson method for **SNNU-65-Cu-Ga**. The structure refinements were based on $|F|^2$ with anisotropic displacement using *SHELXTL*.¹ All non-hydrogen atoms in the framework were refined with anisotropic displacement parameters. For about the **SNNU-65-Cu-Ga**, the residual Q peaks probably correspond to highly disordered solvent molecules were treated using the SQUEEZE routine in the PLATON software package.² These crystal data can be obtained free of charge from The Cambridge Crystallographic Data Centre through www.ccdc.cam.ac.uk/data_request/cif.

Gas Adsorption

Gas sorption isotherms were measured on a Micromeritics ASAP 2020 HD88 surface-area and pore-size analyzer up to 1 bar of gas pressure by the static volumetric method. All used gases were of 99.99% purity. To probe the effect of key structural parameters on the interactions of frameworks and gas molecules, all as-synthesized samples were activated by immersion in DMF for one day, followed by exchange into acetone three times over the course of four days. The solvent-exchanged crystals were then loaded in sample tubes and activated under high vacuum at 80 °C for 20 h. The gas sorption isotherms for N₂ and H₂ were measured at 77 K with liquid nitrogen. The gas sorption isotherms for Ar were measured at 87 K. The gas sorption isotherms for CO₂, CH₄, C₂H₂, and C₂H₄ were measured at 273 and 298 K, respectively.

Estimation of the isosteric heats of gas adsorption

To extract the coverage-dependent isosteric heat of adsorption for compounds, the data were modeled with a virial-type expression³ composed of parameters a_i and b_i that are independent of temperature:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
 (1)

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$
⁽²⁾

Where *P* is pressure, *N* is the amount adsorbed (or uptake), *T* is temperature, and *m* and *n* determine the number of terms required to adequately describe the isotherm. *R* is the universal gas constant. The coverage dependencies of Q_{st} calculated from fitting the data at 273 K and 298 K under the pressure range from 0-1 bar, and Q_{st} and *R* is the universal gas constant.

Selectivity Prediction for Binary Mixture Adsorption

Ideal adsorbed solution theory (IAST)⁴ was used to predict binary mixture adsorption from the experimental pure-gas isotherms. To perform the integrations required by IAST, the single-component isotherms should be fitted by a proper model.

The Langmuir–Freundlich (LF) equation was found to the best fit to the experimental pure isotherms for CO_2 , C_2H_2 , and C_2H_4 and CH_4 of **SNNU-65s**.

$$q = q_m * \frac{b * p^{1/n}}{1 + b * p^{1/n}}$$
(1)

where *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mmol g^{-1}), q_m is the saturation capacities of site (mmol g^{-1}), *b* is the affinity coefficients of site (1/kPa), and *n* represent the deviations from an ideal homogeneous surface.

On the base of the equation parameters of pure gas adsorption, the IAST model was further used to investigate the separation of C_2H_2/CO_2 , CO_2/CH_4 , C_2H_2/CH_4 and C_2H_4/CH_4 , the adsorption selectivity is defined by

$$s_{A/B} = \frac{x_A / y_A}{x_B / y_B}$$
 (2)

Where x_i and y_i are the mole fractions of component i (i = A and B) in the adsorbed and bulk phases, respectively. Note that in the Henry regime $S_{A/B}$ is identical to the ratio of the Henry constants of the two species.

Topology Analysis for SNNU-65s.

Prior to topological analysis, the structure has been simplified to its points of extension (carboxylate C atoms of the linker), the trigonal PTC ligand can be simplified as a 3-connected node having triangle geometry, and while the di-copper paddlewheel SBUs and μ_3 -O trimer cluster are then reduced to a 4-connected node (plane quadrilateral geometry) and 6-connected node (trigonal-prismatic geometry), respectively. The **SNNU-65s** exhibits vertex 3-transitive (3,4,6)-connected *agw* net:

Point symbol for net: {6³}₆{6⁴.8²}₃{6⁶.8³.10⁶}

TD10 = 1054

Topological terms for each node:

(V1 for PTC ligand) Point symbol: {6³}

Extended point symbol: [6.6.6(2)]

Coordination sequence: 3 11 18 47 53 117 108 209 179 331

(V2 for the di-copper paddlewheel) Point symbol: {6⁴.8²}

Extended point symbol: [6.6.6(2).6(2).8(2).8(2)]

Coordination sequence: 4 8 26 36 76 68 162 158 264 192

(V3 for μ_3 -O trimer cluster) Point symbol: {6⁶.8³.10⁶}

Extended point symbol: [6.6.6.6.6.6.8(2).8(2).8(2).10(4).10(

Coordination sequence: 6 12 30 32 90 96 162 122 282 264

Transitivity: [3233]

Tilling: $[6^2.8^3] + [6^6] + [6^8.8^3]$

Topological type: agw

S2. Tables in Electronic Supplementary Information

Formula	$C_{90}H_{51}Cu_{6}Ga_{3}O_{46}$			
Formula weight	2458.71			
Temperature (K)	153(2)			
Crystal system	hexagonal			
Space group	P6(3)/mmc			
a(Å)	18.5324(10)			
b(Å)	18.5324(10)			
c(Å)	40.250(4)			
lpha (deg)	90.00			
<i>θ</i> (deg)	90.00			
γ (deg)	120.00			
Volume(ų)	11971.7(16)			
Z	2			
d _{calcd.} (g·cm ⁻³)	0.682			
μ(mm ⁻¹)	0.893			
F(000)	2452			
Reflections collected/unique	283354 / 4576			
R _{int}	0.0931			
Data/restraints/parameters	4576 / 0 / 125			
GOF on <i>F</i> ²	1.147			
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0882, 0.1959			
R_1^{a} , wR_2^{b} (all data)	0.0992, 0.2029			

Table S1. The Crystal data and structure refinements for SNNU-65-Cu-Ga.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$.

Table S2. Selected bond lengths (Å) for SNNU-65-Cu-Ga.

Ga(1)-O(1)	2.073(10)	Cu(1)-O(4)	1.960(3)
Ga(1)-O(2)	1.9098(12)	Cu(1)-O(4)#1	1.960(3)
Ga(1)-O(3)	1.926(4)	Cu(1)-O(5)	2.123(5)
Ga(1)-O(3)#3	1.926(4)	Cu(1)-O(6)	1.946(3)
Ga(1)-O(3)#4	1.926(4)	Cu(1)-O(6)#1	1.946(3)
Ga(1)-O(3)#5	1.926(4)	Cu(1)-Cu(1)#2	2.6532(13)

Symmetry codes: #1: -x+y+1,y,z; #2: -x+1,-y,-z+1; #3: x,x-y,-z+3/2; #4: x,x-y,z; #5: x,y,-z+3/2.

SNNU-65s	Cu-Sc	Cu-Fe	Cu-Ga	Cu-In
S _A BET (m ² g ⁻¹)	2089.2	2112.0	1918.0	1936.2
S _A Langmuir (m ² g ⁻¹)	3274.5	3306.2	3013.4	3037.0
Pore volume (cm ³ g ⁻¹)	1.14	1.15	1.05	1.06
H ₂ 77 K, 1 atm (cm ³ g ⁻¹ /wt%)	268.7/2.4	267.9/2.4	236.0/2.1	237.7/2.1
CO ₂ 273 K, 1 atm (cm ³ g ⁻¹)	134.5	127.3	107.4	112.0
CO ₂ 298 K, 1 atm (cm ³ g ⁻¹)	70.4	64.9	58.7	56.1
Q_{st} (kJ/mol) for CO ₂	22.2	21.8	20.5	24.9
CH ₄ 273 K, 1 atm (cm ³ g ⁻¹)	25.2	27.5	24.4	24.7
CH ₄ 298 K, 1 atm (cm ³ g ⁻¹)	16.6	15.3	13.6	13.8
Q _{st} (kJ/mol) for CH ₄	11.6	16.6	15.2	15.8
C ₂ H ₄ 273 K, 1 atm (cm ³ g ⁻¹)	205.6	187.2	165.8	170.4
C ₂ H ₄ 298 K, 1 atm (cm ³ g ⁻¹)	122.5	112.9	98.8	105.1
Q_{st} (kJ/mol) for C ₂ H ₄	61.4	23.5	31.1	24.8
C ₂ H ₂ 273 K, 1 atm (cm ³ g ⁻¹)	287.2	269.7	228.7	251.2
C ₂ H ₂ 298 K, 1 atm (cm ³ g ⁻¹)	178.9	162.3	141.6	153.3
Q_{st} (kJ/mol) for C ₂ H ₂	44.9	28.2	31.7	23.4

 Table S3. Summary of gas sorption properties for SNNU-65 analogues.

Table S4. Contributions of open metal sites (OMSs) and pore space in acetylene uptakes for selected top-performing MOFs at room temperature and 1 atm for gravimetric capacity and comparison of equimolar C_2H_2/CO_2 and C_2H_2/CH_4 selective data under 1 atm by IAST.*

	SBET	OMS density	C ₂ H ₂ uptake (cm ³ g ⁻¹)		IAST selectivity (50-50)		Ref.	
MOFs	(m² g-1)	(mmol g ⁻¹)	By OMS	By pore space	Sum	C ₂ H ₂ / CO ₂	C_2H_2/CH_4	
SNNU-65-Cu-Sc	2089.2	3.57	86	92.9	178.9	13.5	115.5	
SNNU-65-Cu-Fe	2112.0	3.52	85	77.3	162.3	6.7	37.3	
SNNU-65-Cu-Ga	1918.0	3.46	84	57.6	141.6	18.7	120.6	
SNNU-65-Cu-In	1936.2	3.26	79	74.3	153.3	7.0	69.5	
HKUST-1	1401	4.96	120	81	201.0	11.0	-	5
UTSA-50 ^a	604	-	-	-	91.0	13.3	68.0	6
ZJU-40	2858	-	-	-	216.0	11.5	-	7
ZJU-195	1721.9	-	-	-	214.2	4.7	43.4	8
ZJU-199	987	-	-	-	128.0	4.0	27.3	9
UTSA-222	703	-	-	-	85.3	4.0	19.0	10

*The room temperature with range of being from 295 to 298 °C.

The open metal site (OMS) density was calculated based on the crystal information file.

^a The selectivity predicted by Henry's law.

S3. Figures in Electronic Supplementary Information

(a)

(b)

Figure S1. Scanning electron microscope photographs of SNNU-65s: (a) -Cu-Sc; (b) -Cu-Fe; (c) -Cu-Ga and (d) -Cu-In.

Figure S2. PXRD patterns for SNNU-65s.

Figure S3. Structure of porous frameworks and tiling representation of **SNNU-65s** (All the hydrogen atoms and the terminal water molecules are omitted for clarity.)

Figure S4. Energy dispersive spectroscopy (EDS) of SNNU-65s.

Figure S5. The solid state ¹³C crosspolarization magicangle spinning (CP/MAS) NMR spectroscopy for the activated **SNNU-65-Cu-Ga s**ample, which indicated the absence of DMA⁺ counterions.

Figure S6. The Zeta potential result for SNNU-65-Cu-Ga.

Figure S7. Ar adsorption and desorption isotherms of **SNNU-65-Cu-Ga** at 87 K (top) and the pore size distribution determined by analyzing the Ar isotherm using non-local density functional theory (NLDFT) (bottom).

Figure S8. TGA curves of as-synthesized (black) and acetone-exchanged SNNU-65s (red).

Figure S9. N₂, H₂, CO₂, CH₄, C₂H₄ and C₂H₂ adsorption and desorption isotherms of **SNNU-65-Cu-Sc**. Solid and open symbols indicate adsorption and desorption isotherms, respectively.

Figure S10. N₂, H₂, CO₂, CH₄, C₂H₄ and C₂H₂ adsorption and desorption isotherms of **SNNU-65-Cu-Fe**. Solid and open symbols indicate adsorption and desorption isotherms, respectively.

Figure S11. N₂, H₂, CO₂, CH₄, C₂H₄ and C₂H₂ adsorption and desorption isotherms of **SNNU-65-Cu-Ga**. Solid and open symbols indicate adsorption and desorption isotherms, respectively.

Figure S12. N₂, H₂, CO₂, CH₄, C₂H₄ and C₂H₂ adsorption and desorption isotherms of **SNNU-65-Cu-In**. Solid and open symbols indicate adsorption and desorption isotherms, respectively.

Figure S13. (a) Correlation between isosteric heat at zero loading of C_2H_2 (Q_{st}) and charge-toradius ratio (z/r^2) of M³⁺ ions. (b) Correlation between C_2H_2 (Q_{st}) and C_2H_2 uptakes for **SNNU-65s** at 1 atm and 298 K.

Figure S14. Comparison of C_2H_2 , CO_2 and CH_4 adsorption isotherms for SNNU-65s.

Figure S15. Fitted gas adsorption isotherms of SNNU-65-Cu-Sc measured at 273 and 298 K, andtheircorrespondingisostericheatsofadsorption (Q_{st}) .

Figure S16. Fitted gas adsorption isotherms of SNNU-65-Cu-Fe measured at 273 K and 298 K, andtheircorrespondingisostericheatsofadsorption (Q_{st}) .

Figure S17. Fitted gas adsorption isotherms of **SNNU-65-Cu-Ga** measured at 273 K and 298 K, and their corresponding isosteric heats of adsorption (Q_{st}) .

Figure S18. Fitted gas adsorption isotherms of **SNNU-65-Cu-In** measured at 273 K and 298 K, and their corresponding isosteric heats of adsorption (Q_{st}).

Figure S19. Comparison of the isosteric heats of adsorption (Q_{st}) of SNNU-65s.

Figure S20. Comparison of experimental and simulated isotherms and adsorption selectivity for C_2H_2/CO_2 binary-mixture predicted by IAST of SNNU-65s at 298 K.

Figure S21. Comparison of experimental and simulated isotherms and adsorption selectivity for C_2H_2/CH_4 binary-mixture predicted by IAST of SNNU-65s at 298 K.

References

- (a) G. M. Sheldrick, SHELXS 97: Program for the Solution of Crystal Structure; University of Göttingen: Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS 97: Program for the Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997; (c) G. M. Sheldrick, SADABS: Siemens Area correction Absorption Program; University of Göttingen: Göttingen, Germany, 1994.
- 2 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 3 J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
- 4 (a) A. L. Myers and J. M. Prausnitz, *AIChE J.*, 1965, **11**, 121; (b) Y.-S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp and R. Q. Snurr, *Langmuir*, 2008, **24**, 8592.
- 5 S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu and B. Chen, J. Am. Chem. Soc., 2009, **131**, 12415.
- H. Xu, Y. He, Z. Zhang, S. Xiang, J. Cai, Y. Cui, Y. Yang, G. Qian and B. Chen, *J. Mater. Chem. A*, 2013, **1**, 77.
- 7 H.-M. Wen, H. Wang, B. Li, Y. Cui, H. Wang, G. Qian and B. Chen, *Inorg. Chem.*, 2016, 55, 7214.
- 8 L. Zhang, K. Jiang, Y. Li, D. Zhao, Y. Yang, Y. Cui, B. Chen and G. Qian, *Cryst. Growth Des.*, 2017, 17, 2319.
- 9 L. Zhang, C. Zou, M. Zhao, K. Jiang, R. Lin, Y. He, C.-D. Wu, Y. Cui, B. Chen and G. Qian, *Cryst. Growth Des.*, 2016, **16**, 7194.
- 10 J. Ma, J. Guo, H. Wang, B. Li, T.Yang and B. Chen, Inorg. Chem., 2017, 56, 7145.