Supporting Information

Copper-Catalyzed Three-Component Cyclization of Amidines, Styrenes, and Fluoroalkyl Halides for The Synthesis of Modular Fluoroalkylated Pyrimidines

Xue-Qiang Chu, Bu-Qing Cheng, Yao-Wei Zhang, Danhua Ge, Zhi-Liang Shen* and Teck-Peng Loh*

Table of Contents

1.	General information page S2
2.	General procedures for the synthesis of perfluoroalkylated pyrimidine derivativespage S2
3.	Optimization of reaction conditionspage S3
4.	Mechanistic studiespage S5
5.	Characterization data for perfluoroalkylated pyrimidine derivativespage S6
6.	¹ H, ¹⁹ F and ¹³ C NMR spectra of productspage S20

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air using undistilled solvent, without the need of precautions to exclude air and moisture unless otherwise noted. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹⁹F, ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ on Bruker Avance 400 MHz spectrometers. Tetramethylsilane (TMS) served as internal standard for ¹H NMR and ¹³C NMR. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI or EI Source).

2. General procedures for the synthesis of perfluoroalkylated pyrimidine derivatives

Amidine **1** (0.3 mmol), alkene **2** (0.45 mmol), perfluoroalkyl halide **3** (0.75 mmol), Cu(acac)₂ (0.03 mmol), triethylenediamine (0.9 mmol) and TBHP (0.825 mmol, 5.5 M in decane) was stirred at 70 °C in THF (1.5 mL) for 2-24 h. Upon completion of the reaction (indicated by TLC), solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford pure products **4-6**.

	NH·HCI	~ ·	10 r 3 2.75	nol% Catalyst equiv. Base equiv. Oxidan	t N	N
F	I₂N Ph ⁺ I	⊃h´ ≫ + <i>n</i> -	C ₄ F ₉ I Solve	nt, 80 °C, Tim	e Ph	L CoFr
	1a	2a	3a		4a	03.7
Entry	Catalyst	Base	Oxidant	Solvent	Time (h)	Yield (%) ^b
1	Cu(acac) ₂	DABCO	TBHP	DME	12	74 (56) ^c
2	Cu(acac) ₂	DABCO	TBHP	DME	7	58
3	Cu(acac) ₂		TBHP	DME	12	0
4	Cu(acac) ₂	DBU	TBHP	DME	12	42
5	Cu(acac) ₂	K ₂ CO ₃	TBHP	DME	12	21
6	Cu(acac) ₂	DABCO		DME	12	25
7	Cu(acac) ₂	DABCO	TBPB	DME	12	<10
8	Cu(acac) ₂	DABCO	$K_2S_2O_8$	DME	12	trace
9	Cu(acac) ₂	DABCO	TBHP	Toluene	12	71
10	Cu(acac) ₂	DABCO	TBHP	Dioxane	12	69
11	Cu(acac) ₂	DABCO	TBHP	DCE	12	(31) ^c
12	Cu(acac) ₂	DABCO	TBHP	DMF	12	trace
13	Cu(acac) ₂	DABCO	TBHP	MeCN	12	75
14	Cu(acac) ₂	DABCO	TBHP	MeNO ₂	12	0
15		DABCO	TBHP	DME	12	42
16	Co(acac) ₃	DABCO	TBHP	DME	12	37
17	CuBr ₂	DABCO	TBHP	DME	12	45
18	CuI	DABCO	TBHP	DME	24	$(31)^{c,d}$
19	CuCl	DABCO	TBHP	DME	24	58 (42) ^{c,d}
20	CuBr Me ₂ S	DABCO	TBHP	DME	24	65^d
21	Cu	DABCO	TBHP	DME	24	40^{e}
22	Cu(acac) ₂	DABCO	TBHP	DME	24	79 (60) ^{c,e}
23	Cu(acac) ₂	DABCO	TBHP	THF	24	80 (60) ^{c,f}

3. Table S1. Optimization of reaction conditions^{*a*}

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), **3a** (0.75 mmol), catalyst (0.03 mmol), base (0.9 mmol) and oxidant (0.825 mmol) in solvent (1.5 mL) at 80 °C under air; TBPB = *tert*-butylperoxybenzoate; TBHP = *tert*-butyl hydroperoxide (5.5 M in decane). ^{*b*} Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. ^{*c*} Isolated yields. ^{*d*} 0.9 mmol of **2a** and 1.2 mmol of TBHP were used at 88 °C. ^{*e*} At 88 °C. ^{*f*} At 70 °C.

Table S2. Optimization of reaction conditions^a

H_2N^2	$\frac{\text{NH} \cdot \text{HCl}}{\text{Ph}} + \text{Ph} + n \cdot C_4 F_9 I$ 1a 2a 3a	10 mol% Cu(acac) ₂ 20 mol% Additive 3 equiv. DABCO 2.75 equiv. TBHP Solvent, 70 °C, 24 h	C ₃ F ₇
Entry	Additive (20 mol%)	Solvent	Yield $(\%)^b$
1		THF	80
2	TBAI	THF	73
3	MnCl ₂	THF	52
4	CeCl ₃	THF	50
5		THF-MeCN (2:1)	69
6		THF-DME (2:1)	58
7		THF-DMF (2:1)	41
8		THF-DCE (2:1)	60

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), **3a** (0.75 mmol), Cu(acac)₂ (0.03 mmol), DABCO (0.9 mmol), additive (0.06 mmol) and TBHP (0.825 mmol) in solvent (1.5 mL) at 70 °C under air for 24 h. ^{*b*} Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

4. Mechanistic studies

2) Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)

Amidine **1a** (0.3 mmol), alkene **2a** (0.45 mmol), perfluoroalkyl halide **3a** (0.75 mmol), 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO, 0.9 mmol), $Cu(acac)_2$ (0.03 mmol), triethylenediamine (0.9 mmol) and TBHP (0.825 mmol, 5.5 M in decane) was stirred at 70 °C in THF (1.5 mL) for 24 h.

3) The reaction of (Z)-3,4,4,5,5,6,6,6-octafluoro-1-phenylhex-2-en-1-one (2a') with 1a

(Z)-3,4,4,5,5,6,6,6-Octafluoro-1-phenylhex-2-en-1-one (2a', 0.36 mmol), amidine 1a (0.3 mmol), Cu(acac)₂ (0.03 mmol), triethylenediamine (0.9 mmol) and TBHP (0.825 mmol, 5.5 M in decane) was stirred at 70 °C in THF (1.5 mL) for 24 h. Upon completion of the reaction (indicated by TLC), solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent, affording pure product 4a in 79% yield.

5. Characterization data for perfluoroalkylated pyrimidine derivatives

4-(Perfluoropropyl)-2,6-diphenylpyrimidine (4a): Yield = 60% . White solid. M.p. 59.6–60.2 °C. IR (KBr) v = 3414, 3082, 1546, 1372, 1227, 928, 733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.68-8.60$ (m, 2H), 8.32–8.24 (m, 2H), 7.91 (s, 1H), 7.63–7.50 (m, 6H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.05$ (t, J = 9.6 Hz, 3F), -116.65 (q, J = 9.6 Hz, 2F), -126.18 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 165.1, 156.8 (t, $J_{C-F} = 26.0$ Hz), 136.5, 135.9, 131.9, 131.6, 129.1, 128.7, 128.7, 127.5, 111.6 (t, $J_{C-F} = 4.6$ Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₂F₇N₂ [M+H]⁺ 401.0883, found: 401.0889.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (4b): Yield = 73%. White solid. M.p. 90.1–92.2 °C. IR (KBr) v = 3414, 2929, 1588, 1373, 1140, 740 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.64–8.36 (m, 5H), 7.90–7.78 (m, 2H), 7.72–7.58 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.04 (t, *J* = 9.2 Hz, 3F), -116.64 (q, *J* = 9.1 Hz, 2F), -126.14 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 156.8 (t, *J*_{C-F} = 27.0 Hz), 135.7, 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.8 (t, *J*_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₁BrF₇N₂ [M+H]⁺ 478.9988, found: 478.9963.

2-(4-Chlorophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (4c): Yield = 62%. White solid. M.p. 84.3–85.2 °C. IR (KBr) v = 3443, 2922, 1586, 1384, 1231, 929, 741 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.57–8.48 (m, 5H), 7.71–7.61 (m, 5H) ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -79.61 (t, *J* = 9.6 Hz, 3F), -115.52 (q, *J* = 9.5 Hz, 2F), -125.78 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.1, 156.8 (t, *J*_{C-F} = 25.8 Hz), 137.9, 135.7, 135.0, 132.0, 130.0, 129.2, 128.9, 127.5, 111.8 (t, *J*_{C-F} = 4.5 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₁ClF₇N₂ [M+H]⁺ 435.0493, found: 435.0492.

2-(4-Fluorophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (4d): Yield = 61%. White solid. M.p. 77.3–78.2 °C. IR (KBr) v = 3572, 2928, 1546, 1371, 1227, 1116, 931, 771 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.63–8.54 (m, 2H), 8.54–8.46 (m, 3H), 7.71–7.59 (m, 3H), 7.49–7.38 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -74.82 (t, *J* = 8.8 Hz, 3F), -103.78 – -103.99 (m, 1F), -110.74 (q, *J* = 8.6 Hz, 2F), -120.94– -121.13 (m, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.4 (d, *J*_{C-F} = 17.3 Hz), 164.0 (d, *J*_{C-F} = 14.6 Hz), 156.8 (t, *J*_{C-F} = 24.8 Hz), 135.8, 132.7 (d, *J*_{C-F} = 3.2 Hz), 132.0, 131.0, 130.9, 129.2, 127.5, 115.8, 111.5 (m) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₁F₈N₂ [M+H]⁺ 419.0789, found: 419.0809.

4-(Perfluoropropyl)-6-phenyl-2-(*p*-tolyl)pyrimidine (**4e**): Yield = 62%. White solid. M.p. 101.2–101.9 °C. IR (KBr) v = 2924, 1544, 1371, 1229, 1117, 927, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 8.2 Hz, 2H), 8.16–8.11 (m, 2H), 7.75 (s, 1H), 7.48–7.40 (m, 3H), 7.21 (d, *J* = 8.1 Hz, 2H), 2.33 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.07 (t, *J* = 9.6 Hz, 3F), -116.64 (q, *J* = 9.6 Hz, 2F), -126.17 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.1, 165.1, 156.7 (t, *J*_{C-F} = 25.5 Hz), 142.0, 136.0, 133.9, 131.8, 129.4, 129.1, 128.7, 127.4, 111.2 (t, *J*_{C-F} = 4.4 Hz), 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₄F₇N₂ [M+H]⁺ 415.1040, found: 415.1028.

2-(2-Ethoxyphenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (4f): Yield = 75%. Yellow oil. IR (KBr) v = 3411, 2979, 1585, 1374, 1234, 753 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.50 (s, 1H), 8.44 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.80 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.68–7.58 (m, 3H), 7.57–7.50 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.12 (t, *J* = 7.1 Hz, 1H), 4.13 (q, *J* = 6.9 Hz, 2H), 1.28 (t, *J* = 6.9 Hz, 3H) ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -79.69 (t, *J* = 9.0 Hz, 3F), -115.42 (q, *J* = 9.0 Hz, 2F), -125.67 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 165.9, 157.9, 156.2 (t, *J*_{C-F} = 26.0 Hz), 136.0, 132.2, 131.7, 131.7, 129.0, 127.5, 127.4, 120.6, 113.5, 111.2 (t, *J*_{C-F} = 5.0 Hz), 64.5, 14.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₁H₁₆F₇N₂O [M+H]⁺ 445.1145, found: 445.1133.

2-(4-Nitrophenyl)-4-(perfluoropropyl)-6-phenylpyrimidine (4g): Yield = 63%. Yellow solid. M.p. 58.0–60.2 °C. IR (KBr) v = 3419, 3090, 1580, 1341, 1233, 1120, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.79 (d, *J* = 8.9 Hz, 2H), 8.37 (d, *J* = 8.9 Hz, 2H), 8.31–8.25 (m, 2H), 8.01 (s, 1H), 7.67–7.57 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.02 (t, *J* = 9.7 Hz, 3F), -116.57 (q, *J* = 9.7 Hz, 2F), -126.06 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 163.0, 157.1 (t, *J*_{C-F} = 25.5 Hz), 149.8, 142.0, 135.3, 132.4, 129.6, 129.3, 127.5, 123.8, 112.8 (t, *J*_{C-F} = 4.7 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₁F₇N₃O₂ [M+H]⁺ 446.0734, found: 446.0739.

4-(Perfluoropropyl)-6-phenyl-2-(pyridin-3-yl)pyrimidine (4h): Yield = 52%. White solid. M.p. 68.1–69.2 °C. IR (KBr) v = 3072, 2922, 1587, 1375, 1223, 1117, 928, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 9.82 (s, 1H), 8.85 (d, *J* = 8.0 Hz, 1H), 8.79 (s, 1H), 8.33–8.23 (m, 2H), 7.97 (s, 1H), 7.64–7.56 (m, 3H), 7.51–7.44 (m, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.05 (t, *J* = 9.6 Hz, 3F), -116.62 (q, *J* = 9.6 Hz, 2F), -126.12 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 163.3, 156.9 (t, *J*_{C-F} = 26.5 Hz), 152.1, 150.2, 135.9, 135.3, 132.2, 132.1, 129.2, 127.5, 123.5, 112.3 (t, *J*_{C-F} = 4.2 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₈H₁₁F₇N₃ [M+H]⁺ 402.0836, found: 402.0840.

4-(Perfluoropropyl)-6-phenyl-2,2'-bipyrimidine (**4i**): Yield = 60%. White solid. M.p. 134.6–135.5 °C. IR (KBr) v = 3419, 3065, 1582, 1374, 1224, 1123, 933, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.09$ (d, J = 4.9 Hz, 2H), 8.28 (dd, J = 7.6, 2.0 Hz, 2H), 8.13 (s, 1H), 7.63–7.55 (m, 3H), 7.49 (t, J = 4.9 Hz, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -79.94$ (t, J = 9.8 Hz, 3F), -116.50 (q, J = 9.7 Hz, 2F), -125.73 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.6$, 163.5, 162.2, 158.1, 157.2 (t, $J_{C-F} = 25.2$ Hz), 135.3, 132.2, 129.2, 127.9, 121.5, 114.5 (t, $J_{C-F} = 4.5$ Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₇H₁₀F₇N₄ [M+H]⁺ 403.0788, found: 403.0796.

2-Methyl-4-(perfluoropropyl)-6-phenylpyrimidine (4j): Yield = 64%. Colourless oil. IR (KBr) $v = 3421, 2951, 1617, 1232, 799, 733 \text{ cm}^{-1}.$ ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18-8.10$ (m, 2H), 7.83 (s, 1H), 7.60–7.49 (m, 3H), 2.89 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.16$ (t, J =9.5 Hz, 3F), -116.96 (q, J = 9.8 Hz, 2F), -126.22 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 169.3, 166.2, 156.2 (t, $J_{C-F} = 25.8$ Hz), 135.8, 131.8, 129.2, 127.4, 111.4 (t, $J_{C-F} = 4.5$ Hz), 26.2 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₄H₁₀F₇N₂ [M+H]⁺ 339.0727, found: 339.0729.

2-Cyclopropyl-4-(perfluoropropyl)-6-phenylpyrimidine (4k): Yield = 58%. M.p. 41.0–41.6 °C. IR (KBr) v = 3410, 2925, 1578, 1373, 1226, 1116, 952, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.16–8.08 (m, 2H), 7.75 (s, 1H), 7.59–7.50 (m, 3H), 2.47–2.37 (m, 1H), 1.31–1.26 (m, 2H), 1.20–1.14 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.11 (t, *J* = 9.6 Hz, 3F), -116.93 (q, *J* = 9.6 Hz, 2F), -126.27 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 173.3, 165.7, 156.1 (t, *J*_{C-F} = 25.3 Hz), 135.9, 131.6, 129.1, 127.3, 110.7 (t, *J*_{C-F} = 4.7 Hz), 18.4, 11.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₆H₁₂F₇N₂ [M+H]⁺ 365.0883, found: 365.0882.

4-(Perfluoropropyl)-2-phenylbenzo[4,5]imidazo[1,2-*a***]pyrimidine** (**4l**): Yield = 65%. Yellow solid. M.p. 80.9–82.3 °C. IR (KBr) ν = 3412, 3146, 1629, 1399, 1223, 1122, 1025, 741 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.50–8.43 (m, 2H), 8.20 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.97–7.90 (m, 1H), 7.70–7.62 (m, 4H), 7.59–7.52 (m, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -79.56 (t, *J* = 10.4 Hz, 3F), -109.98 (q, *J* = 10.4 Hz, 2F), -123.39 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 151.2 (t, *J*_{C-F} = 25.1 Hz), 145.3, 135.1, 132.0, 129.5, 129.1, 128.0, 127.6, 126.6, 123.4, 120.9, 114.9 (m), 105.7 (t, *J*_{C-F} = 8.8 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₁F₇N₃ [M+H]⁺ 414.0836, found: 414.0831.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-(4-(4-(perfluoropropyl)-6-phenylpyrimidin-2-yl)phenoxy)-1-p henylhex-2-en-1-one (4m): Yield = 47%. White solid. M.p. 116.2–117.1 °C. IR (KBr) v = 3410, 3064, 1690, 1548, 1229, 1116, 930, 772 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.51–8.46 (m, 3H), 8.43–8.37 (m, 2H), 7.85 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.77 (s, 1H), 7.70–7.60 (m, 4H), 7.56–7.50 (m, 2H), 7.21 (d, *J* = 8.9 Hz, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.06 (t, *J* = 9.6 Hz, 3F), -80.30 (t, *J* = 9.9 Hz, 3F), -116.40 (q, *J* = 9.9 Hz, 2F), -116.71 (q, *J* = 9.5 Hz, 2F), -125.95 (s, 2F), -126.22 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 188.2, 166.1, 164.0, 158.8, 156.7 (t, *J*_{C-F} = 26.0 Hz), 147.2 (t, *J*_{C-F} = 26.7 Hz), 136.3, 135.8, 134.0, 132.2, 131.9, 130.4, 129.1, 128.8, 128.5, 127.4, 116.6 (t, *J*_{C-F} = 4.4 Hz), 116.4, 111.3 (t, *J*_{C-F} = 4.8 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₃₁H₁₇F₁₄N₂O₂ [M+H]⁺ 715.1061, found: 715.1088.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(*p***-tolyl)pyrimidine (5a): Yield = 56%. White solid. M.p. 97.5–99.8 °C. IR (KBr) ν = 3414, 2924, 1583, 1385, 1227, 1117, 1010, 926, 740 cm⁻¹. ¹H NMR (400 MHz, DMSO-***d***₆): δ = 8.49 (s, 1H), 8.41 (t,** *J* **= 8.7 Hz, 4H), 7.88–7.79 (m, 2H), 7.43 (d,**

J = 8.0 Hz, 2H), 2.43 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.06$ (t, J = 9.7 Hz, 3F), -116.69 (q, J = 9.7 Hz, 2F), -126.17 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 164.1, 156.6 (t, $J_{C-F} = 26.4$ Hz), 142.7, 135.5, 132.9, 131.8, 130.2, 129.9, 127.4, 126.4, 111.5 (t, $J_{C-F} = 4.2$ Hz), 21.6 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0168.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(m-tolyl)pyrimidine (5b): Yield = 63%. White solid. M.p. 47.8–49.2 °C. IR (KBr) v = 3415, 2923, 1588, 1380, 1184, 1120, 936, 745 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.52 (s, 1H), 8.47–8.40 (m, 2H), 8.34–8.27 (m, 2H), 7.85–7.79 (m, 2H), 7.55–7.45 (m, 2H), 2.47 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.05 (t, *J* = 9.8 Hz, 3F), -116.67 (q, *J* = 9.6 Hz, 2F), -126.16 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 164.1, 156.7 (t, *J*_{C-F} = 26.6 Hz), 139.0, 135.6, 135.5, 132.8, 131.9, 130.2, 129.1, 128.0, 126.5, 124.7, 111.9 (t, *J*_{C-F} = 3.9 Hz), 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0144.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-(*o*-tolyl)pyrimidine (5c): Yield = 51%. Yellow oil. IR (KBr) ν = 3455, 2923, 1583, 1387, 1232, 1010, 741 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.33–8.28 (m, 2H), 8.11 (s, 1H), 7.77–7.71 (m, 2H), 7.67 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.48–7.42 (m, 1H), 7.37 (dd, J = 7.8, 6.5 Hz, 2H), 2.46 (s, 3H) ppm. ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -74.98$ (t, J = 8.9 Hz, 3F), -111.05 (q, J = 8.9 Hz, 2F), -121.22 (s, 2F) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 169.7$, 162.8, 155.0 (t, $J_{C-F} = 25.5$ Hz), 136.6, 136.2, 135.1, 132.2, 131.4, 130.6, 130.4, 130.0, 126.5, 125.9, 116.8 (t, $J_{C-F} = 4.0$ Hz), 20.3 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₃BrF₇N₂ [M+H]⁺ 493.0145, found: 493.0135.

2-(4-Bromophenyl)-4-(4-(*tert***-butyl)phenyl)-6-(perfluoropropyl)pyrimidine (5d):** Yield = 57%. White solid. M.p. 110.9–111.9 °C. IR (KBr) $v = 3410, 2960, 1590, 1390, 1220, 1120, 928, 840, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): <math>\delta = 8.53-8.44$ (m, 2H), 8.24–8.14 (m, 2H), 7.89 (s, 1H), 7.68–7.63 (m, 2H), 7.63–7.56 (m, 2H), 1.39 (s, 9H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.06$ (t, J = 9.1 Hz, 3F), -116.72 (q, J = 9.2 Hz, 2F), -126.21 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3, 164.1, 155.8, 155.4$ (t, $J_{C-F} = 25.6$ Hz), 135.5, 132.9, 131.9, 130.2, 127.3, 126.4, 126.2, 111.6 (t, $J_{C-F} = 4.9$ Hz), 35.0, 31.1ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₃H₁₉BrF₇N₂ [M+H]⁺ 535.0614, found: 535.0587.

2-(4-Bromophenyl)-4-(4-methoxyphenyl)-6-(perfluoropropyl)pyrimidine (5e): Yield = 63%. White solid. M.p. 89.1–90.3 °C. IR (KBr) v = 3414, 2955, 1584, 1544, 1388, 1212, 923, 834 cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.52-8.47$ (m, 2H), 8.45 (s, 1H), 8.44–8.40 (m, 2H), 7.85–7.78 (m, 2H), 7.19–7.13 (m, 2H), 3.89 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.07$ (t, J = 9.7 Hz, 3F), -116.73 (q, J = 9.5 Hz, 2F), -126.18 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.7$, 164.0, 162.9, 156.5 (t, $J_{C-F} = 27.2$ Hz), 135.6, 131.8, 130.2, 129.2, 128.0, 126.3, 114.5, 110.9 (t, $J_{C-F} = 4.6$ Hz), 55.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₃BrF₇N₂O [M+H]⁺ 509.0094, found: 509.0092.

2-(4-Bromophenyl)-4-(4-chlorophenyl)-6-(perfluoropropyl)pyrimidine (**5f**): Yield = 64%. White solid. M.p. 139.6–141.3 °C. IR (KBr) v = 3413, 2925, 1583, 1382, 1231, 1010, 830, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.50–8.43 (m, 2H), 8.23–8.16 (m, 2H), 7.87 (s, 1H), 7.69–7.62 (m, 2H), 7.58–7.50 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.04 (t, *J* = 9.7 Hz, 3F), -116.64 (q, *J* = 9.8 Hz, 2F), -126.11 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 164.3, 157.1 (t, *J*_{C-F} = 25.1 Hz), 138.4, 135.2, 134.1, 131.9, 130.2, 129.5, 128.7, 126.7, 111.5 (t, *J*_{C-F} = 4.4 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₀BrClF₇N₂ [M+H]⁺ 512.9599, found: 512.9626.

2,4-Bis(4-bromophenyl)-6-(perfluoropropyl)pyrimidine (5g): Yield = 64%. White solid. M.p. 141.7–142.9 °C. IR (KBr) ν = 3412, 3086, 1585, 1385, 1230, 1009, 926, 826, 742 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.49–8.40 (m, 2H), 8.15–8.07 (m, 2H), 7.87 (s, 1H), 7.73–7.67 (m, 2H),

7.67–7.60 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.04 (t, *J* = 9.7 Hz, 3F), -116.63 (q, *J* = 9.8 Hz, 2F), -126.09 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 164.3, 157.1 (t, *J*_{C-F} = 25.2 Hz), 135.1, 134.5, 132.4, 131.9, 130.2, 128.9, 127.0, 126.7, 111.5 (t, *J*_{C-F} = 4.4 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₀Br₂F₇N₂ [M+H]⁺ 556.9093, found: 556.9105.

2-(4-Bromophenyl)-4-(4-iodophenyl)-6-(perfluoropropyl)pyrimidine (5h): Yield = 53%. White solid. M.p. 110.7–112.3 °C. IR (KBr) v = 3412, 2934, 1588, 1385, 1228, 1118, 1004, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.50-8.41$ (m, 2H), 8.01–7.88 (m, 4H), 7.87 (s, 1H), 7.69–7.61 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = ppm.$ ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.5$, 164.3, 157.1 (t, *J*_{C-F} = 26.3 Hz), 138.5, 135.2, 135.1, 132.0, 130.2, 128.9, 126.7, 111.5 (t, *J*_{C-F} = 4.5 Hz), 99.3 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₉H₁₀BrF₇IN₂ [M+H]⁺ 604.8955, found: 604.8955.

4-(2-(4-Bromophenyl)-6-(perfluoropropyl)pyrimidin-4-yl)benzonitrile (5i): Yield = 58%. White solid. M.p. 212.1–212.6 °C. IR (KBr) v = 3410, 3075, 2230, 1543, 1389, 1185, 1010, 841, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.51–8.43 (m, 2H), 8.40–8.33 (m, 2H), 7.95 (s, 1H), 7.92–7.85 (m, 2H), 7.71–7.63 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.01 (t, *J* = 9.2 Hz, 3F), -116.55 (q, *J* = 9.5 Hz, 2F), -126.03 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 164.6,

164.4, 157.6 (t, $J_{C-F} = 26.3$ Hz), 139.6, 134.8, 132.9, 132.1, 130.2, 128.0, 127.0, 118.0, 115.4, 112.2 (t, $J_{C-F} = 4.4$ Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₀H₁₀BrF₇N₃ [M+H]⁺ 503.9941, found: 503.9936.

4-(4-Methoxyphenyl)-6-(perfluoropropyl)-2,2'-bipyrimidine (5m): Yield = 42%. White solid. M.p. 105.9–107.2 °C. IR (KBr) v = 3411, 3068, 2941, 1563, 1374, 1230, 1117, 930, 855, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 9.08 (d, *J* = 4.9 Hz, 2H), 8.33–8.23 (m, 2H), 8.05 (s, 1H), 7.48 (t, *J* = 4.9 Hz, 1H), 7.11–7.01 (m, 2H), 3.91 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -79.98 (t, *J* = 9.3 Hz, 3F), -116.58 (q, *J* = 9.5 Hz, 2F), -125.78 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 163.4, 163.1, 162.5, 158.0, 156.9, 129.6, 127.6, 121.4, 114.6, 113.5 (t, *J*_{C-F} = 4.5 Hz), 55.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₈H₁₂F₇N₄O [M+H]⁺ 433.0894, found: 433.0899.

4-(**Naphthalen-1-yl**)-**6**-(**perfluoropropyl**)-**2**,**2**'-**bipyrimidine** (**5n**): Yield = 38%. White solid. M.p. 102.8–104.0 °C. IR (KBr) ν = 3419, 3046, 2924, 1562, 1374, 1223, 930, 779 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 9.08 (d, *J* = 4.9 Hz, 2H), 8.21–8.15 (m, 1H), 8.08 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.99–7.93 (m, 1H), 7.83 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.66–7.54 (m, 3H), 7.48 (t, *J* = 4.9 Hz, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -79.90 (t, *J* = 10.0 Hz, 3F), -116.46 (q, *J* = 10.0 Hz, 2F), -125.68 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 169.9, 163.5, 162.2, 158.2, 156.3 (t, *J*_{C-F} = 27.9 Hz), 134.6, 133.9, 131.4, 130.4, 129.0, 128.8, 127.7, 126.5, 125.3, 124.3, 121.6, 119.7 (t, $J_{C-F} = 3.7 \text{ Hz}$) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₁H₁₂F₇N₄ [M+H]⁺ 453.0945, found: 53.0951.

2-(4-Bromophenyl)-4-(perfluoroethyl)-6-phenylpyrimidine (6a): Yield = 62%. White solid. M.p. 70.1–71.7 °C. IR (KBr) ν = 3426, 2934, 1586, 1384, 1208, 1004, 769, 686 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.51–8.48 (m, 2H), 8.29–8.22 (m, 2H), 7.93 (s, 1H), 7.68–7.65 (m, 2H), 7.63–7.55 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -82.50 – -82.58 (m, 3F), -118.82 – -118.90 (m, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 156.8 (t, J_{C-F} = 26.3 Hz), 135.7, 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.5 (t, J_{C-F} = 4.3 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₁₈H₁₁BrF₅N₂ [M+H]⁺ 429.0020, found: 429.0033.

2-(4-Bromophenyl)-4-(perfluoropentyl)-6-phenylpyrimidine (6b): Yield = 59%. White solid. M.p. 88.5–90.0 °C. IR (KBr) v = 3412, 2915, 1587, 1386, 1198, 1137, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.51–8.46 (m, 2H), 8.28–8.22 (m, 2H), 7.92 (s, 1H), 7.68–7.63 (m, 2H), 7.62–7.54 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.84 (t, *J* = 9.9 Hz, 3F), -115.73 (t, *J* = 13.5 Hz, 2F), -121.69 – -121.90 (m, 2F), -122.10 – -122.30 (m, 2F), -126.11 – -126.33 (m, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 164.2, 157.0, 135.7 (t, *J*_{C-F} = 27.1 Hz), 135.4, 132.0, 131.9, 130.2, 129.2, 127.5, 126.5, 111.9 (t, $J_{C-F} = 4.5 \text{ Hz}$) ppm, carbons corresponding to the C_3F_7 group cannot be identified due to C-F coupling. HRMS m/z: calcd for $C_{21}H_{11}BrF_{11}N_2$ [M+H]⁺ 578.9924, found: 578.9925.

2-(4-Bromophenyl)-4-(perfluoroheptyl)-6-phenylpyrimidine (6c): Yield = 67%. White solid. M.p. 74.4–76.0 °C. IR (KBr) v = 3420, 2928, 1586, 1384, 1218, 1141, 771 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.56 (s, 1H), 8.54–8.49 (m, 2H), 8.49–8.42 (m, 2H), 7.86–7.81 (m, 2H), 7.71–7.61 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ =-80.89 (t, *J* = 9.8 Hz, 3F), -115.69 (t, *J* = 13.8 Hz, 2F), -121.07 – -121.40 (m, 2F), -121.47 – -121.68 (m, 2F), -121.86 – -122.15 (m, 2F), -122.68 – -122.96 (m, 2F), -126.14 – -126.36 (m, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 164.2, 157.0 (t, *J*_{C-F} = 25.8 Hz), 135.6, 135.4, 132.0, 131.9, 130.2, 129.2, 127.4, 126.5, 111.8 (t, *J*_{C-F} = 4.3 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS m/z: calcd for C₂₃H₁₁BrF₁₅N₂ [M+H]⁺ 678.9861, found: 678.9861.

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)

 210
 200
 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)

