Efficient generation of an oxidopyrylium ylide using a Pd catalyst and its [5+2] cycloadditions with several dipolarophiles

Hiroyuki Suga, * Taichi Iwai, Masahiro Shimizu, Kie Takahashi, and Yasunori Toda

Department of Materials Chemistry, Faculty of Engineering, Shinshu University

Wakasato, Nagano 380-8553, Japan

Table of Contents

Optimization of reaction conditions for the cycloaddition with <i>n</i> -propyl vinyl ether	S2
HOMO and LUMO energies by DFT calculations	S3-S4
Hammett plots for styrene cycloadducts	S4
The reaction of $2H$ -pyran- $3(6H)$ -one 1 with $Pd_2(dba)_3$ in methanol- d_4	S5
Experimental section (general methods, materials, general procedure for Pd-catalyzed cycloaddition reactions)	1 [5 + 2] S6-S25
References	S25-S26
¹ H and ¹³ C-NMR spectra of cycloadducts	.\$27-\$50
¹ H and ¹³ C-NMR spectra of 6-[(<i>tert</i> -butoxycarbonyl)oxy]-6-acetoxymethyl-2 <i>H</i> -py one	ran-3(6 <i>H</i>)- S51

Optimization of reaction conditions for the cycloaddition with *n*-propyl vinyl ether

Table S1. Reactions of 2*H*-pyran-3(6*H*)-one **1** with *n*-propyl vinyl ether (**5a**) in the presence of $[Pd(\eta^3 - C_3H_5)Cl]_2^a$

	\rightarrow + ^{n}PrO Ac $5a$ (5 equiv)		Pd(η ³ -C ₃ H ₅)Cl] ₂ ^{<i>i</i>} Pr ₂ NEt 35 °C, CH ₂ Cl ₂	→ ⁿ Pr	endo-6a	OAc 4 mer
entry	$[Pd(\eta^3\text{-}C_3H_5)Cl]_2$	^{<i>i</i>} Pr ₂ NEt	conc.	time	yield of endo-6a	yield of 4
	(mol%)	(equiv)	(M)	(h)	(%)	(%)
1	none	1	0.063	20	10 ^{<i>b,c</i>}	trace
2	10	1	0.063	25	55	15
3	10	1	0.13	12	61	14
4	10	0.5	0.13	16	66	10
5	10	0.2	0.13	40	71	4

^{*a*} The reaction of 2*H*-pyran-3(6*H*)-one **1** with *n*-propyl vinyl ether (**5a**) (5.0 equiv) was carried out at 35 °C in the presence ^{*i*}Pr₂NEt and $[Pd(\eta^3-C_3H_5)Cl]_2$ in CH₂Cl₂. ^{*b*} Determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*} 86% of 2*H*-pyran-3(6*H*)-one **1** was recovered.

HOMO and LUMO energies by DFT calculations

All calculations were performed using B3LYP/6-311G*//B3LYP/6-31G* level of theory with Spartan '08. To evaluate the reactivity of styrene derivatives toward oxidopyrylium ylide **A** generated from 2*H*-pyran-3(6*H*)-one **1**, HOMO and LUMO energies of the oxidopyrylium ylide and *p*-substituted styrene derivatives were calculated (Table S2).

Scheme S1. [5 + 2] cycloadditions between oxidopyrylium ylide **A** and styrenes

Table S2. HOMO and LUMO energies of oxidopyrylium ylide A and *p*-substituted styrene derivatives $2a - 2f^{a}$

Reactant (R)	HOMO	LUMO	LUMOA – HOMO2 or A	LUMO _{2 or A} – HOMO _A
ylide A	-137.36	-67.37	69.99	69.99
2a (H)	-144.64	-26.31	77.27	111.05
2b (Cl)	-147.47	-33.20	80.10	104.16
2c (CO ₂ Me)	-151.15	-43.32	83.78	94.04
2d (CN)	-157.56	-49.57	90.19	87.79
2e (Me)	-140.21	-24.03	72.84	113.33
2f (OMe)	-132.39	-19.46	65.02	117.90

^{*a*} All energies in kcal mol⁻¹.

The HOMO–LUMO gaps between the oxidopyrylium ylide **A** and non- or *p*-substituted styrene derivatives **2** are smaller for LUMO_A–HOMO₂ than for LUMO₂–HOMO_A except in the case of **2c**, and suggest that the [5+2] cycloadditions proceed in an inverse electron-demand fashion. Importantly, the reactivity of styrenes evaluated from the HOMO–LUMO gaps was parallel with the yields obtained experimentally in the Pd-catalyzed cycloadditions (see Scheme 2a in the text).

Hammett plots for styrene cycloadducts

To further analyze the reactivity of styrenes 2 toward oxidopyrylium ylide **A**, we constructed Hammett plots using σ_p^+ values¹ to assess the chemical yield of cycloadducts **3** for the *p*-substituent (**R**) of the styrenes $2\mathbf{a} - 2\mathbf{c}$, $2\mathbf{e}$, and $2\mathbf{f}$ (Figure S1). The negative slope was observed, implying that electron-rich styrenes are more favored reaction partners with **A** than electron-deficient styrenes on the basis of their electronic properties. The plot of styrene $2\mathbf{d}$ was deviated from the linear approximation (σ_p^+ : 0.66, yield: 53%, log (yield): 1.72).

Figure S1. The logarithm of the chemical yield of **2** is plotted against σ_{p}^{+} values.

The reaction of 2H-pyran-3(6H)-one 1 with Pd2(dba)3 in methanol-d4

According to the literature reported by Feringa et al.,² the reaction of 2*H*-pyran-3(6*H*)-one **1** with methanol- d_4 in the presence of Pd₂(dba)₃ (10 mol%) was carried out and monitored by ¹H NMR. Although the Pd-allyl intermediate could not be observed, the reaction proceeded cleanly to afford the corresponding methanol adduct **S1** (Figure S2).

Figure S2. The reaction of 2*H*-pyran-3(6*H*)-one 1 with $Pd_2(dba)_3$ in methanol- d_4

S1: ¹H NMR (300 MHz, CD₃OD) δ 2.08 (3H, s), 4.13 (1H, d, *J* = 12.0 Hz), 4.18 (1H, d, *J* = 17.1 Hz), 4.39 (1H, d, *J* = 17.1 Hz), 4.44 (1H, d, *J* = 12.0 Hz), 6.17 (1H, d, *J* = 10.5 Hz), 7.04 (1H, d, *J* = 10.5 Hz). AcOD: ¹H NMR (300 MHz, CD₃OD) δ 1.99 (3H, s).

Experimental section

General.

Melting points were determined on a Yanaco MP-13 melting point apparatus and are uncorrected. IR spectra were taken with a JASCO FT/IR-5300S spectrophotometer. ¹H NMR spectra were recorded on BRUKER AVANCE III Fourier 300 (300 MHz) and Ascend 500 (500 MHz) spectrometers. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. ¹³C NMR spectra were recorded on BRUKER AVANCE III Fourier 300 (75 MHz) and Ascend 500 (125 MHz) spectrometers using broadband proton decoupling. Chemical shifts are expressed in parts per million using the middle resonance of CDCl₃ (77.0 ppm) and C₆D₆ (128.06 ppm) as an internal standard. Hydrogen multiplicity (C, CH, CH₂, CH₃) information was obtained from carbon DEPT spectrum. High-resolution mass spectra were obtained on a BRUKER micrOTOF II ESI-TOF spectrometer. For preparative column chromatography, Wakogel C-300HG or Fuji Silysia PSQ60B was employed. All reactions were carried out under an argon atmosphere in dried glassware.

Materials.

6-Acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) was prepared according to the procedure reported in the literature.^{3,4} Styrene derivatives **2a**, **2b**, **2e**, **2f**, vinyl ethers **5a** – **5d**, *t*-butyl acrylate (**7a**), *N*-phenylmaleimide (**7c**), and α-methylene-γ-butyrolactone (**9c**) are commercially available, and were purified by distillation or recrystallization before used. Other styrene derivatives **2c**, ⁵ **2d**, ⁶ **2g**, ⁷ **2h**, ⁸ and **2i**³ were prepared by the procedure reported in the literature. 2-Acryloyl-1-benzyl-5,5-dimethyl-3-pyrazolidinone (**7b**) was prepared by the procedure reported previously.⁹ 1-Methylene-1,2,3,4-tetrahydronaphthalene (**9a**),¹⁰ 1-methylene-2,3-dihydro-1*H*-indene (**9b**),¹¹ α-methylene-δ-valerolactone (**9d**),¹² and 3,4-dihydro-2-methylene-1(2*H*)-naphthalenone (**9e**)¹³ were prepared according to the procedure reported in the literature. [Pd(η³-C₃H₅)Cl]₂, PdCl₂, Pd(PPh₃)₄, and Pd₂(dba)₃ are commercially available, and were used without further purification.

General procedure for the Pd-catalyzed cycloaddition was exemplified by the reaction of 6acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (1) with styrene (2a). $[Pd(\eta^3-C_3H_5)Cl]_2$ (9.2 mg, 0.025 mmol, 10 mol%), styrene (143 µL, 1.25 mmol, 5.0 equiv), and *N*,*N*-diisopropylethylamine (43.5 μ L, 0.25 mmol, 1.0 equiv) were successively added into a Schlenk tube. A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (1.0 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (1.0 mL x 3). The mixture was stirred at 35 °C for 20 h, and then filtered through a plug of Celite with EtOAc (30 mL). The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (20 g) with CH₂Cl₂/EtOAc (97 : 3, v/v) to give cycloadducts **3a** (48.2 mg, 71%, *endo* : *exo* = 81 : 19) as colorless oil. Dimer **4** (5.5 mg, 13%) was obtained by the same column chromatography with CH₂Cl₂/EtOAc (80 : 20, v/v) as an eluent.

endo- and exo-5-Acetoxymethyl-6-phenyl-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-3a and exo-

3a).³ $R_f = 0.29$ (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 1747, 1704, 1228, 1050, 772, 713 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.02 (3H x 19/100, s), 2.08 (1H x 81/100, J = 1.5, 6.9, 13.8 Hz), 2.10 (3H x 81/100, s), 2.45 (1H x

19/100, ddd, J = 1.8, 9.0, 14.1 Hz), 2.59 (1H x 19/100, ddd, J = 3.3, 8.7, 14.1 Hz), 2.99 (1H x 81/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.42 (1H x 19/100, dd, J = 3.3, 9.0 Hz), 3.55 (1H x 81/100, dd, J = 6.9, 10.2 Hz), 3.65 (1H x 19/100, d, J = 12.0 Hz), 4.07 (1H x 19/100, d, J = 12.0 Hz), 4.25 (1H x 81/100, d, J = 12.0 Hz), 4.52 (1H x 81/100, d, J = 12.0 Hz), 4.70 (1H x 81/100, ddd, J = 1.5, 1.5, 8.7 Hz), 4.83 (1H x 19/100, ddd, J = 1.2, 1.8, 8.7 Hz), 6.11 (1H x 19/100, dd, J = 1.2, 9.9 Hz), 6.29 (1H x 81/100, dd, J = 1.5, 9.9 Hz), 6.65 (1H x 81/100, d, J = 9.9 Hz), 7.13-7.16 (2H x 81/100, m), 7.21-7.34 (3H x 81/100 + 6H x 19/100, m); ¹³C NMR (125 MHz, CDCl₃) δ 20.5 (CH₃, *exo*), 20.6 (CH₃, *endo*), 33.7 (CH₂, *endo*), 36.3 (CH₂, *exo*), 49.1 (CH, *exo*), 49.7 (CH, *endo*), 64.9 (CH₂, *endo*), 65.2 (CH₂, *exo*), 80.8 (CH, *endo*), 81.4 (CH, *exo*), 128.60 (CH x 2, *endo*), 128.65 (CH, *exo*), 128.67 (CH, *endo*), 136.0 (C, *endo*), 139.4 (C, *exo*), 150.9 (CH, *endo*), 152.9 (CH, *exo*), 170.2 (C, *exo*), 170.5 (C, *endo*), 196.0 (C, *endo*), 196.1 (C, *exo*); HRMS (ESI) Exact mass calcd for C₁₆H₁₆O₄Na [M+Na]⁺ 295.0941, Found: 295.0944.

The stereochemistry of cycloadducts 3a - 3i was determined by comparison with ¹H NMR data reported for 3a and 3i in the literature.³

endo- and exo-5-Acetoxymethyl-6-(4-chlorophenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-3b

and *exo-3b*). Isolated as yellow oil (53.2 mg, 69%, *endo* : *exo* = 86 : 14) after silica gel column chromatography (12 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (24 h) using *p*-chlorostyrene (**2b**) (150 μ L, 1.25 mmol, 5.0 equiv). R_f = 0.31

(*endo*), 0.22 (*exo*) (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 3022, 1745, 1706, 1495, 1230, 1049, 824, 756 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.01 (1H x 86/100, ddd, J = 1.8, 6.9, 13.8 Hz), 2.03 (3H x 14/100, s), 2.10 (3H x 86/100, s), 2.42-2.57 (2H x 14/100, m,), 3.00 (1H x 86/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.40 (1H x 14/100, dd, J = 3.9, 8.1 Hz), 3.54 (1H x 86/100, dd, J = 6.9, 10.2 Hz), 3.68 (1H x 14/100, d, J = 12.0 Hz), 4.02 (1H x 14/100, d, J = 12.0 Hz), 4.23 (1H x 86/100, d, J = 12.0 Hz), 4.49 (1H x 86/100, d, J = 12.0 Hz), 4.69 (1H x 86/100, ddd, J = 1.5, 1.8, 8.7 Hz), 4.82 (1H x 14/100, ddd, J = 1.2, 2.7, 7.8 Hz), 6.11 (1H x 14/100, dd, J = 1.2, 9.9 Hz), 6.29 (1H x 86/100, dd, J = 1.5, 9.9 Hz), 6.64 (1H x 86/100, d, J = 9.9 Hz), 7.07-7.32 (4H x 86/100 + 5H x 14/100, m); ¹³C NMR (125 MHz, CDCl₃) δ 20.5 (CH₃, *exo*), 20.6 (CH₃, *endo*), 33.7 (CH₂, *endo*), 36.4 (CH₂, *exo*), 48.5 (CH, *exo*), 49.1 (CH, *endo*), 64.6 (CH₂, *endo*), 65.0 (CH₂, *exo*), 80.8 (CH, *endo*), 81.3 (CH, *exo*), 83.4 (C, *endo*), 84.0 (C, *exo*), 126.2 (CH, *exo*), 128.75 (CH, *endo*), 138.4 (C, *endo*), 138.0 (C, *exo*), 150.4 (CH, *endo*), 152.5 (CH, *exo*), 170.1 (C, *exo*), 170.4 (C, *endo*), 195.75 (C, *endo*), 195.79 (C, *exo*); HRMS (ESI) Exact mass calcd for C₁₆H₁₅CINaO4 [M+Na]⁺ 329.0551, found 329.0554.

endo- and exo-5-Acetoxymethyl-6-[4-(methoxycarbonyl)phenyl]-8-oxabicyclo[3.2.1]oct-3-en-2-

one (*endo-3c* and *exo-3c*). Isolated as yellow oil (55.7 mg, 67%, *endo* : exo = 78 : 22) after silica gel column chromatography (15 g, eluent: Hexane/EtOAc (60 : 40, v/v)) following the general procedure (20 h) using *p*-(methoxycarbonyl)styrene (**2c**) (230 mg, 1.25 mmol,

5.0 equiv). Before addition of *N*,*N*-diisopropylethylamine, a solution of styrene **2c** in CH₂Cl₂ (1.0 mL) was added into a Schlenk tube. A vessel used for cannula transfer of **1** was washed with CH₂Cl₂ (0.67 mL x 3). $R_f = 0.19$ (*endo*), 0.13 (*exo*) (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 1720, 1283, 1229, 1112,

1050, 849, 777, 718 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.02 (3H x 22/100, s), 2.09 (1H x 78/100, m), 2.10 (3H x 78/100, s), 2.47 (1H x 22/100, ddd, J = 2.1, 9.0, 14.1 Hz), 2.59 (1H x 22/100, ddd, J = 3.3, 8.4, 14.1 Hz), 3.02 (1H x 78/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.48 (1H x 22/100, dd, J = 3.3, 9.0 Hz), 3.63 (1H x 78/100, dd, J = 6.9, 10.2 Hz), 3.68 (1H x 22/100, d, J = 12.0 Hz), 3.92 (3H x 78/100, s), 3.92 (3H x 22/100, s), 4.00 (1H x 22/100, d, J = 12.0 Hz), 4.25 (1H x 78/100, d, J = 12.0 Hz), 4.50 (1H x 78/100, d, J = 12.0 Hz), 4.72 (1H x 78/100, ddd, J = 1.2, 1.5, 8.7 Hz), 4.86 (1H x 22/100, ddd, J = 1.2, 2.1, 8.4 Hz), 6.13 (1H x 22/100, dd, J = 1.2, 9.9 Hz), 6.31 (1H x 78/100, dd, J = 1.2, 9.9 Hz), 6.62 (1H x 78/100, d, J = 9.9 Hz), 7.22-7.32 (2H x 78/100 + 3H x 22/100, m), 7.95-8.02 (2H x 78/100 + 2H x 22/100, m); ¹³C NMR (125 MHz, CDCl₃) δ 20.5 (CH₃, *exo*), 20.6 (CH₃, *endo*), 33.6 (CH₂, *endo*), 36.3 (CH₂, *exo*), 49.0 (CH, *exo*), 49.7 (CH, *endo*), 52.08 (CH₃, *exo*), 52.12 (CH₃, *endo*), 64.6 (CH₂, *endo*), 64.7 (CH₂, *exo*), 80.8 (CH, *endo*), 81.3(CH, *exo*), 83.5(C, *endo*), 84.0 (C, *exo*), 126.3 (CH, *exo*), 128.3 (CH, *exo*), 128.7 (CH, *endo*), 128.9 (CH, *endo*), 129.4 (C, *exo*), 129.6 (C, *endo*), 129.7 (CH, *endo*), 129.9 (CH, *exo*), 170.0 (C, *exo*), 170.4 (C, *endo*), 150.3 (CH, *endo*), 157.3 (C, *exo*); HRMS (ESI) Exact mass calcd for C₁₈H₁₈NaO₆ [M+Na]⁺ 353.0996, found 353.1004.

endo- and exo-5-Acetoxymethyl-6-(4-cyanophenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-3d

and *exo-3d*). Isolated as yellow oil (39.5 mg, 53%, *endo* : *exo* = 84 : 16) after silica gel column chromatography (20 g, eluent: CH₂Cl₂/EtOAc (90 : 10, v/v) and then CH₂Cl₂/EtOAc (97 : 3, v/v)) following the general procedure (20 h) using *p*-cyanostyrene (**2d**) (161

mg, 1.25 mmol, 5.0 equiv). Before addition of *N*,*N*-diisopropylethylamine, a solution of styrene **2d** in CH₂Cl₂ (1.0 mL) was added into a Schlenk tube. A vessel used for cannula transfer of **1** was washed with CH₂Cl₂ (0.67 mL x 3). $R_f = 0.28$ (CH₂Cl₂/EtOAc, 95 : 5, v/v); IR (KBr) 2228, 1743, 1706, 1230, 1050, 834 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.02 (3H x 16/100, s), 2.05 (1H x 84/100, ddd, *J* = 1.8, 6.9, 13.8 Hz), 2.10 (3H x 84/100, s), 2.49-2.54 (2H x 16/100, m), 3.04 (1H x 84/100, ddd, *J* = 8.7, 10.2, 13.8 Hz), 3.48 (1H x 16/100, dd, *J* = 4.5, 7.8 Hz), 3.63 (1H x 84/100, dd, *J* = 6.9, 10.2 Hz), 3.70 (1H x 16/100, d, *J* = 12.0 Hz), 3.97(1H x 16/100, d, *J* = 12.0 Hz), 4.24 (1H x 84/100, d, *J* = 12.0 Hz), 4.49 (1H

x 84/100, d, J = 12.0 Hz), 4.72 (1H x 84/100, ddd, J = 1.5, 1.8, 8.7 Hz), 4.85 (1H x 16/100, m), 6.14 (1H x 16/100, dd, J = 1.2, 9.9 Hz), 6.32 (1H x 84/100, dd, J = 1.5, 9.9 Hz), 6.62 (1H x 84/100, d, J = 9.9 Hz), 7.25 (1H x 16/100, d, J = 9.9 Hz), 7.27-7.38 (2H x 84/100 + 2H x 16/100, m), 7.59-7.65 (2H x 84/100 + 2H x 16/100, m); ¹³C NMR (125 MHz, CDCl₃) δ 20.4 (CH₃, *exo*), 20.6 (CH₃, *endo*), 33.7 (CH₂, *endo*), 36.4 (CH₂, *exo*), 49.1 (CH, *exo*), 49.8 (CH, *endo*), 64.3 (CH₂, *endo*), 64.5 (CH₂, *exo*), 80.8 (CH, *endo*), 81.2 (CH, *exo*), 83.5 (C, *endo*), 84.0 (C, *exo*), 111.5 (C, *exo*), 111.8 (C, *endo*), 118.2 (C, *endo*), 118.3 (C, *exo*), 126.4 (CH, *exo*), 129.1 (CH, *exo*), 129.2 (CH, *endo*), 129.5 (CH, *endo*), 132.3 (CH, *endo*), 132.4 (CH, *exo*), 141.8 (C, *endo*), 145.2 (C, *exo*), 149.7 (CH, *endo*), 151.9 (CH, *exo*), 169.9 (C, *exo*), 170.3 (C, *endo*), 195.4 (C, *endo*, *exo*); HRMS (ESI) Exact mass calcd for C₁₇H₁₅NNaO₄ [M+Na]⁺ 320.0893, found 320.0895.

endo- and exo-5-Acetoxymethyl-6-(4-methylphenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-3e

and *exo-3e*). Isolated as colorless needles (53.6 mg, 75%, *endo* : *exo* = 82 : 18) after silica gel column chromatography (10 g, eluent: CH₂Cl₂/EtOAc (95 : 5, v/v) and then CH₂Cl₂/EtOAc (97 : 3, v/v)) following the general procedure (24 h) using *p*-methylstyrene (**2e**) (165

μL, 1.25 mmol, 5.0 equiv). $R_f = 0.34$ (*endo*), 0.31 (*exo*) (CH₂Cl₂/EtOAc, 95 : 5, v/v); IR (KBr) 2979, 1744, 1704, 1230, 1030, 816 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.02 (3H x 18/100, s), 2.05 (1H x 82/100, ddd, J = 1.8, 6.9, 13.8 Hz), 2.10 (3H x 82/100, s), 2.32 (3H x 82/100, s), 2.33 (3H x 18/100, s), 2.43 (1H x 18/100, ddd, J = 2.1, 9.0, 14.1 Hz), 2.56 (1H x 18/100, ddd, J = 3.3, 8.7, 14.1 Hz), 2.97 (1H x 82/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.38 (1H x 18/100, dd, J = 3.3, 9.0 Hz), 3.51 (1H x 82/100, dd, J = 6.9, 10.2 Hz), 3.64 (1H x 18/100, d, J = 12.0 Hz), 4.06 (1H x 18/100, d, J = 12.0 Hz), 4.24 (1H x 82/100, d, J = 12.0 Hz), 4.51 (1H x 82/100, d, J = 12.0 Hz), 4.68 (1H x 82/100, ddd, J = 1.5, 1.8, 8.7 Hz), 4.82 (1H x 18/100, ddd, J = 1.5, 2.1, 8.7 Hz), 6.09 (1H x 18/100, dd, J = 1.5, 9.9 Hz), 6.28 (1H x 82/100, dd, J = 1.5, 9.9 Hz), 6.65 (1H x 82/100, d, J = 9.9 Hz), 7.01-7.12 (4H x 82/100 + 4H x 18/100, m), 7.25 (1H x 18/100, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 20.6 (CH₃, *exo*), 20.7 (CH₃, *endo*), 20.9 (CH₃, *endo*), 21.0 (CH₃, *exo*), 33.7 (CH₂, *endo*), 36.3 (CH₂, *exo*), 48.7 (CH, *exo*), 49.3 (CH, *endo*), 65.0 (CH₂, *endo*), 65.4 (CH₂, *exo*), 80.9 (CH, *endo*), 81.4 (CH, *exo*), 83.5 (C, *endo*), 84.2 (C, *exo*), 126.1

(CH, *exo*), 128.1 (CH, *exo*), 128.5 (CH, *endo*), 128.6 (CH, *endo*), 129.26 (CH, *endo*), 129.33 (CH, *exo*), 132.9 (C, *endo*), 136.3 (C, *exo*), 137.2 (C, *exo*), 137.5 (C, *endo*), 151.1 (CH, *endo*), 153.0 (CH, *exo*), 170.3 (C, *exo*), 170.6 (C, *endo*), 196.1 (C, *endo*), 196.2 (C, *exo*); HRMS (ESI) Exact mass calcd for C₁₇H₁₈NaO₄ [M+Na]⁺ 309.1097, found 309.1106.

endo- and exo-5-Acetoxymethyl-6-(4-methoxylphenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-

3f and *exo-***3f).** Isolated as yellow oil (60.7 mg, 80%, *endo* : *exo* = 88 : 12) after silica gel column chromatography (20 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (20 h) using *p*-methoxystyrene (**2f**) (166 μ L, 1.25 mmol, 5.0 equiv). R_f = 0.27

(endo), 0.21 (exo) (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 1744, 1703, 1515, 1253, 1031, 832 cm⁻¹, ¹H NMR (300 MHz, CDCl₃) δ 2.02 (1H x 88/100, ddd, J = 1.8, 6.9, 13.8 Hz), 2.03 (3H x 12/100, s), 2.10 $(3H \times 88/100, s), 2.43 (1H \times 12/100, ddd, J = 2.1, 8.7, 14.1 Hz), 2.54 (1H \times 12/100, ddd, J = 3.6, 8.4, J = 3.6, 8.4)$ 14.1 Hz), 2.97 (1H x 88/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.38 (1H x 12/100, dd, J = 3.6, 8.7 Hz), 3.50 (1H x 88/100, dd, J = 6.9, 10.2 Hz), 3.64 (1H x 12/100, d, J = 12.0 Hz), 3.79 (3H x 88/100, s), 3.80 (3H x 12/100, s), 4.06 (1H x 12/100, d, *J* = 12.0 Hz), 4.23 (1H x 88/100, d, *J* = 12.0 Hz), 4.50 (1H x 88/100, d, J = 12.0 Hz), 4.67 (1H x 88/100, ddd, J = 1.2, 1,8, 8.7 Hz), 4.81 (1H x 12/100, ddd, J = 1.2, 2.1, 8.4 Hz), 6.09 (1H x 12/100, dd, J = 1.2, 9.9 Hz), 6.28 (1H x 88/100, dd, J = 1.2, 9.9 Hz), 6.66 (1H x 88/100, d, J = 9.9 Hz), 6.80-6.87 (2H x 88/100 + 2H x 12/100, m), 7.04-7.08 (2H x 88/100, m), 7.12-7.15 (2H x 12/100, m), 7.25 (1H x 12/100, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 20.5 (CH₃, *exo*), 20.6 (CH₃, endo), 33.8 (CH₂, endo), 36.3 (CH₂, exo), 48.3 (CH, exo), 48.9 (CH, endo), 55.2 (CH₃, endo, exo), 64.9 (CH₂, endo), 65.4 (CH₂, exo), 80.8 (CH, endo), 81.4 (CH, exo), 83.5 (C, endo), 84.2 (C, exo), 113.9 (CH, endo), 114.0 (CH, exo), 126.0 (CH, exo), 127.8 (C, endo), 128.6 (CH, endo), 129.2 (CH, exo), 129.6 (CH, endo), 131.3 (C, exo), 151.1 (CH, endo), 153.0 (CH, exo), 158.9 (C, exo), 159.0 (C, endo), 170.2 (C, exo), 170.5 (C, endo), 196.0 (C, endo), 196.1 (C, exo); HRMS (ESI) Exact mass calcd for C₁₇H₁₈NaO₅ [M+Na]⁺ 325.1046, found 325.1050.

endo- and *exo-5-*Acetoxymethyl-6-(3-methoxylphenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (*endo-* 3g and *exo-3g*). Isolated as yellow oil (57.0 mg, 75%, *endo* : *exo* = 81 : 19) after silica gel column

chromatography (15 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (24 h) using *m*-methoxystyrene (**2g**) (173 μ L, 1.25 mmol, 5.0 equiv). R_f = 0.25 (*endo*), 0.19 (*exo*) (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 1743, 1231, 1046, 906, 786, 754, 698 cm⁻¹; ¹H

NMR (300 MHz, CDCl₃) δ 2.03 (3H x 19/100, s), 2.06 (1H x 81/100, ddd, J = 1.8, 6.9, 13.8 Hz), 2.10 (1H x 81/100, s), 2.43 (1H x 19/100, ddd, J = 1.8, 9.0, 14.1 Hz), 2.59 (1H x 19/100, ddd, J = 3.3, 8.7, 14.1 Hz), 2.98 (1H x 81/100, ddd, J = 8.7, 10.2, 13.8 Hz), 3.38 (1H x 19/100, dd, J = 3.3, 9.0 Hz), 3.52 (1H x 81/100, dd, J = 6.9, 10.2 Hz), 3.69 (1H x 19/100, d, J = 12.0 Hz), 3.78 (3H x 81/100, s), 3.81 (3H x 19/100, s), 4.12 (1H x 19/100, d, J = 12.0 Hz), 4.25 (1H x 81/100, d, J = 12.0 Hz), 4.52 (1H x 81/100, dd, J = 1.2, 1.8, 8.7 Hz), 4.82 (1H x 19/100, ddd, J = 1.2, 1.8, 8.7 Hz), 6.10 (1H x 19/100, dd, J = 1.2, 9.9 Hz), 6.28 (1H x 81/100, dd, J = 1.5, 9.9 Hz), 6.68 (1H x 81/100, dd, J = 1.2, 9.9 Hz), 6.28 (1H x 81/100, dd, J = 1.5, 9.9 Hz), 6.68 (1H x 81/100, dd, J = 1.2, 9.9 Hz), 6.26 (CH₃, endo), 33.6 (CH₂, endo), 36.1 (CH₂, exo), 49.1 (CH, exo), 49.6 (CH, endo), 55.1 (CH₃, endo, exo), 64.8 (CH₂, endo), 65.2 (CH₂, exo), 80.8 (CH, endo), 81.4 (CH, exo), 83.5 (C, endo), 84.1 (C, exo), 112.3 (CH, exo), 112.4 (CH, endo), 114.4 (CH, exo), 114.9 (CH, exo), 137.7 (C, endo), 141.0 (C, exo), 150.9 (CH, endo), 152.9 (CH, exo), 159.57 (C, endo), 159.62 (C, exo), 170.2 (C, exo), 170.5 (C, endo), 196.0 (C, endo), 196.1 (C, exo); HRMS (ESI) Exact mass calcd for C₁₇H₁₈NaO₅ [M+Na]⁺ 325.1046, found 325.1048.

endo- and exo-5-Acetoxymethyl-6-(2-methoxylphenyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-

3h and *exo*-**3h**). Isolated as colorless prisms (60.9 mg, 80%, *endo* : exo = 85 : 15) after silica gel column chromatography (10 g, eluent: Hexane/EtOAc (80 : 20, v/v) and then CH₂Cl₂/EtOAc (92 : 8, v/v)) following the general procedure (22 h) using *o*-

methoxystyrene (**2h**) (166 μ L, 1.25 mmol, 5.0 equiv). R_f = 0.28 (CH₂Cl₂/EtOAc, 67 : 33, v/v); IR (KBr) 2976, 1735, 1701, 1493, 1251, 1037, 888, 755, 448 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.01 (3H x 15/100, s), 2.03 (1H x 85/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd, J = 1.5, 7.0, 13.5 Hz), 2.09 (3H x 85/100, s), 2.36 (1H x 15/100, ddd), 3H x 85/100, s), 2.36 (1H x 15/100, ddd), 3H x 85/100, s)

J = 1.5, 9.5, 14.0 Hz), 2.57 (1H x 15/100, ddd, *J* = 3.5, 9.0, 14.0 Hz), 2.91 (1H x 85/100, ddd, *J* = 9.0, 10,5, 13.5 Hz), 3.58 (1H x 15/100, d, *J* = 12.0 Hz), 3.84 (3H x 15/100, s,), 3.85 (3H x 85/100, s), 4.11 (1H x 15/100, m), 4.19 (1H x 85/100, dd, *J* = 7.0, 10.5 Hz), 4.20 (1H x 15/100, d, *J* = 12.0 Hz), 4.30 (1H x 85/100, d, *J* = 12.5 Hz), 4.46 (1H x 85/100, d, *J* = 12.5 Hz), 4.71 (1H x 85/100, ddd, *J* = 1.5, 1.5, 9.0 Hz), 4.83 (1H x 15/100, ddd, *J* = 1.0, 1.5, 9.0 Hz), 6.09 (1H x 15/100, dd, *J* = 1.0, 10.0 Hz), 6.26 (1H x 85/100, dd, *J* = 1.5, 10.0 Hz), 6.66 (1H x 85/100, d, *J* = 10.0 Hz), 6.86-6.90 (1H x 15/100 + 2H x 85/100, m), 6.97 (1H x 15/100, m), 7.01 (1H x 85/100, m), 7.21-7.26 (2H x 15/100 + 1H x 85/100, m), 7.28 (1H x 15/100, d, *J* = 10.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 20.6 (CH₃, *exo*), 20.7 (CH₃, *endo*), 33.4 (CH₂, *endo*), 35.3 (CH₂, *exo*), 39.5 (CH, *exo*), 40.8 (CH, *endo*), 55.4 (CH₃, *endo*), 55.5 (CH₃, *exo*), 65.2 (CH₂, *exo*), 65.9 (CH₂, *endo*), 81.3 (CH, *endo*), 81.6 (CH, *exo*), 124.1 (C, *endo*), 126.0 (CH, *endo*), 127.3 (C, *exo*), 128.4 (CH x 3, *exo*), 128.5 (CH x 2, *endo*), 152.0 (CH, *endo*), 153.6 (CH, *exo*), 156.7 (C, *exo*), 157.6 (C, *endo*), 170.4 (C, *exo*), 170.7 (C, *endo*), 196.4 (C, *endo*), 196.5 (C, *exo*); HRMS (ESI) Exact mass calcd for C₁₇H₁₈NaO₅ [M+Na]⁺ 325.1046, found 325.1040.

endo- and *exo-5-Acetoxymethyl-6-[(6-t-butyldimethylsilyloxy-3,5-dimethoxy)phenyl]-8*oxabicyclo[3.2.1]oct-3-en-2-one (*endo-3i* and *exo-3i*).³ Isolated as colorless prisms (91.6 mg, 79%, *endo* : exo = 92 : 8) after silica gel column chromatography (15 g, eluent: Hexane/EtOAc (80 : 20, v/v) and then CH₂Cl₂/EtOAc (95 : 5, v/v)) following the general procedure (20 h) using (6-*t*butyldimethylsilyloxy-3,5-dimethoxy)styrene (2i) (368 mg, 1.25 mmol, 5.0 equiv). Cycloadducts *endo-*3i and *exo-3i* could be separated by careful silica gel column chromatography (eluent: Hexane/EtOAc (90 : 10 - 80 : 20, v/v)).

endo-5-Acetoxymethyl-6-[(6-t-butyldimethylsilyloxy-3,5-dimethoxy)phenyl]-8-oxabicyclo[3.2.1]-

oct-3-en-2-one (*endo*-3i). $R_f = 0.32$ (Hexane/EtOAc, 67 : 33, v/v); Colorless plates; mp 111 – 113 °C; IR (CHCl₃) 1736, 1701, 1514, 1463, 1247, 1211, 1132, 776, 767, 751, 738, 669, 505 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.11 (6H, s), 0.99 (9H, s), 2.01 (1H, ddd, J = 1.7, 7.1, 13.8 Hz), 2.10 (3H, s), 2.96 (1H, ddd, J = 8.8, 10.2, 13.8 Hz),

3.43 (1H, dd, J = 7.1, 10.2 Hz), 3.74 (6H, s), 4.30 (1H, d, J = 12.0 Hz), 4.48 (1H, d, J = 12.0 Hz), 4.67

(1H, ddd, J = 1.1, 1.7, 8.8 Hz), 6.26 (1H, dd, J = 1.1, 9.9 Hz), 6.29 (2H, s), 6.69 (1H, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ -4.6 (CH₃), 18.7 (C), 20.8 (CH₃), 25.7 (CH₃), 33.9 (CH₂), 49.9 (CH), 55.9 (CH₃), 65.0 (CH₂), 80.9 (CH), 83.6 (C), 105.8 (CH), 128.26 (C), 128.28 (CH), 134.1 (C), 151.48 (C), 151.55 (CH), 170.6 (C), 196.3 (C); HRMS (ESI) Exact mass calcd for C₂₄H₃₄O₇SiNa [M+Na]⁺ 485.1966, found 485.1965.

exo-5-Acetoxymethyl-6-[(6-t-butyldimethylsilyloxy-3,5-dimethoxy)phenyl]-8-oxabicyclo[3.2.1]-

TBSO

MeC

oct-3-en-2-one (*exo*-3i). $R_f = 0.23$ (Hexane/EtOAc, 67 : 33, v/v); Colorless prisms; mp 122 – 123 °C; IR (KBr) 2955, 2930, 1747, 1706, 1588, 1514, 1465, 1249, 1223, 1129, 839, 783 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.12 (6H, s),

1.00 (9H, s), 2.03 (3H, s), 2.40 (1H, ddd, J = 1.7, 9.1, 14.0 Hz), 2.57 (1H, ddd, J = 3.3, 8.7, 14.0 Hz), 3.32 (1H, dd, J = 3.3, 9.1 Hz), 3.69 (1H, d, J = 12.3 Hz), 3.78 (6H, s), 4.17 (1H, d, J = 12.3 Hz), 4.81 (1H, ddd, J = 1.2, 1.7, 8.7 Hz), 6.08 (1H, dd, J = 1.2, 9.9 Hz), 6.38 (2H, s), 7.24 (1H, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ -4.7 (CH₃), 18.7 (C), 20.7 (CH₃), 25.8 (CH₃), 36.3 (CH₂), 49.6 (CH), 55.9 (CH₃), 65.4 (CH₂), 81.5 (CH), 84.4 (C), 105.4 (CH), 126.2 (CH), 131.8 (C), 133.9 (C), 151.6 (C), 153.2 (CH), 170.3 (C), 196.2 (C); HRMS (ESI) Exact mass calcd for C₂₄H₃₄O₇SiNa [M+Na]⁺ 485.1966, found 485.1970.

endo-5-Acetoxymethyl-6-(1-propoxy)-8-oxabicyclo[3.2.1]oct-3-en-2-one (*endo*-6a). Isolated as yellow oil (44.9 mg, 71%) after silica gel column chromatography (15 g, eluent: Hexane/EtOAc (80 : 20, v/v) and then 20 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (40 h) using *n*-propyl vinyl ether (5a) (140 μ L, 1.25 mmol,

5.0 equiv) and *N*,*N*-diisopropylethylamine (8.71 µL, 0.050 mmol, 0.2 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). $R_f = 0.33$ (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 2965, 2877, 1745, 1703, 1230, 1083, 1049, 859 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.87 (3H, t, *J* = 7.5 Hz), 1.53 (2H, tq, *J* = 6.7, 7.5 Hz), 1.67 (1H, ddd, *J* = 1.8, 4.2, 13.5 Hz), 2.13 (3H, s), 2.73 (1H, ddd, *J* = 8.7, 8.7, 13.5 Hz), 3.31-3.43 (2H, m), 4.08 (1H, dd, *J* = 4.2, 8.7 Hz), 4.25 (1H, d, *J* = 12.0 Hz), 4.49 (1H, ddd, *J* = 1.2, 1.8, 8.7 Hz), 4.62 (1H, d, *J* = 12.0 Hz), 6.21

(1H, dd, J = 1.2, 9.9 Hz), 7.08 (1H, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 10.4 (CH₃), 20.7 (CH₃), 22.8 (CH₂), 33.0 (CH₂), 65.0 (CH₂), 72.8 (CH₂), 80.7 (CH), 81.2 (C), 82.1 (CH), 128.0 (CH), 150.6 (CH), 170.6 (C), 196.2 (C); HRMS (ESI) Exact mass calcd for C₁₃H₁₈NaO₅ [M+Na]⁺ 277.1046, found 277.1066.

The stereochemistry of cycloadducts 6a - 6d was determined by comparison with ¹H NMR data reported for *endo-5-(t-butyldimethylsilyloxy)*methyl-6-ethoxy-8-oxabicyclo[3.2.1]oct-3-en-2-one in the literature.¹⁴

endo-5-Acetoxymethyl-6-ethoxy-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-6b). Isolated as yellow

H EtO OAc oil (39.0 mg, 65%) after silica gel column chromatography (15 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (48 h) using ethyl vinyl ether (**5b**) (120 μ L, 1.25 mmol, 5.0 equiv) and *N*,*N*-diisopropylethylamine (8.71 μ L, 0.050 mmol, 0.2 equiv). A

solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). $R_f = 0.31$ (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 2979, 2879, 1745, 1703, 1446, 1385, 1231, 1124, 1084, 1049, 903, 857 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.15 (3H, t, *J* = 6.9 Hz), 1.68 (1H, ddd, *J* = 1.5, 3.9, 13.5 Hz), 2.13 (3H, s), 2.74 (1H, ddd, *J* = 8.7, 8.7, 13.5 Hz), 3.40-3.56 (2H, m), 4.08 (1H, dd, *J* = 3.9, 8.7 Hz), 4.25 (1H, d, *J* = 12.0 Hz), 4.49 (1H, ddd, *J* = 1.5, 1.5, 8.7 Hz), 4.63 (1H, d, *J* = 12.0 Hz), 6.22 (1H, dd, *J* = 1.5, 9.9 Hz), 7.08 (1H, d, *J* = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 15.2 (CH₃), 20.6 (CH₃), 33.1 (CH₂), 64.9 (CH₂), 66.6 (CH₂), 80.7 (CH), 81.1 (C), 82.0 (CH), 128.1 (CH), 150.5 (CH), 170.6 (C), 196.1 (C); HRMS (ESI) Exact mass calcd for C₁₂H₁₆NaO₅ [M+Na]⁺ 263.0890, found 263.0900.

endo-5-Acetoxymethyl-6-(cyclohexyloxy)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-6c). Isolated as

yellow oil (56.2 mg, 76%) after silica gel column chromatography (15 g, eluent: Hexane/EtOAc (80 : 20, v/v)) following the general procedure (40 h) using cyclohexyl vinyl ether (**5c**) (177 μ L, 1.25 mmol, 5.0 equiv) and *N*,*N*-diisopropylethylamine (8.71 μ L, 0.050 mmol, 0.2 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-

one (1) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and

then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). $R_f = 0.39$ (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 2933, 2857, 1746, 1704, 1450, 1365, 1229, 1081, 1048, 956, 861, 756 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.19-1.28 (5H, m), 1.50 (1H, m), 1.65 (1H, ddd, J = 1.8, 4.2, 13.5 Hz), 1.65-1.86 (4H, m), 2.13 (3H, s), 2.73 (1H, ddd, J = 8.7, 8.7, 13.5 Hz), 3.26 (1H, m), 4.17 (1H, dd, J = 4.2, 8.7 Hz), 4.24 (1H, d, J = 12.0 Hz), 4.47 (1H, ddd, J = 1.2, 1.8, 8.7 Hz), 4.57 (1H, d, J = 12.0 Hz), 6.20 (1H, dd, J = 1.2, 9.9 Hz), 7.07 (1H, d, J = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.6 (CH₃), 23.7 (CH₂), 23.8 (CH₂), 25.4 (CH₂), 31.9 (CH₂), 32.8 (CH₂), 34.0 (CH₂), 64.9 (CH₂), 78.3 (CH), 79.7 (CH), 80.8 (CH), 81.1 (C), 127.9 (CH), 150.9 (CH), 170.6 (C), 196.2 (C); HRMS (ESI) Exact mass calcd for C₁₆H₂₂NaO₅ [M+Na]⁺ 317.1359, found 317.1353.

endo-5-Acetoxymethyl-6-*t*-butoxy-8-oxabicyclo[3.2.1]oct-3-en-2-one (*endo*-6d). Isolated as yellow oil (40.5 mg, 60%) after silica gel column chromatography (12 g, eluent: Hexane/EtOAc (85 : 15, v/v)) following the general procedure (40 h) using *t*-butyl vinyl ether (5d) (164

μL, 1.25 mmol, 5.0 equiv) and *N*,*N*-diisopropylethylamine (8.71 μL, 0.050 mmol, 0.2 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (1) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). $R_f = 0.37$ (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 1743, 1704, 1369, 1239, 1080, 1026, 936, 688, 444 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.15 (9H, s), 1.61 (1H, ddd, *J* = 1.8, 4.2, 13.5 Hz), 2.13 (3H, s), 2.71 (1H, ddd, *J* = 8.7, 8.7, 13.5 Hz), 4.22 (1H, d, *J* = 12.0 Hz), 4.23 (1H, dd, *J* = 4.2, 8.7 Hz), 4.46 (1H, ddd, *J* = 1.2, 1.8, 8.7 Hz), 4.54 (1H, d, *J* = 12.0 Hz), 6.19 (1H, dd, *J* = 1.2, 9.9 Hz), 7.02 (1H, d, *J* = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.7 (CH₃), 28.1 (CH₃), 35.8 (CH₂), 64.4 (CH₂), 74.4 (CH), 74.5 (C), 80.8 (CH), 81.0 (C), 127.8 (CH), 151.0 (CH), 170.6 (C), 196.4 (C); HRMS (ESI) Exact mass calcd for C₁₄H₂₀NaO₅ [M+Na]⁺ 291.1203, found 291.1206.

endo- and exo-5-Acetoxymethyl-6-(t-butoxycarbonyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (endo-8a

25 g, eluent: Toluene/EtOAc (90 : 10, v/v)) following the general procedure (24 h) using [Pd(η^3 -

C₃H₅)Cl]₂ (4.6 mg, 0.0125 mmol, 5.0 mol%), *t*-butyl acrylate (7a) (181 µL, 1.25 mmol, 5.0 equiv), *N*,*N*diisopropylethylamine (8.7 µL, 0.05 mmol, 0.2 equiv), and 6-acetoxymethyl-6-(t-butoxycarbonyloxy)-2H-pyran-3(6H)-one (71.6 mg, 0.25 mmol). A solution of 6-acetoxymethyl-6-(t-butoxycarbonyloxy)-2H-pyran-3(6H)-one in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH_2Cl_2 (0.5 mL x 3). $R_f = 0.26$ (Hexane/EtOAc, 67 : 33, v/v); IR (neat) 2979, 1734, 1229, 1151, 1032, 757 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.45 (9H x 66/100, s), 1.49 (9H x 34/100, s), 1.99 (1H x 34/100, ddd, J = 1.5, 8.7, 13.5 Hz), 2.12 (3H x 34/100, s), 2.14 (3H x 66/100, s), 2.19 (1H x 66/100, ddd, J = 1.5, 5.7, 13.5 Hz), 2.66 (1H x 66/100, ddd, J = 8.7, 10.8, 13.5 Hz), 2.83 (1H x 34/100, ddd, J = 3.6, 8.7, 13.5 Hz), 3.00 (1H x 34/100, dd, J = 3.6, 8.7 Hz), 3.20 (1H x 66/100, dd, J = 5.7, 10.8 Hz), 4.17 (1H x 34/100, d, J = 12.0 Hz), 4.35 (1H x 66/100, d, J = 12.0 Hz), 4.58 (1H x 66/100, ddd, J = 1.2, 1.5, 8.7 Hz), 4.67 (1H x 34/100, d, J = 12.0 Hz), 4.73 (1H x 34/100, ddd, J = 1.2, 1.5, 8.7 Hz), 4.84 (1H x 66/100, d, *J* = 12.0 Hz), 6.07 (1H x 34/100, dd, *J* = 1.2, 9.9 Hz), 6.14 (1H x 66/100, dd, *J* = 1.2, 9.9 Hz), 7.07 (1H x 66/100, d, J = 9.9 Hz), 7.21 (1H x 34/100, d, J = 9.9 Hz); ¹³C NMR (125 MHz, CDCl₃) § 20.65 (CH₃, exo), 20.70 (CH₃, endo), 27.88 (CH₃, endo), 27.92 (CH₃, exo), 29.2 (CH₂, endo), 30.2 (CH₂, exo), 49.1 (CH, exo), 49.9 (CH, endo), 64.6 (CH₂, exo), 65.2 (CH₂, endo), 81.0 (CH, endo), 81.6 (CH, exo), 81.8 (C, endo), 82.4 (C, endo), 82.5 (C, exo), 83.0 (C, exo), 126.8 (CH, exo), 128.4 (CH, endo), 149.3 (CH, endo), 151.7 (CH, exo), 168.7 (C, endo), 169.8 (C, exo), 170.4 (C, exo), 170.5 (C, endo), 195.55 (C, endo), 195.63 (C, exo); HRMS (ESI) Exact mass calcd for C₁₅H₂₀NaO₆ [M+Na]⁺ 319.1152, found 319.1152.

The stereochemistry of cycloadducts 8a was determined by comparison with ¹H NMR data of the cycloadducts of ethyl acrylate for the synthesis of englerin A in the literature.¹⁵

exo-5-Acetoxymethyl-6-[(1-benzyl-5,5-dimethyl-3-pyrazolidinonyl)carbonyl]-8endoand

NMR yield (62%, endo : exo = 63 : 37) of 8b was determined using Cl₂CHCHCl₂ as an internal standard. The reaction was carried out following the general procedure (20 h) using 2-

acryloyl-1-benzyl-5,5-dimethyl-3-pyrazolidinone (7b) (216 mg, 1.25 mmol, 5.0 equiv). A solution of 6-

acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one (1) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). The sample (41.3 mg, *endo* : exo = 71 : 29) for ¹H and ¹³C NMR spectra were obtained by purification with silica gel column chromatography (CH₂Cl₂/EtOAc (90 : 10, v/v)) followed by GPC (CHCl₃). $R_f = 0.30$ (CH₂Cl₂/EtOAc, 90 : 10, v/v); ¹H NMR (300 MHz, C₆D₆) δ 0.68 (3H x 71/100, s), 0.73 (3H x 29/100, s), 0.82 (3H x 71/100, s), 0.83 (3H x 29/100, s), 1.55-1.62 (1H x 71/100 + 1H x 29/100, m), 1.63 (3H x 29/100, s), 1.68 (3H x 71/100, s), 2.00 (1H x 71/100, d, *J* = 17.1 Hz), 2.07 (1H x 71/100, d, *J* = 17.1 Hz), $2.02 (1H \times 29/100, d, J = 17.1 \text{ Hz}), 2.08 (1H \times 29/100, d, J = 17.1 \text{ Hz}), 2.74 (1H \times 29/100, ddd, J = 4.2), 2.08 (1H \times 29/100, ddd, J = 4.2), 3.08 (1H \times 29/100, ddd, J$ 8.7, 12.9 Hz), 2.82 (1H x 71/100, ddd, J = 8.4, 10.5, 12.9 Hz), 3.48 (1H x 71/100, d, J = 13.8 Hz), 3.61 (1H x 29/100, d, *J* = 14.1 Hz), 3.69 (1H x 71/100, d, *J* = 13.8 Hz), 3.79 (1H x 29/100, d, *J* = 14.1 Hz), 4.21 (1H x 29/100, d, J = 11.4 Hz), 4.21 (1H x 29/100, dd, J = 4.2, 8.4 Hz), 4.27 (1H x 71/100, d, J = 12.0 Hz), 4.28 (1H x 71/100, dd, J = 7.2, 10.5 Hz), 4.38 (1H x 71/100, d, J = 12.0 Hz), 4.47 (1H x 71/100, ddd, J = 1.5, 1.8, 8.4 Hz), 4.68 (1H x 29/100, ddd, J = 1.2, 1.2, 8.7 Hz), 4.79 (1H x 29/100, d, J = 11.4 Hz), 5.84 (1H x 29/100, dd, J = 1.2, 9.9 Hz), 5.89 (1H x 71/100, dd, J = 1.5, 9.9 Hz), 6.95 (1H x 29/100, d, J = 9.9 Hz), 6.97 (1H x 71/100, d, J = 9.9 Hz), 7.05-7.20 (3H x 71/100 + 3H x 29/100, m), 7.41-7.44 (2H x 71/100, m), 7.49-7.54 (2H x 29/100, m); ¹³C NMR (75 MHz, C₆D₆) δ 20.2 (CH₃, *exo*), 20.3 (CH₃, endo), 25.4 (CH₃, endo), 25.7 (CH₃, exo), 26.0 (CH₃, endo), 26.2 (CH₃, exo), 30.9 (CH₂, exo), 31.5 (CH₂, endo), 43.0 (CH₂, endo), 43.4 (CH₂, exo), 48.9 (CH, exo), 51.6 (CH, endo), 56.7 (CH₂, exo), 57.1 (CH₂, endo), 60.2 (C, exo), 60.5 (C, endo), 64.3 (CH₂, endo), 65.7 (CH₂, exo), 80.7 (CH, endo), 82.2 (CH, exo), 82.3 (C, endo), 84.2 (C, exo), 125.5 (CH, endo), 126.9 (CH, exo), 127.6 (CH, exo), 127.8 (CH, endo), 128.4 (CH, exo), 128.5 (CH, endo), 129.0 (CH, exo), 129.3 (CH, endo), 138.3 (C, endo), 138.9 (C, exo), 151.1 (CH, endo), 152.1 (CH, exo), 167.1 (C, exo), 167.3 (C, endo), 169.9 (C, exo), 170.4 (C, endo), 174.1 (C, endo), 174.9 (C, exo), 195.1 (C, exo), 195.9 (C, endo).

endo-5-Acetoxymethyl-6-[(1-benzyl-5,5-dimethyl-3-pyrazolidinonyl)carbonyl]-8-oxabicyclo-

[3.2.1]oct-3-en-2-one (*endo*-8b). Isolated as colorless prisms (23.9 mg, *endo* only) after silica gel column chromatography (12 g, eluent: Hexane/EtOAc (60 : 40, v/v), 15 g, eluent: Toluene/EtOAc (80 : 20, v/v), and then 12 g, eluent: CH₂Cl₂/EtOAc (90 : 10,

v/v)) followed by washing with Et₂O (1 mL). $R_f = 0.29$ (CH₂Cl₂/EtOAc, 90 : 10, v/v); mp 156 – 159 °C; IR (KBr) 2993, 1747, 1693, 1362, 1237, 1035, 864, 824, 771, 720, 695, 645, 630, 451 cm⁻¹; ¹H NMR (300 MHz, C₆D₆) δ 0.67 (3H, s), 0.82 (3H, s), 1.58 (1H, ddd, J = 1.8, 7.5, 12.9 Hz), 1.68 (3H, s), 2.00 (1H, d, J = 17.2 Hz), 2.05 (1H, d, J = 17.2 Hz), 2.82 (1H, ddd, J = 8.4, 10.5, 12.9 Hz), 3.46 (1H, d, J =13.8 Hz), 3.68 (1H, d, J = 13.8 Hz), 4.26 (1H, d, J = 12.0 Hz), 4.28 (1H, dd, J = 7.5, 10.5 Hz), 4.38 (1H, d, J = 12.0 Hz), 4.47 (1H, ddd, J = 1.5, 1.8, 8.4 Hz), 5.88 (1H, dd, J = 1.5, 9.9 Hz), 6.96 (1H, d, J = 9.9Hz), 7.05-7.19 (3H, m), 7.41-7.44 (2H, m); ¹³C NMR (75 MHz, C₆D₆) δ 20.3 (CH₃), 25.4 (CH₃), 26.0 (CH₃), 31.5 (CH₂), 43.0 (CH₂), 51.6 (CH), 57.1 (CH₂), 60.5 (C), 64.3 (CH₂), 80.7 (CH), 82.3 (C), 125.5 (CH), 127.8 (CH), 128.5 (CH), 129.3 (CH), 138.3 (C), 151.0 (CH), 167.3 (C), 170.4 (C), 174.1 (C), 195.9 (C); HRMS (ESI) Exact mass calcd for C₂₃H₂₆N₂NaO₆ [M+Na]⁺ 449.1683, found 449.1676.

The stereochemistry of cycloadducts **8b** was determined by comparison with ¹H NMR data of the cycloadducts of ethyl acrylate for the synthesis of englerin A in the literature.¹⁵

exo- and endo-8-(Acetoxy)methyl-3a,4,8,8a-tetrahydro-2-phenyl-4,8-epoxycyclohepta[c]pyrrole-

1,3,5(2*H***)-trione (***endo***-8c and** *exo***-8c). Isolated as colorless prisms (55.4 mg, 65%,** *exo* **:** *endo* **= 57 : 43) after silica gel column chromatography (20 g, eluent: CH₂Cl₂/EtOAc (90 : 10, v/v)) following the general procedure (64 h)**

using *N*-phenylmaleimide (**7c**) (216 mg, 1.25 mmol, 5.0 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). $R_f = 0.30$ (CH₂Cl₂/EtOAc, 90 : 10, v/v); IR (KBr) 1716, 1496, 1387, 1224, 1197, 1037, 756, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.06 (3H x 57/100, s), 2.16 (3H x 43/100, s), 3.47 (1H x 57/100, dd, J = 0.9, 7.5 Hz), 3.54 (1H x 57/100, d, J = 7.5 Hz), 3.86 (1H x 43/100, d, J = 9.3 Hz), 4.18 (1H x 43/100, dd, J = 9.0, 9.3 Hz), 4.34 (1H x 57/100, d, J = 12.6 Hz), 4.40 (1H x 43/100, d, J = 12.3 Hz), 4.77 (1H x 43/100, d, J = 12.3 Hz), 4.80 (1H x 57/100, d, J = 12.6 Hz), 5.00 (1H x 43/100, dd, J = 1.2, 9.0 Hz), 5.02 (1H x 57/100, dd, J = 0.9, 1.2 Hz), 6.16 (1H x 57/100, dd, J = 1.2, 9.9 Hz), 6.28 (1H x 43/100, dd, J = 1.2, 9.9 Hz), 7.05-7.09 (1H x 43/100 + 1H x 57/100, m), 7.21-7.32 (2H x 43/100 + 2H x 57/100, m), 7.38-7.51 (3H x 43/100 + 3H x 57/100, m); ¹³C NMR (75 MHz, CDCl₃) δ 20.5 (CH₃, *exo*), 20.7 (CH₃, *endo*), 47.6

(CH, endo), 47.9 (CH, exo), 51.1 (CH, exo), 51.7 (CH, endo), 63.6 (CH₂, exo), 64.2 (CH₂, endo), 82.2 (C, endo), 82.3 (CH, endo), 82.9 (C, exo), 84.0 (CH, exo), 126.1 (CH, endo), 126.2 (CH, exo), 127.2 (CH, exo), 129.1 (CH, endo), 129.19 (CH, exo), 129.22 (CH, exo), 129.4 (CH x 2, endo), 130.8 (C, endo), 131.2 (C, exo), 148.9 (CH, endo), 151.1 (CH, exo), 170.0 (C, exo), 170.3 (C, endo), 171.4 (C, endo), 171.7 (C, exo), 172.1 (C, endo), 173.6 (C, exo), 190.7 (C, endo), 191.8 (C, exo); HRMS (ESI) Exact mass calcd for C₁₈H₁₅NNaO₆ [M+Na]⁺ 364.0792, found 364.0789.

The stereochemistry of cycloadducts **8c** was determined by coupling constants between H_{3a} and H_4 of ¹H NMR.

exo- and endo-5-[(Acetyloxy)methyl]-3',4'-dihydro-2'H-spiro[8-oxabicyclo[3.2.1]-oct-3-en-2-one-

6,1'-naphthalene] (*exo*-10a and *endo*-10a). Isolated as yellow viscous oil (68.3 mg, 88%, *exo* : *endo* = 76 : 24) after silica gel column chromatography (15 g, eluent: Toluene/EtOAc (93 : 7, v/v)) following

the general procedure (12 h) using α -methylenetetralin (**9a**) (180 mg, 1.25 mmol, 5.0 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2*H*-pyran-3(6*H*)-one (**1**) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH₂Cl₂ (0.5 mL x 3). R_f = 0.28 (Toluene/EtOAc, 93 : 7, v/v); IR (neat) 3020, 2944, 1742, 1707, 1489, 1448, 1382, 1217, 1040, 754, 667 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.67-1.97 (4H x 76/100 + 4H x 24/100, m), 1.93 (3H x 24/100, s), 2.03 (1H x 76/100, dd, *J* = 1.8, 13.8 Hz), 2.03 (3H x 76/100, s), 2.33 (1H x 24/100, dd, *J* = 2.7, 13.8 Hz), 2.40 (1H x 24/100, m), 2.66 (1H x 24/100, dd, *J* = 9.0, 13.8 Hz), 2.81-2.85 (2H x 76/100 + 1H x 24/100, m), 2.90 (1H x 76/100, dd, *J* = 9.0, 13.8 Hz), 3.57 (1H x 76/100, d, *J* = 12.3 Hz), 4.34 (1H x 76/100, d, *J* = 12.3 Hz), 4.36 (1H x 24/100, d, *J* = 11.7 Hz), 4.42 (1H x 24/100, d, *J* = 11.7 Hz), 4.62 (1H x 24/100, dd, *J* = 1.5, 2.7, 9.0 Hz), 4.73 (1H x 76/100, dd, *J* = 1.2, 1.8, 9.0 Hz), 6.21 (1H x 76/100, dd, *J* = 1.2, 9.9 Hz), 6.30 (1H x 24/100, dd, *J* = 1.5, 9.9 Hz), 7.05 (1H x 24/100, d, *J* = 9.9 Hz), 7.06-7.21 (3H x 76/100 + 3H x 24/100, m), 7.22 (1H x 76/100, d, *J* = 9.9 Hz), 7.37 (1H x 24/100, m), 7.47 (1H x 76/100, m); ¹³C NMR (75 MHz, CDCl₃) δ 20.4 (CH₃, endo), 20.6 (CH₂, exo), 20.7 (CH₂, endo), 20.8 (CH₂, exo), 29.9 (CH₂, exo), 30.5 (CH₂, endo), 35.5 (CH₂, endo), 35.6 (CH₂, exo), 46.0 (CH₂, exo), 46.0 (CH₂, exo), 46.6 (CH₂, endo), 50.9 (C, endo), 51.7 (C, exo), 65.1 (CH₂, endo), 66.1 (CH₂, exo), 79.3 (CH,

endo), 80.3 (CH, *exo*), 86.4 (C, *endo*), 87.2 (C, *exo*), 125.6 (CH, *endo*), 126.3 (CH, *exo*), 126.7 (CH, *endo*), 126.79 (CH, *exo*), 126.83 (CH, *endo*), 127.5 (CH, *exo*), 128.6 (CH, *endo*), 128.8 (CH, *exo*), 129.3 (CH, *exo*), 129.8 (CH, *endo*), 135.0 (C, *endo*), 136.9 (C, *exo*), 138.6 (C, *exo*), 139.3 (C, *endo*), 152.9 (CH, *exo*), 154.1 (CH, *endo*), 170.4 (C, *endo*), 170.5 (C, *exo*), 196.0 (C, *endo*), 196.1 (C, *exo*); HRMS (ESI): Exact mass calcd for C₁₉H₂₀NaO₄ [M+Na]⁺ 335.1254, found 335.1242.

The stereochemistry of *exo*-**10a** was determined by a 2D NOESY experiment, which showed NOEs between the methylene hydrogen of 1,2,3,4-tetrahydronaphthalene at δ 1.67-1.97 and H₄ at δ 7.22.

exo- and endo-5-[(Acetyloxy)methyl]-2',3'-dihydro-spiro[8-oxabicyclo[3.2.1]-oct-3-en-2-one-6,1'-

[1*H*]-indene] (*exo*-10b and *endo*-10b). Isolated as yellow viscous oil (63.0 mg, 84%, *exo* : *endo* = 72 : 28) after silica gel column chromatography (15 g, eluent: Toluene/EtOAc (93 : 7, v/v)) following

the general procedure (24 h) using 1-methyleneindan (9b) (163 mg, 1.25 mmol, 5.0 equiv). A solution of 6-acetoxy-6-acetoxymethyl-2H-pyran-3(6H)-one (1) (57.1 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added to the mixture by cannula transfer, and then a vessel was washed with CH_2Cl_2 (0.5 mL x 3). $R_f =$ 0.28 (Toluene/EtOAc, 93 : 7, v/v); IR (KBr) 1731, 1694, 1268, 1247, 1027, 882, 765, 448 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.98 (3H x 28/100, s), 2.04 (3H x 72/100, s), 2.09-2.29 (3H x 72/100 + 1H x 28/100, m), 2.48 (1H x 28/100, dd, J = 2.4, 13.8 Hz), 2.63 (1H x 28/100, dd, J = 8.7, 13.8 Hz), 2.71 (1H x 28/100, m), 2.81 (1H x 72/100, dd, J = 9.0, 13.8 Hz), 2.87-3.06 (2H x 28/100 + 2H x 72/100, m), 3.75 (1 H x 72/100, d, J = 12.3 Hz), 4.13 (1 H x 72/100, d, J = 12.3 Hz), 4.22 (1 H x 28/100, d, J = 11.7 Hz),4.39 (1H x 28/100, d, J = 11.7 Hz), 4.67 (1H x 28/100, ddd, J = 1.5, 2.4, 8.7 Hz), 4.72 (1H x 72/100, ddd, J = 1.2, 1.8, 9.0 Hz), 6.19 (1H x 72/100, dd, J = 1.2, 9.9 Hz), 6.25 (1H x 28/100, dd, J = 1.5, 9.9 Hz), 6.78 (1H x 28/100, d, J = 9.9 Hz), 7.06 (1H x 28/100, m), 7.16 (1H x 28/100, m), 7.21-7.32 (2H x $28/100 + 4H \times 72/100$, m), 7.23 (1H x 72/100, d, J = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.5 (CH₃, endo), 20.6 (CH₃, exo), 30.8 (CH₂, exo), 30.9 (CH₂, endo), 34.9 (CH₂, exo), 39.1 (CH₂, endo), 44.28 (CH₂, exo), 44.32 (CH₂, endo), 59.3 (C, endo), 59.9 (C, exo), 64.0 (CH₂, endo), 65.0 (CH₂, exo), 80.0 (CH, endo), 80.2 (CH, exo), 85.3 (C, exo), 86.0 (C, endo) 124.4 (CH, endo, exo), 124.6 (CH, exo), 125.1 (CH, endo), 126.4 (CH, endo), 126.6 (CH, endo), 126.9 (CH, exo), 127.1 (CH, exo), 127.7 (CH, exo), 127.9 (CH, endo), 141.3 (C, endo), 142.8 (C, exo), 144.3 (C, endo), 145.3 (C, exo), 152.3 (CH, exo), 152.4 (CH, endo), 170.3 (C, exo), 170.5 (C, endo), 196.0 (C, endo), 196.3 (C, exo); HRMS (ESI): Exact mass calcd for C₁₈H₁₈NaO₄ [M+Na]⁺ 321.1097, found 321.1088.

The stereochemistry of *exo*-**10b** was determined by a 2D NOESY experiment, which showed NOEs between the methylene hydrogen of indane at δ 2.09-2.29 and H₄ at δ 7.23.

exo-(2,2'-Dioxo-4',5'-dihydro-2'H-8-oxaspiro[bicyclo[3.2.1]oct[3]ene-6,3'-furan]-5-yl)methyl

acetate (*exo*-10c).⁴ Isolated as yellow plates (47.0 mg, 71%, *exo* : *endo* = 97 : 3) after silica gel column chromatography (7 g, eluent: Hexane/EtOAc (50 : 50, v/v)) following the general procedure (50 °C, 16

h) using [Pd(η³-C₃H₅)Cl]₂ (4.6 mg, 0.0125 mmol, 5.0 mol%), α-methylene-γ-butyrolactone (**9c**) (109 µL, 1.25 mmol, 5.0 equiv), and *N*,*N*-diisopropylethylamine (8.7 µL, 0.05 mmol, 0.2 equiv), and 6acetoxymethyl-6-(*t*-butoxycarbonyloxy)-2*H*-pyran-3(6*H*)-one (71.6 mg, 0.25 mmol). A solution of 6acetoxymethyl-6-(*t*-butoxycarbonyloxy)-2*H*-pyran-3(6*H*)-one in ClCH₂CH₂Cl (1.0 mL) was added to the mixture by cannula transfer, and then a vessel was washed with ClCH₂CH₂Cl (0.5 mL x 2). R_f = 0.16 (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 3046, 1755, 1701, 1441, 1378, 1251, 1176, 1065, 874 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.96 (1H, dd, *J* = 1.5, 13.5 Hz), 2.13 (3H, s), 2.24 (1H, ddd, *J* = 4.7, 7.5, 13.2 Hz), 2.48 (1H, ddd, *J* = 7.9, 8.1, 13.2, Hz), 2.98 (1H, dd, *J* = 8.7, 13.5 Hz), 4.27 (1H, ddd, *J* = 7.5, 7.9, 9.3 Hz), 4.40 (1H, ddd, *J* = 4.7, 8.1, 9.3 Hz), 4.47 (1H, d, *J* = 11.7 Hz), 4.55 (1H, d, *J* = 11.7 Hz), 4.74 (1H, ddd, *J* = 1.3, 1.5, 8.7 Hz), 6.23 (1H, dd, *J* = 1.3, 10.0 Hz), 7.23 (1H, d, *J* = 10.0 Hz); The olefinic protons of *endo*-**10c** could be observed: 6.16 (1H, dd, *J* = 1.2, 9.9 Hz), 7.33 (1H, d, *J* = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.5 (CH₃), 32.9 (CH₂), 40.0 (CH₂), 52.9 (C), 63.5 (CH₂), 65.2 (CH₂), 80.8 (CH), 82.7 (C), 128.2 (CH), 150.1 (CH), 169.9 (C), 176.7 (C), 194.9 (C); HRMS (ESI) Exact mass calcd for C₁₃H₁₄NaO₆ [M+Na]⁺ 289.0683, found 289.0689.

The stereochemistry of *exo*-10c was determined by a 2D NOESY experiment, which showed NOEs between the methylene hydrogen of γ -butyrolactone at δ 2.48 and H₄ at δ 7.23, according to the literature.⁴

exo-(2,2'-Dioxo-2',4',5',6'-tetrahydro-8-oxaspiro[bicyclo[3.2.1]oct[3]ene-6,3'-pyran]-5-yl)methyl

acetate (*exo*-10d). Isolated as colorless plates (42.6 mg, 61%, *exo* : *endo* = > 99 : 1) after silica gel column chromatography (10 g, eluent: Hexane/EtOAc (50 : 50, v/v)) following the general procedure (40 h) using α -methylene- δ -valerolactone (9d) (135 μ L, 1.25

mmol, 5.0 equiv). $R_f = 0.12$ (Hexane/EtOAc, 67 : 33, v/v); IR (KBr) 2970, 1738, 1692, 1399, 1253, 1155, 1099, 1038, 1011, 886 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.76 (1H, dd, J = 1.7, 13.4 Hz), 1.83-2.07 (4H, m), 2.14 (3H, s), 3.09 (1H, dd, J = 8.8, 13.4, Hz), 4.34-4.52 (2H, m), 4.41 (1H, d, J = 11.8 Hz), 4.46 (1H, d, J = 11.8 Hz), 4.72 (1H, ddd, J = 1.4, 1.7, 8.8 Hz), 6.24 (1H, dd, J = 1.4, 9.9 Hz), 7.16 (1H, d, J = 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.5 (CH₃), 21.7 (CH₂), 32.0 (CH₂), 42.2 (CH₂), 54.5 (C), 64.5 (CH₂), 70.5 (CH₂), 80. 6 (CH), 84.9 (C), 128.3 (CH), 150.4 (CH), 169.9 (C), 171.3 (C), 195.2 (C); HRMS (ESI) Exact mass calcd for C₁₄H₁₆NaO₆ [M+Na]⁺ 303.0839, found 303.0864.

The stereochemistry of *exo*-**10d** was determined by a 2D NOESY experiment, which showed NOEs between the methylene hydrogen of δ -valerolactone at δ 1.83-2.07 and H₄ at δ 7.16.

exo- and *endo-*(1',2-Dioxo-3',4'-dihydro-1'*H*-8-oxaspiro[bicyclo[3.2.1]oct[3]ene-6,2'naphthalene]-5-yl)methyl acetate (*exo-*10e and *endo-*10e). Isolated *exo-*10e as colorless plates (51.1 mg, 63%) and *endo-*10e as colorless plates (5.2 mg, 6%) after silica gel column chromatography (18 g, eluent: Toluene/EtOAc (91 : 9, v/v) and then 13 g, Hexane/EtOAc (67 : 33, v/v)) following the general procedure (20 h) using 3,4-dihydro-2-methylene-1(2*H*)-naphthalenone (**9e**) (198 mg, 1.25 mmol, 5.0 equiv).

exo-(1',2-Dioxo-3',4'-dihydro-1'H-8-oxaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-naphthalene]-5-yl)-

methyl acetate (*exo*-10e). $R_f = 0.40$ (Toluene/EtOAc, 83 : 17, v/v); IR (KBr) 2945, 1744, 1682, 1604, 1450, 1365, 1232, 1031, 910, 760 cm⁻¹; ¹H NMR (300 MHz,

CDCl₃) δ 1.57 (1H, dd, J = 1.7, 13.3 Hz), 1.93 (3H, s), 2.22 (1H, ddd, J = 4.8, 9.6, 14.3 Hz), 2.35 (1H, ddd, J = 4.9, 10.8, 14.3, Hz), 2.96 (1H, ddd, J = 4.9, 9.6, 17.5 Hz), 3.10 (1H, ddd, J = 4.8 10.8, 17.5 Hz), 3.32 (1H, dd, J = 9.0, 13.3 Hz), 3.92 (1H, d, J = 12.1 Hz), 4.40 (1H, d, J = 12.1 Hz), 4.71 (1H, ddd, J = 1.2, 1.7, 9.0 Hz), 6.28 (1H, dd, J = 1.2, 10.0 Hz), 7.27 (1H, d, J = 10.0 Hz), 7.26-7.39 (2H, m), 7.53 (1H, dt, J = 1.4, 7.5 Hz), 8.09 (1H, dd, J = 1.2, 7.8 Hz); ¹³C NMR (75 MHz,

CDCl₃) δ 20.3 (CH₃), 26.5 (CH₂), 32.7 (CH₂), 38.0 (CH₂), 58.3 (C), 64.5 (CH₂), 80.4 (CH), 85.5 (C), 127.3 (CH), 128.0 (CH), 128.6 (CH), 128.7 (CH), 132.2 (C), 133.9 (CH), 142.3 (C), 150.3 (CH), 170.0 (C), 195.6 (C), 196.4 (C); HRMS (ESI): Exact mass calcd for C₁₉H₁₈NaO₅ [M+Na]⁺ 349.1046, found 349.1053.

The stereochemistry of *exo*-10e was determined by a 2D NOESY experiment, which showed NOEs between the methylene hydrogen of cyclohexanone at δ 2.22, 2.35 and H₄ at δ 7.27.

endo-(1',2-Dioxo-3',4'-dihydro-1'H-8-oxaspiro[bicyclo[3.2.1]oct[3]ene-6,2'-naphthalene]-5-yl)-

methyl acetate (*endo*-10e). $R_f = 0.28$ (Toluene/EtOAc, 83 : 17, v/v); IR (KBr) 2941, 1747, 1692, 1601, 1455, 1313, 1231, 1031, 848, 742 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.85 (1H, dd, J = 2.3, 13.4 Hz), 2.00 (3H, s), 2.25 (1H, ddd, J = 3.1, 5.2, 13.3 Hz), 2.36 (1H, ddd, J = 5.1, 11.4, 13.3 Hz), 2.78 (1H, dd, J = 8.6, 13.4 Hz), 3.07 (1H, ddd, J = 3.1, 5.1, 17.7 Hz), 3.22 (1H, ddd, J = 5.2, 11.4, 17.7 Hz), 4.35 (1H, d, J = 11.8 Hz), 4.39 (1H, d, J = 11.8 Hz), 4.60 (1H, ddd, J = 1.4, 2.3, 8.6 Hz), 6.04 (1H, dd, J = 1.4, 10.0 Hz), 7.26-7.35 (2H, m), 7.51 (1H, dt, J = 1.4, 7.5 Hz), 7.64 (1H, d, J = 10.0 Hz), 7.91 (1H, d, J = 1.1, 7.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 20.5 (CH₃), 25.9 (CH₂), 29.8 (CH₂), 34.6 (CH₂), 60.4 (C), 63.7 (CH₂), 80.0 (CH), 84.1 (C), 122.7 (CH), 127.0 (CH), 127.9 (CH), 128.7 (CH), 132.3 (C), 133.9 (CH), 142.6 (C), 154.0 (CH), 170.4 (C), 196.5 (C), 197.0 (C); HRMS (ESI): Exact mass calcd for C₁₉H₁₉O₅ [M+H]⁺ 327.1227, found 327.1233.

 $(1R^*, 4S^*, 8S^*, 12R^*)$ -5,10,13-Trioxatetracyclo[6.5.1.0^{4,12}.0^{8,12}]tetradecane-2,9-dione (11).⁴ A

solution of **10c** (26.5 mg, 0.10 mmol) and Cs_2CO_3 (163 mg, 0.50 mmol) in THF (0.5 mL) and H₂O (0.5 mL) was stirred at 35 °C for 14 h. The mixture was cooled to 25 °C and acidified with 10% hydrochloric acid (0.4 mL) to pH 1. The resulting solution was stirred

at 25 °C for 3 h and THF was removed under reduced pressure. The residue was diluted with brine (3.75 mL) and extracted with EtOAc (7.5 mL x 3). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7.0 g) with Hexane/EtOAc (50 : 50, v/v) to give 17.0 mg (76%) of **11** as colorless prisms. $R_f = 0.34$ (Hexane/EtOAc, 50 : 50, v/v); ¹H NMR (300 MHz, CDCl₃) δ 1.85 (1H, ddd, J = 4.8, 12.6, 14.4 Hz), 1.93 (1H, dd, J = 1.5, 14.1 Hz), 2.06 (1H, ddd, J = 1.5, 2.1, 14.4 Hz), 2.52 (1H, d, J = 18.0 Hz), 2.92 (1H, ddd, J = 1.5, 14.1 Hz), 2.92 (1H, ddd, J = 1.5, 14.1 Hz), 2.92 (1H, ddd, J = 1.5, 14.1 Hz), 2.95 (1H, ddd, J = 1.5, 14.1 Hz), 2.92 (1H, ddd) = 1.5, 2.1, 14.4 Hz), 2.52 (1H, ddd) = 1.5, 2.92 (1H, ddd) = 1.5, 2.92 (1H, ddd)

dd, J = 9.0, 14.1 Hz), 3.11 (1H, dd, J = 10.2, 18.0 Hz), 3.20 (1H, ddd, J = 2.1, 12.6, 12.9 Hz), 3.70 (1H, ddd, J = 1.5, 4.8, 12.9 Hz), 4.46 (1H, d, J = 10.8 Hz), 4.49 (1H, d, J = 10.2 Hz), 4.51 (1H, dd, J = 1.5, 9.0 Hz), 4.54 (1H, dd, J = 10.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 28.4 (CH₂), 38.0 (CH₂), 42.1 (CH₂), 48.8 (C), 55.2 (CH₂), 67.4 (CH), 69.4 (CH₂), 82.1 (C), 82.2 (CH), 178.9 (C), 210.2 (C).

6-[(*tert***-Butoxycarbonyl)oxy]-6-acetoxymethyl-2***H***-pyran-3(6***H***)-one. To a cold (0 °C) solution of 6-acetoxymethyl-6-hydroxy-2***H***-pyran-3(6***H***)-one^{3,4} (1.53 g, 8.20 mmol) in CH₂Cl₂ (16.4 mL) were added di-***tert***-butyl dicarbonate (2.68 g, 12.3 mmol) and** *N***,***N***-dimethyl-4-aminopyridine (0.10 g, 0.82 mmol), successively. The mixture was stirred for 2 h at 0 °C. The resulting solution was directly purified by silica gel column chromatography (40 g) with CH₂Cl₂ as eluent to give 1.24 g (53%) of the title compound as colorless needles. R_f = 0.60 (Hexane/EtOAc, 50 : 50, v/v); IR (KBr) 2983, 2903, 1745, 1702, 1286, 1251, 971 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) \delta 1.48 (9H, s), 2.11 (3H, s), 4.31 (1H, d,** *J* **= 17.3 Hz), 4.44 (1H, d,** *J* **= 11.6 Hz), 4.61 (1H, d,** *J* **= 11.6 Hz), 4.66 (1H, d,** *J* **= 17.3 Hz), 6.27 (1H, d,** *J* **= 10.5 Hz), 7.16 (1H, d,** *J* **= 10.5 Hz); ¹³C NMR (75 MHz, CDCl₃) \delta 20.6 (CH₃), 27.6 (CH₃), 65.2 (CH₂), 68.1 (CH₂), 83.6 (C), 97.2 (C), 128.5 (CH), 142.9 (CH), 150.7 (C), 170.0 (C), 193.0 (C). The corresponding molecular ion peak was not observed by HRMS (ESI) probably due to instability.**

References

1) C. Hansch, A. Leo, and R. W. Taft, Chem. Rev., 1991, 91, 165–195.

2) H. van der Deen, A. van Oeveren, R. K. Kellogg, and B. L. Feringa, *Tetrahedron Lett.*, 1999, **40**, 1755–1758.

3) B. B. Snider and J. F. Grabowski, Tetrahedron, 2006, 62, 5171–5177.

4) B. B. Snider, X. Wu, S. Nakamura, and S. Hashimoto, Org. Lett., 2007, 9, 873-874.

5) N. S. Y. Loy, S. Kim, and C.-M. Park, Org. Lett., 2015, 17, 395–397.

6) A. Falk, A.-L. Göderz, and H.-G. Schmalz, Angew. Chem. Int. Ed., 2013, 52, 1576–1580.

7) A. S. Jones, J. F. Paliga, M. D. Greenhalgh, J. M. Quibell, A. Steven, and S. P. Thomas, *Org. Lett.*, 2014, **16**, 5964–5967.

8) M. N. Azmi, M. F. M. Din, C. H. Kee, M. Suhaimi, A. K. Ping, K. Ahmad, M. A. Nafiah, N. F. Thomas, K. Mohamad, L. K. Hoong, and K. Awang, *Int. J. Mol. Sci.*, 2013, **14**, 23369–23389.

9) M. P. Sibi, L. M. Stanley, X. Nie, L. Venkatraman, M. Liu, and C. P. Jasperse, *J. Am. Chem. Soc.*, 2007, **129**, 395–405.

- 10) C. R. Larsen and D. B. Grotjahn, J. Am. Chem. Soc., 2012, 134, 10357-10360.
- 11) T. W. Liwosz and S. R. Chemler, Chem. Eur. J., 2013, 19, 12771–12777.
- 12) O. Stöhr and H. Ritter, Macromol. Chem. Phys., 2014, 215, 426-430.
- 13) J.-L. Gras, Org. Syn., 1981, 60, 88; Org. Syn., Coll. Vol. 7, 1990, 332.
- 14) M. R. Witten and E. N. Jacobsen, Angew. Chem. Int. Ed., 2014, 53, 5912-5916.
- 15) K. C. Nicolaou, Q. Kang, S. Y. Ng, and D. Y.-K. Chen, J. Am. Chem. Soc., 2010, 132, 8219-8222.

S34

