Supporting Information

Metal-free stereoselective annulation of quinolines with trifluoroacetylacetylenes and water: an access to fluorinated oxazinoquinolines

B. A. Trofimov,^{a,*} K. V. Belyaeva,^a L. P. Nikitina,^a A. V. Afonin,^a A. V. Vashchenko,^a V. M. Muzalevskiy^b and V. G. Nenajdenko^{b,*}

^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033 Russian Federation; ^b M. V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1, Moscow, 119991 Russian Federation

E-mail: boris trofimov@irioch.irk.ru; nenajdenko@org.chem.msu.ru

Table of	contents
----------	-----------------

General Remarks	S2
Reaction of quinolines, trifluoroacetylacetylenes and water (general procedure)	S2-S3
Characterization data of all compounds	S3-S18
Synthesis of 1,8-naphthyridine 6	S18
Copies of all NMR spectra	S19-S50
Monitoring of the reaction mixture by ¹⁹ F NMR spectrum	
X-ray diffraction structural analysis data	S52-S58

General methods. NMR spectra were recorded on a Bruker DPX-400 spectrometer (400.1 MHz for ¹H and 100.6 MHz for ¹³C) and AV-400 spectrometers (40.5 MHz for ¹⁵N and 376.5 MHz for ¹⁹F) in CDCl₃ and CD₃CN. The internal standards were HMDS (for ¹H nuclei δ 0.05 ppm) or the residual solvent signals (for ¹³C nuclei δ 77.16 ppm), CH₃NO₂ (for ¹⁵N nuclei δ 0.0 ppm) and CFCl₃ (for ¹⁹F nuclei δ 0.00 ppm) or C₆F₆ (for ¹⁹F nuclei δ -162.90 ppm). IR spectra were recorded on a two-beam Bruker Vertex 70 spectrometer. Elemental analysis was carried out on a FLASH EA 1112 Series analyzer. Melting points were determined on a Kofler hot stage apparatus. Commercial samples of quinolines 1a-g and isoquinoline 4 were used. 1,8-Naphthyridine 6 was prepared according to method (M. Balkenhohl, R. Greiner, I. S. Makarov, B. Heinz, K. Karaghiosoff, H. Zipse, P. Knochel, Chem. - A Eur. J., 2017, 23, 13046-13050). Samples of aryl(trifluoroacetyl)acetylenes **2a-i** were obtained according to method (V. M. Muzalevskiy, A. Yu. Rulev, A. R. Romanov, E. V. Kondrashov, I. A. Ushakov, V. A. Chertkov, V. G. Nenajdenko. J. Org. Chem. 2017, 82, 7200–7214). Monitoring of the reaction course was carried out by IR spectroscopy following the disappearance of the absorption band of the C≡C bond in starting acetylene 2 at 2174-2202 cm⁻¹ or using ¹⁹F NMR. The products **3a-0**, **5** and **7** were separated and purified by column chromatography. Column and thin-layer chromatography were carried out on silica gel (0.06-0.2 mm) with chloroform/benzene/ethanol (20:4:1) mixture as eluent or silica gel which was treated with NEt₃ (about 3-5 weight %) with CH₂Cl₂, and mixtures of CH₂Cl₂ and MeOH (300:1, 150:1, 100:1, 40:1) between eluent. Solvents effect (on the example of reaction as quinoline **1a**. phenyltrifluoroacetylacetylene 2a and water) effected on the reaction times and yield of oxazinoquinoline **3a** is demonstrated in the Table S1.

Entry	Solvent	Time (h)	Yield of 3a (%) ^b
1	MeCN	20	91
2	DMF	84	74
3	DMSO	84	86
4	THF	84	60
5	1,2-DCE	84	86
6	Et ₂ O	84	88
7	PhMe	84	88
8	CH ₂ Cl ₂	84	83
9	NEt3 ^c	84	9
10	EtOAc	84	87

Table S1 Solvent effect on the reaction times and yield of oxazinoquinoline $3a^a$

^{*a*} Conditions: quinoline **1a** (0.475 mmol) and phenyltrifluoroacetylacetylene **2a** (0.5 mmol), H₂O (0.5 mmol), Solvent (3 mL), temperature -18 ...+25 °C. ^{*b*} ¹⁹F NMR yield. ^{*c*} Conversion 66%.

Reaction of quinolines, trifluoroacetylacetylenes and water (general procedure for pure isomers, procedure I): Solution of quinoline 1 (0.475 mmol, 0.95 equiv.) in MeCN (1.5 mL) and solution of acetylene 2 (0.5 mmol, 1 equiv.) and H₂O (0.009 g, 0.5 mmol, 1 equiv.) in MeCN (1.5 mL) were cooled in the fridge (-18 °C) and then mixed in 4 mL vial with a screw cap. The reaction mixture

was left at room temperature for appropriate time (TLC or ¹⁹F NMR control). The solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel which was treated with NEt₃ (about 3-5 weight %) to prevent acid catalyzed isomerization. CH₂Cl₂, and mixtures of CH₂Cl₂ and MeOH (300:1, 150:1, 100:1, 40:1) were consistently used as eluents. Solvents were evaporated in vacuo, the rest amount of the solvents and NEt₃ were removed by co-evaporation with MeCN (1 mL, 2-3 times) to give pure ($3R^*$, $4aR^*$)-isomers of **3**. The residue thus obtained solidifies at standing during several hours at room temperature. Alternatively compounds **3** can be crystallized by evaporation of solutions in Et₂O-Hexane (1:3-1:5). Diastereomer ratio of 1,3-oxazinoquinolines **3** appeared to be capable of changing in the presence of acids. To avoid isomerization NMR spectra were measured from solution in CD₃CN with traces of NEt₃ intentionally added.

Reaction of quinolines, trifluoroacetylacetylenes and water (general procedure for synthesis of the mixture of isomers, procedure II): To the mixture of acetylene 2 (0.5 mmol) and H₂O (0.009 g, 0.5 mmol) in 1.5 mL MeCN at $-5\sim0$ °C with stirring the solution of quinoline 1 (0.5 mmol) in 1.5 mL MeCN was added slowly (during 0.5 h) by drops. After that reaction mixture was warmed to the room temperature and stirred appropriate time. The solvent was removed under reduced pressure. The reaction mixture was passed through a column (chloroform/benzene/ethanol (20:4:1) mixture as an eluent) to give a mixture of $(3R^*,4aR^*)$ - and $(3S^*,4aR^*)$ -diastereomers of 1,3-oxazinoquinoline 3. Formation of $(3S^*,4aR^*)$ -diastereomer is a result of acid catalyzed isomerization of $(3R^*,4aR^*)$ -diastereomer on silica gel.

(3R*,4aR*)-1-Phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]-quinolin-3-ol (3a). Obtained

from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2a** (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 20 h. White needles, m.p. 155-157 °C (hexane), yield 0.148 g (90%).

² ³ ³ ¹H NMR (400.1 MHz, CD₃CN): δ 7.56-7.54 (m, 2H, H_o from Ph), 7.39-7.47 (m, (3R*,4aR*)-**3a** 3H, H_{m,p} from Ph), 7.24 (dd, ³J = 7.3 Hz, ⁴J = 1.7 Hz, 1H, H-7), 7.00 (d, ³J_{5,6} = 9.7 Hz, 1H, H-6), 6.90 (td, ³J = 7.6 Hz, ⁴J = 1.7 Hz, 1H, H-9), 6.85 (td, ³J = 7.3 Hz, ⁴J = 1.3 Hz, 1H, H-8), 6.29 (d, ³J = 7.9 Hz, 1H, H-10), 6.10 (dd, ³J_{5,6} = 9.7 Hz, ³J_{4a,5} = 4.8 Hz, 1H, H-5), 6.01 (s, 1H, H-2), 5.63 (d, ³J_{4a,5} = 4.9 Hz, 1H, H-4a), 5.34 (s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 148.4 (C-1), 137.1 (C-10a), 134.6 (C_{*i*} from Ph), 130.5 (C-6), 130.1 (C_{*p*} from Ph), 129.2 (C_{*m*} from Ph), 129.0 (C-9), 128.0 (C-7), 126.6 (C_{*o*} from Ph), 122.4 (q, ${}^{1}J_{CF}$ = 286.1 Hz, CF₃), 121.4 (C-6a), 120.8 (C-8), 117.6 (C-10), 117.5 (C-5), 110.4 (C-2), 92.3 (q, ${}^{2}J_{CF}$ = 33.0 Hz, C-3), 78.3 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.2 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{19}H_{13}F_3NO^+$: 328.0944; found: 328.0945; m/z [M+H]⁺ Calcd for $C_{19}H_{15}F_3NO_2^+$: 346.1049; found: 346.1048.

(3R*,4aR*)-1-(4-methylphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3b)

Pure $(3R^*,4aR^*)$ -**3b** obtained from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2b** (0.106 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 15 h. Light-brown needles, m.p. 133-135 °C (MeCN), R_F(CH₂Cl₂-MeOH 100:1) = 0.27, yield 0.154 g (90%).

^{Me 4' 5'} (3R*,4aR*)-3b ¹H NMR (400.1 MHz, CD₃CN): δ 7.43 (d, ³*J* = 8.2 Hz, 2H, H-2',6'), 7.24 (dd, ³*J* = 7.1 Hz, ⁴*J* = 1.9 Hz, 1H, H-7), 7.22 (d, ³*J* = 8.2 Hz, 2H, H-3',5'), 6.99 (d, ³*J*_{5,6} = 9.8 Hz, 1H, H-6), 6.89 (td, ³*J* = 7.4 Hz, ⁴*J* = 2.0 Hz, 1H, H-9), 6.85 (td, ³*J* = 7.3 Hz, ⁴*J* = 1.4 Hz, 1H, H-8), 6.33 (d, ³*J* = 7.6 Hz, 1H, H-10), 6.11 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 5.97 (s, 1H, H-2), 5.65 (d, ³*J* = 4.8 Hz, 1H, H-4a), 5.46 (br s, 1H, OH), 2.35 (s, 3H, Me) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 148.6 (C-1), 141.2, 138.3, 132.8, 130.7, 130.4, 129.4, 128.8, 127.2, 123.6 (q, ${}^{1}J_{CF}$ = 285.3 Hz, CF₃), 122.5, 121.4, 119.3, 118.0, 111.9 (C-2), 93.0 (q, ${}^{2}J_{CF}$ = 32.8 Hz, C-3), 78.4 (C-4a), 21.3 (Me) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.3 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₀H₁₅F₃NO⁺: 342.1100; found: 342.1106; m/z [M+H]⁺ Calcd for C₂₀H₁₇F₃NO₂⁺: 360.1206; found: 360.1205.

(3R*,4aR*)-1-(3,4-dimethylphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol

(3c). Obtained from quinoline 1a (0.061 g, 0.475 mmol), acetylene 2c (0.113 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 24 h. Light-brown needles, m.p. 94-96 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.30$, yield 0.171 g (97%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.35 (s, 1H, H-2'), 7.22-7.24 (m, 2H, H-7, H-6'), 7.16 (d, ³*J* = 7.9 Hz, 1H, H-5'), 6.99 (d, ³*J*_{5.6} = 9.7 Hz, 1H, H-6), 6.89

(td, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-9), 6.84 (td, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.3$ Hz, 1H, H-8), 6.35 (d, ${}^{3}J = 7.9$ Hz, 1H, H-10), 6.10 (dd, ${}^{3}J_{5,6} = 9.7$ Hz, ${}^{3}J_{4a,5} = 4.9$ Hz, 1H, H-5), 5.95 (s, 1H, H-2), 5.62 (d, ${}^{3}J_{4a,5} = 4.8$ Hz, 1H, H-4a), 5.45 (br s, 1H, OH), 2.27 (s, 3H, Me), 2.24 (s, 3H, Me) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 148.7 (C-1), 139.8, 138.6, 138.4, 133.3, 131.1, 130.4, 129.4, 128.7, 128.2, 124.8, 123.6 (q, ${}^{1}J_{CF}$ = 285.3 Hz, CF₃), 122.5, 121.4, 119.3, 118.0, 111.8 (C-2), 93.0 (q, ${}^{2}J_{CF}$ = 32.8 Hz, C-3), 78.4 (C-4a), 19.7 (Me), 19.6 (Me) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.3 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₁H₁₇F₃NO⁺: 356.1257; found: 356.1260; m/z [M+H]⁺ Calcd for C₂₁H₁₉F₃NO₂⁺: 374.1362; found: 374.1362.

(3R*,4aR*)-1-(4-(tert-Butyl)phenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol

(3d). Obtained from quinoline 1a (0.061 g, 0.475 mmol), acetylene 2d (0.127 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 24 h. Light-brown needles, m.p. 105-107 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.27$, yield 0.187 g (98%).

t-Bu² 4' 5' (3R*,4aR*)-3d ¹H NMR (400.1 MHz, CD₃CN): δ 7.43-7.48 (m, 4H, H-2',3',5',6'), 7.24 (dd, ³*J* = 7.2 Hz, ⁴*J* = 1.7 Hz, 1H, H-7), 7.00 (d, ³*J*_{5,6} = 9.8 Hz, 1H, H-6), 6.89 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.7 Hz, 1H, H-9), 6.85 (td, ³*J* = 7.3 Hz, ⁴*J* = 1.2 Hz, 1H, H-8), 6.32 (d, ³*J* = 7.9 Hz, 1H, H-10), 6.10 (dd, ³*J*_{5,6} = 9.8 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 5.98 (s, 1H, H-2), 5.63 (d, ³*J*_{4a,5} = 4.8 Hz, 1H, H-4a), 5.44 (s, 1H, OH), 1.31 (s, 9H, 3Me from *t*-Bu) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 154.3, 148.4 (C-1), 138.4, 132.8, 130.4, 129.5, 128.8, 127.0 (C_{2',6'} and C_{3',5'} from Ar), 123.6 (q, ¹*J*_{CF} = 284.9 Hz, CF₃), 122.5, 121.5, 119.3, 118.0, 112.2 (C-2), 93.0 (q, ²*J*_{CF} = 33.2 Hz, C-3), 78.4 (C-4a), 35.3 (C from *t*-Bu), 31.4 (3Me from *t*-Bu) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{23}H_{21}F_3NO^+$: 384.1570; found: 384.1573; m/z [M+H]⁺ Calcd for $C_{23}H_{23}F_3NO_2^+$: 402.1675; found: 402.1676.

C₂₃H₂₂F₃NO₂ (401.43): calcd C, 68.82; H, 5.52; N, 3.49; F, 14.20. Found: C, 68.47; H, 5.53; N, 3.15; F, 13.99.

(3R*,4aR*)-1-(4-Methoxyphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3e).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2e** (0.114 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 48 h. Light-brown needles, m.p. 95-97 °C (MeCN), $R_F(CH_2Cl_2-MeOH\ 100:1) = 0.43$, yield 0.168 g (94%).

MeO 4' 5 (3R*,4aR*)-3e ¹H NMR (400.1 MHz, CD₃CN): δ 7.47 (d, ³*J* = 8.9 Hz, 2H, H-2',6'), 7.24 (dd, ³*J* = 7.3 Hz, ⁴*J* = 1.6 Hz, 1H, H-7), 7.00 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.93 (d, ³*J* = 8.9 Hz, 2H, H-3',5'), 6.90 (td, ³*J* = 7.9 Hz, ⁴*J* = 1.8 Hz, 1H, H-9), 6.85 (td, ³*J* = 7.3 Hz, ⁴*J* = 1.1 Hz, 1H, H-8), 6.36 (d, ³*J* = 8.0 Hz, 1H, H-10), 6.10 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 5.94 (s, 1H, H-2), 5.64 (d, ³*J*_{4a,5} = 3.4 Hz, 1H, H-4a), 5.55 (br s, 1H, OH), 3.79 (s, 3H, OMe) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 162.0 (C-4'), 148.2 (C-1), 138.4, 130.4, 129.5, 128.7, 127.9, 123.6 (q, ${}^{1}J_{CF}$ = 284.9 Hz, CF₃), 122.5, 121.4, 119.3, 118.2, 118.1, 115.3, 110.9 (C-2), 93.0 (q, ${}^{2}J_{CF}$ = 32.4 Hz, C-3), 78.3 (C-4a), 55.9 (OMe) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₀H₁₅F₃NO₂⁺: 358.1049; found: 358.1053; m/z [M+H]⁺ Calcd for C₂₀H₁₇F₃NO₃⁺: 376.1155; found: 376.1153.

C₂₀H₁₆F₃NO₃ (375.34): calcd C, 64.00; H, 4.30; N, 3.73; F, 15.18. Found: C, 64.07; H, 4.39; N, 3.62; F, 14.78.

(3R*,4aR*)-1-[4-(Methylthio)phenyl]-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol

(3f). Obtained from quinoline 1a (0.061 g, 0.475 mmol), acetylene 2f (0.122 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 24 h. Light-brown needles, m.p. 98-100 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.20$, yield 0.185 g (99%).

MeS $_{4}^{\prime}$ $_{5}^{\prime}$ (3R*,4aR*)-3f ¹H NMR (400.1 MHz, CD₃CN): δ 7.44 (d, ^{3}J = 8.5 Hz, 2H, H-2',6'), 7.21-7.25 (m, 3H, H-7, H-3',5'), 6.99 (d, $^{3}J_{5,6}$ = 9.8 Hz, 1H, H-6), 6.90 (td, ^{3}J = 7.5 Hz, ^{4}J = 1.7 Hz, 1H, H-9), 6.85 (td, ^{3}J = 7.2 Hz, ^{4}J = 1.1 Hz, 1H, H-8), 6.34 (d, ^{3}J = 7.9 Hz, 1H, H-10), 6.11 (dd, $^{3}J_{5,6}$ = 9.8 Hz, $^{3}J_{4a,5}$ = 4.9 Hz, 1H, H-5), 6.01 (s, 1H, H-2), 5.64 (d, $^{3}J_{4a,5}$ = 4.6 Hz, 1H, H-4a), 5.60 (br s, 1H, OH), 2.45 (s, 3H, MeS) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 148.0 (C-1), 142.3, 138.2, 131.8, 130.4, 129.5, 128.8, 127.7, 126.8, 123.6 (q, ¹*J*_{CF} = 285.3 Hz, CF₃), 122.5, 121.5, 119.3, 118.0, 112.0 (C-2), 93.0 (q, ²*J*_{CF} = 32.8 Hz, C-3), 78.4(C-4a), 15.0 (SMe) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.2 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₀H₁₅F₃NOS⁺: 374.0821; found: 374.0823; m/z [M+H]⁺ Calcd for C₂₀H₁₇F₃NO₂S⁺: 392.0927; found: 392.0926.

(3*R**,4*aR**)-1-(4-Chlorophenyl)-3-(trifluoromethyl)-3*H*,4*aH*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (3g).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2g** (0.116 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 24 h. Light-brown needles, m.p. 91-93 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.70$, yield 0.175 g (97%).

 $CI^{2} 4^{6} 5^{5}$ (3R*,4aR*)-**3g** ¹H NMR (400.1 MHz, CD₃CN): δ 7.52 (d, ³*J* = 8.6 Hz, 2H, H-2',6'), 7.40 (d, ³*J* = 8.6 Hz, 2H, H-3',5'), 7.24 (dd, ³*J* = 7.3 Hz, ⁴*J* = 1.7 Hz, 1H, H-7), 7.00 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.91 (td, ³*J* = 7.4 Hz, ⁴*J* = 2.0 Hz, 1H, H-9), 6.86 (td, ³*J* = 7.2 Hz, ⁴*J* = 1.1 Hz, 1H, H-8), 6.29 (d, ³*J* = 8.0 Hz, 1H, H-10), 6.11 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 6.06 (s, 1H, H-2), 5.64 (d, ³*J* = 4.7 Hz, 1H, H-4a), 5.60 (br s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 147.4 (C-1), 138.0, 136.1, 134.3, 130.4, 130.1, 129.6, 128.92, 128.86, 123.5 (q, ${}^{1}J_{CF}$ = 285.3 Hz, CF₃), 122.5, 121.7, 119.3, 118.0, 113.3 (C-2), 92.9 (q, ${}^{2}J_{CF}$ = 32.8 Hz, C-3), 78.4 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₁₉H₁₂ClF₃NO⁺: 362.0554; found: 362.0558; m/z [M+H]⁺ Calcd for C₁₉H₁₄ClF₃NO₂⁺: 380.066; found: 380.0661.

$(3R^*,4aR^*)$ -1-(4-Bromophenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3h).

Obtained from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2h** (0.138 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 6 h. Light-brown needles, m.p. 128-130 °C (MeCN), $R_F(CH_2Cl_2-MeOH\ 100:1) = 0.73$, yield 0.201 g (99%).

Br² 4' 5' (3R*,4aR*)-**3h** ¹H NMR (400.1 MHz, CD₃CN): δ 7.55 (d, ³*J* = 8.7 Hz, 2H, H-3',5'), 7.45 (d, ³*J* = 8.7 Hz, 2H, H-2',6'), 7.24 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.7 Hz, 1H, H-7), 7.00 (d, ³*J*_{5,6} = 9.8 Hz, 1H, H-6), 6.91 (td, ³*J* = 7.7 Hz, ⁴*J* = 1.6 Hz, 1H, H-9), 6.86 (td, ³*J* = 7.7 Hz, ⁴*J* = 1.1 Hz, 1H, H-8), 6.29 (d, ³*J* = 8.1 Hz, 1H, H-10), 6.10 (dd, ³*J*_{5,6} = 9.7 Hz, ³*J*_{4a,5} = 4.8 Hz, 1H, H-5), 6.06 (s, 1H, H-2), 5.63 (d, ³*J*_{4a,5} = 4.7 Hz, 1H, H-4a), 5.56 (s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 147.5(C-1), 138.0, 134.8, 133.1, 130.5, 129.6, 129.2, 128.9, 124.5, 123.5 (q, ${}^{1}J_{CF}$ = 288.0 Hz, CF₃), 122.6, 121.7, 119.3, 118.0, 113.3 (C-2), 93.0 (q, ${}^{2}J_{CF}$ = 33.3 Hz, C-3), 78.4 (C-4a) ppm. ¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₁₉H₁₂BrF₃NO⁺: 406.0049; found: 406.0055; m/z [M+H]⁺ Calcd for C₁₉H₁₄BrF₃NO₂⁺: 424.0155; found: 424.0153.

(3R*,4aR*)-1-(4-Methoxynaphthalen-1-yl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-

3-ol (3i). Obtained from quinoline **1a** (0.061 g, 0.475 mmol), acetylene **2i** (0.139 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 184 h. Light-brown needles, m.p. 120-122 °C (MeCN), $R_F(CH_2Cl_2-MeOH \ 100:1) = 0.50$, yield 0.168 g (83%).

¹H NMR (400.1 MHz, CD₃CN): δ 8.31-8.28 (m, 2H, H-5', H-8'), 7.49-7.60

6' $(3R^*,4aR^*)$ -**3i** (m, 3H, H-2', H-6' and H-7'), 7.18 (dd, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H-7), 6.99 (d, ${}^{3}J_{5,6} = 9.8$ Hz, 1H, H-6), 6.89 (d, ${}^{3}J_{2',3'} = 8.1$ Hz, 1H, H-2'), 6.73 (td, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H-9), 6.68 (td, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H-8), 6.42 (d, ${}^{3}J = 8.1$ Hz, 1H, H-10), 6.15 (dd, ${}^{3}J_{5,6} = 9.8$ Hz, ${}^{3}J_{4a,5} = 4.7$ Hz, 1H, H-5), 5.90 (d, ${}^{3}J_{4a,5} = 4.5$ Hz, 1H, H-4a), 5.86 (s, 1H, H-2), 5.63 (s, 1H, OH), 3.98 (s, 3H, MeO) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 157.5, 147.1 (C-1), 137.8, 132.4, 130.2, 129.6, 128.9, 128.5, 126.7, 125.6, 124.6, 123.8 (q, ¹*J*_{CF} = 285.3 Hz, CF₃), 123.3, 122.0, 121.4, 119.2, 116.4, 114.5 (C-2), 104.8, 93.1 (q, ²*J*_{CF} = 32.8 Hz, C-3), 78.7 (C-4a), 56.4 (OMe) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.7 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₄H₁₇F₃NO₂⁺: 408.1206; found: 408.1209; m/z [M+H]⁺ Calcd for C₂₄H₁₉F₃NO₃⁺: 426.1312; found: 426.1312.

C₂₄H₁₈F₃NO₃ (425.40): calcd C, 67.76; H, 4.26; N, 3.29; F, 13.40. Found C, 67.77; H, 4.51; N, 3.68; F, 13.23.

(3R*,4aR*)-6,9-Dichloro-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol

(3m). Obtained from quinoline 1e (0.094 g, 0.475 mmol), acetylene 2a (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 80 h. Yellow crystals, m.p. 135-137 °C (MeCN), $R_F(CH_2Cl_2-MeOH\ 100:1) = 0.63$, yield 0.095 g (48%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.64 (d, ³*J* = 8.4 Hz, 1H, H-7), 7.56-7.59 (m, 2H, H_o from Ph), 7.42-7.48 (m, 3H, H_{m,p} from Ph), 6.96 (dd, ³*J* = 8.5 Hz, ⁴*J* =

2.0 Hz, 1H, H-8), 6.37 (d, ${}^{3}J_{4a,5} = 5.4$ Hz, 1H, H-5), 6.32 (d, ${}^{4}J = 2.0$ Hz, 1H, H-10), 6.10 (s, 1H, H-2), 5.70 (d, ${}^{3}J_{4a,5} = 5.4$ Hz, 1H, H-4a), 5.92 (br. s., 1H, OH) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 147.6 (C-1), 139.9, 135.9, 134.6, 133.6, 131.3, 130.2, 127.7, 127.3, 123.3 (q, $^{1}J_{CF}$ = 285.3 Hz, CF₃), 121.6, 117.9, 117.8, 114.1 (C-2), 93.1 (q, $^{2}J_{CF}$ = 33.2 Hz, C-3), 78.8 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₁₉H₁₁Cl₂F₃NO⁺: 396.0164; found: 396.0161; m/z [M+H]⁺ Calcd for C₁₉H₁₃Cl₂F₃NO₂⁺: 414.027; found: 414.025.

(3R*,4aR*)-6-Bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3n).

Obtained from quinoline **1f** (0.099 g, 0.475 mmol), acetylene **2a** (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 40 h. Light-brown needles, m.p. 109-111 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.71$, yield 0.175 g (87%).

¹H NMR (400.1 MHz, CD₃CN): δ 7.52-7.57 (m, 2H, H_o from Ph), 7.34-7.48 (m, 4H, H-6, H_{m,p} from Ph), 7.11 (dd, ³J = 8.0 Hz, ⁴J = 0.7 Hz, 1H, H-8), 6.78 (t, ³J =

8.1 Hz, 1H, H-9), 6.33 (d, ${}^{3}J$ = 8.4 Hz, 1H, H-10), 6.24 (dd, ${}^{3}J_{5,6}$ = 10.1 Hz, ${}^{3}J_{4a,5}$ = 4.9 Hz, 1H, H-5), 6.07 (s, 1H, H-2), 5.64 (d, ${}^{3}J$ = 4.9 Hz, 1H, H-4a), 5.47 (br., s, OH) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 148.2 (C-1), 139.8, 135.2, 131.0, 130.3, 130.1, 128.7, 127.2, 125.5, 123.5 (q, ${}^{1}J_{CF}$ = 284.9 Hz, CF₃), 123.0, 121.4, 117.9, 113.7 (C-2), 93.1 (q, ${}^{2}J_{CF}$ = 32.8 Hz, C-3), 78.0 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₁₉H₁₂BrF₃NO⁺: 406.0049; found: 406.0057; m/z [M+H]⁺ Calcd for C₁₉H₁₄BrF₃NO₂⁺: 424.0155; found: 424.0155.

(3R*,4aR*)-3-Hydroxy-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinoline-6-

carbonitrile (30). Obtained from quinoline 1g (0.073 g, 0.475 mmol), acetylene 2a (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 45 h. Light-brown needles, m.p. 108-110 °C (MeCN), $R_F(CH_2Cl_2-MeOH 100:1) = 0.30$, yield 0.149 g (85%).

 $^{\circ}_{p}$ (3R*,4aR*)-30 ¹H NMR (400.1 MHz, CD₃CN): δ 7.51-7.56 (m, 2H, H_o from Ph), 7.38-7.47 (m, 3H, H_{m,p} from Ph), 7.31 (d, $^{3}J_{5,6} = 9.9$ Hz, 1H, H-6), 7.21 (dd, $^{3}J = 7.7$ Hz, $^{4}J = 1.0$ Hz, 1H, H-8), 6.99 (t, $^{3}J = 8.0$ Hz, 1H, H-9), 6.59 (d, $^{3}J = 8.5$ Hz, 1H, H-10), 6.37 (dd, $^{3}J_{5,6} = 9.9$ Hz, $^{3}J_{4a,5} = 4.8$ Hz, 1H, H-5), 6.11 (s, 1H, H-2), 5.64 (d, $^{3}J_{4a,5} = 4.9$ Hz, 1H, H-4a), 4.19 (br., s, OH) ppm.

¹³C NMR (100.6 MHz, CD₃CN): δ 147.8 (C-1), 138.6, 134.8, 131.1, 130.2, 129.7, 127.2, 126.4, 125.6, 124.1, 123.4 (q, ¹*J*_{CF} = 285.3 Hz, CF₃), 123.2, 122.3, 117.8, 113.8 (C-2), 110.8 (CN), 93.1 (q, ²*J*_{CF} = 33.2 Hz, C-3), 77.8 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CD₃CN): δ -82.0 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for C₂₀H₁₂F₃N₂O⁺: 353.0896; found: 353.0899; m/z [M+H]⁺ Calcd for C₂₀H₁₄F₃N₂O₂⁺: 371.1002; found: 371.1004.

 $(3R^*,4aR^*)$ -1-Phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]-quinolin-3-ol-d₂ (3a'). Obtained from quinoline 1a (0.061 g, 0.475 mmol) and acetylene 2a (0.099 g, 0.5 mmol) by modified procedure I: D₂O (0.010 g, 0.5 mmol, 1 equiv.) was used instead of H₂O. Reaction mixture was kept for

24 h. Crude product was obtained by evaporation of MeCN in vacuo to give 0.170 g (\sim 100%) of **3a'** as light-brown needles.

¹H NMR (400.1 MHz, CD₃CN): δ 7.55-7.63 (m, 2H, Ph), 7.38-7.47 (m, 3H, Ph), 7.23-7.30 (m, 1H), 6.82-7.07 (m, 3H), 6.28-6.39 (m, 1H), 6.07-6.19 (m, 1H), 5.61-5.73 (m, 1H) ppm. ¹H NMR (400.1 MHz, CDCl₃): δ 7.48-7.56 (m, 2H, H_o from Ph), 7.35-7.43 (m, 3H, H_{m,p} from Ph), 7.18 (d, ³*J* = 7.0 Hz, 1H, H-7), 6.96 (d, ³*J*_{5.6}

= 9.5 Hz, 1H, H-6), 6.91 (t, ³*J* = 7.9 Hz, 1H, H-9), 6.85 (t, ³*J* = 7.2 Hz, 1H, H-8), 6.35 (d, ³*J* = 7.7 Hz, 1H, H-10), 6.06 (m, 1H, H-5), 5.70 (m, 1H, H-4a) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 148.1, 137.1, 134.5, 130.4, 130.0, 129.1, 128.9, 127.9, 126.4, 122.3 (q, ${}^{1}J_{CF} = 286.0$ Hz, CF₃), 120.7, 117.5, 110.52-110.56 (m, C-D), 92.1 (q, ${}^{2}J_{CF} = 32.8$ Hz), 78.2 ppm. ¹³C NMR (100.6 MHz, CD₃CN): δ 148.4 (C-1), 138.3, 135.6, 130.9, 130.4, 130.0, 129.6, 128.9, 127.5, 125.0, 123.6 (q, ${}^{1}J_{CF} = 285.3$ Hz, CF₃), 119.4, 118.1, 112.69-112.90 (m, ${}^{1}J_{CD}$, C-2), 92.9 (q, ${}^{2}J_{CF} = 32.4$ Hz, C-3), 78.4 (C-4a) ppm.

¹⁹F NMR (376.3 MHz, CDCl₃): δ -83.6 (CF₃) ppm; ¹⁹F NMR (376.3 MHz, CD₃CN): δ -81.9 (CF₃) ppm.

HRMS (ESI-TOF): m/z [M-OD]⁺ Calcd for $C_{19}H_{12}DF_3NO^+$: 329.1007; found: 329.1003; m/z [M-D+H]⁺ Calcd for $C_{19}H_{14}DF_3NO_2^+$: 347.1112; found: 347.1107. Exchange of D on H in hydroxyl has takes place during the experiment.

1-Phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]-quinolin-3-ol (3a), mixture of (3R*,4aR*)-

and $(3S^*,4aR^*)$ -diastereomers. Obtained from quinoline 1a (0.065 g, 0.5 mmol), acetylene 2a (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 20 h. White needles, m.p. 119-121 °C (hexane), yield 0.118 g (68%). Initial quinoline 1a was recovered (0.010 g,

conversion was 85%). IR (microlayer): 3401 (OH), 1649, 1635, 1602 (C=C), 1188, 1181, 1088 (C-F) cm⁻¹. (3*R**,4a*R**):(3*S**,4a*R**)-isomers ratio is 80:20 (¹H NMR).

 $(3R^*,4aR^*)$ -**3a**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.51 (m, 2H, H_o from Ph), 7.37 (m, 2H, H_m from Ph), 7.36 (m, 1H, H_p from Ph), 7.15 (d, ³J_{7,8} = 7.1 Hz, 1H, H-7), 6.92 (d, ³J_{5,6} = 9.7 Hz, 1H, H-6), 6.88 (m, 1H, H-9), 6.83 (m, 1H, H-8), 6.31 (d, ³J_{9,10} = 8.2 Hz, 1H, H-10), 6.02 (dd, ³J_{4a,5} = 4.4 Hz, ³J_{5,6} = 9.7 Hz, 1H, H-5), 5.95 (s, 1H, H-2), 5.76 (d, ³J_{4a,5} = 4.4 Hz, 1H, H-4a), 3.14 (s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 148.4 (C-1), 137.1 (C-10a), 134.6 (C_i from Ph), 130.5 (C-6), 130.1 (C_p from Ph), 129.2 (C_m from Ph), 129.0 (C-9), 128.0 (C-7), 126.6 (C_o from Ph), 122.4 (q, ¹*J*_{CF} = 286.1 Hz, CF₃), 121.4 (C-6a), 120.8 (C-8), 117.6 (C-10), 117.5 (C-5), 110.4 (C-2), 92.3 (q, ²*J*_{CF} = 33.0 Hz, C-3), 78.3 (C-4a) ppm.

¹⁵N NMR (40.5 MHz, CDCl₃): δ -283.7 (N-11) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.8 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**3a** as a minor isomer in a mixture with the $(3R^*,4aR^*)$ -**3a** isomer (ratio is 50:50): ¹H NMR (400.1 MHz, CDCl₃): δ 7.51 (m, 2H, H_o from Ph), 7.37 (m, 2H, H_m from Ph), 7.36 (m, 1H, H_p from Ph), 7.15 (d, ³J_{7,8} = 7.1 Hz, 1H, H-7), 6.92 (d, ³J_{5,6} = 9.7 Hz, 1H, H-6), 6.88 (m, 1H, H-9), 6.83 (m, 1H, H-8), 6.31 (d, ³J_{9,10} = 8.2 Hz, 1H, H-10), 6.07 (dd, ³J_{4a,5} = 4.7 Hz, ³J_{5,6} = 9.7 Hz, 1H, H-5), 5.98 (s, 1H, H-2), 5.61 (d, ³J_{5a,6} = 4.7 Hz, 1H, H-4a), 3.14 (s, 1H, OH) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.6 (CF₃) ppm. The signals in ¹³C NMR spectrum are not detected due to overlap with signals of other isomer.

C₁₉H₁₄F₃NO₂ (345.32): calcd C, 66.09; H, 4.09; N, 4.06; F, 16.51. Found C, 66.43; H, 4.06; N, 3.99; F, 16.76.

1-(4-(*tert*-Butyl)phenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3d), mixture of ($3R^*$,4 aR^*)- and ($3S^*$,4 aR^*)- **diastereomers.** Obtained from quinoline **1a** (0.039 g, 0.3 mmol), acetylene **2d** (0.076 g, 0.3 mmol) and H₂O (0.005 g, 0.3 mmol) in 2 mL MeCN by procedure II keeping the reaction mixture for 24 h. Lightbrown needles, m.p. 74-77 °C, yield 0.109 g (91%). IR (microlayer): 3399 (OH), 1649, 1633, 1602 (C=C), 1259, 1180, 1153, 1099 (C-F) cm⁻¹. ($3R^*$, $4aR^*$):($3S^*$, $4aR^*$)-isomers ratio is 70:30 (¹H NMR).

 $(3R^*,4aR^*)$ -**3d**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.41 (m, 2H, H-2',6'), 7.33 (m, 2H, H-3',5'), 7.12 (d, ³*J*_{7,8} = 7.2 Hz, 1H, H-7), 6.88 (d, ³*J*_{5,6} = 9.6 Hz, 1H, H-6), 6.86 (m, 1H, H-9), 6.79 (m, 1H, H-8), 6.35 (d, ³*J*_{9,10} = 8.0 Hz, 1H, H-10), 5.98 (dd, ³*J*_{4a,5} = 4.6 Hz, ³*J*_{5,6} = 9.6 Hz, 1H, H-5), 5.92 (s, 1H, H-2), 5.62 (d, ³*J*_{4a,5} = 4.6 Hz, 1H, H-4a), 3.44 (br. s, 1H, OH), 1.28 (s, 9H, 3Me from *t*-Bu) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 153.5 (C-4'), 148.3 (C-1), 137.4 (C-10a), 131.8 (C-1'), 130.5 (C-6), 129.0 (C-9), 128.0 (C-7), 126.3 (C-2',6'), 126.1 (C-3',5'), 122.6 (q, ¹*J*_{CF} = 284.3 Hz, CF₃), 121.5 (C-6a), 120.7 (C-8), 117.7 (C-10, C-5), 110.0 (C-2), 92.4 (q, ²*J*_{CF} = 33.4 Hz, C-3), 78.4 (C-4a), 34.9 (C from *t*-Bu), 31.3 (3Me from *t*-Bu) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.7 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**3d**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.41 (m, 2H, H-2',6'), 7.33 (m, 2H, H-3',5'), 7.12 (d, ³*J*_{7,8} = 7.2 Hz, 1H, H-7), 6.89 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.86 (m, 1H, H-9), 6.79 (m, 1H, H-8), 6.35 (d, ³*J*_{9,10} = 8.0 Hz, 1H, H-10), 6.05 (dd, ³*J*_{4a,5} = 4.6 Hz, ³*J*_{5,6} = 9.7 Hz, 1H, H-5), 5.90 (s, 1H, H-2), 5.58 (d, ³*J*_{4a,5} = 4.6 Hz, 1H, H-4a), 3.44 (br. s, 1H, OH), 1.28 (s, 9H, 3Me from *t*-Bu) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 153.4 (C-4'), 148.8 (C-1), 137.4 (C-10), 131.7 (C-1'), 130.3 (C-6), 129.0 (C-9), 128.0 (C-7), 126.2 (C-2',6'), 126.1 (C-3',5'), 122.3 (q, ¹*J*_{CF} = 285.9 Hz, CF₃), 121.3 (C-6a), 120.5 (C-8), 117.6 (C-5), 117.5 (C-10), 111.5 (C-4), 94.8 (q, ²*J*_{CF} = 31.8 Hz, C-3), 79.3 (C-4a), 34.9 (C from *t*-Bu), 31.3 (3Me from *t*-Bu) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.8 (CF₃) ppm.

C₂₃H₂₂F₃NO₂ (401.43): calcd C, 68.82; H, 5.52; N, 3.49; F, 14.20. Found: C, 68.47; H, 5.53; N, 3.15; F, 13.99.

1-(4-Methoxyphenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3e), mixture of

 $(3R^*,4aR^*)$ - and $(3S^*,4aR^*)$ -diastereomers. Obtained from quinoline 1a (0.065 g, 0.5 mmol), acetylene 2e (0.114 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 48 h. Light-yellow gum, yield 0.160 g (85%). Initial quinoline 1a was recovered (0.009

g, conversion was 86%). IR (microlayer): br. 3393 (OH), 1633, 1605 (C=C), 1256, 1176, 1091 (C-F) cm⁻¹. (3*R**,4a*R**):(3*S**,4a*R**)-isomers ratio is 55:45 (¹H NMR).

 $(3R^*,4aR^*)$ -**3e**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.42 (m, 2H, H-3',5'), 7.13 (d, ³J_{7,8} = 6.8 Hz, 1H, H-7), 6.86 (m, 1H, H-9), 6.82 (m, 2H, H-2',6'), 6.89 (d, ³J_{5,6} = 9.7 Hz, 1H, H-6), 6.79 (m, 1H, H-8), 6.35 (d, ³J_{9,10} = 8.1 Hz, 1H, H-10), 5.98 (dd, ³J_{4a,5} = 4.7 Hz, ³J_{5,6} = 9.7 Hz, 1H, H-5), 5.84 (s, 1H, H-2), 5.63 (d, ³J_{4a,5} = 4.7 Hz, 1H, H-4a), 3.77 (s, 3H, OMe), 3.44 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 161.2 (C-4'), 148.1 (C-1), 137.4 (C-10a), 130.5 (C-6), 128.9 (C-9), 128.5 (C-7), 128.0 (C-2',6'), 127.1 (C-1'), 122.6 (q, ¹*J*_{CF} = 284.3 Hz, CF₃), 121.6 (C-6a), 120.7 (C-8), 117.7 (C-5, C-10), 114.6 (C-3',5'), 108.9 (C-2), 92.5 (q, ²*J*_{CF} = 33.4 Hz, C-3), 78.3 (C-4a), 55.4 (OMe) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.6 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**3e**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.42 (m, 2H, H-3',5'), 7.13 (d, ³J_{7,8} = 6.8 Hz, 1H, H-7), 6.88 (m, 1H, H-9), 6.82 (m, 2H, H-2',6'), 6.89 (d, ³J_{5,6} = 9.7 Hz, 1H, H-6), 6.78 (m, 1H, H-8), 6.35 (d, ³J_{9,10} = 8.1 Hz, 1H, H-10), 6.05 (dd, ³J_{4a,5} = 4.7 Hz, ³J_{5,6} = 9.7 Hz, 1H, H-5), 5.83 (s, 1H, H-2), 5.58 (d, ³J_{4a,5} = 4.7 Hz, 1H, H-4a), 3.77 (s, 3H, OMe), 3.44 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 161.1 (C-4'), 148.5 (C-1), 137.4 (C-10a), 130.3 (C-6), 128.9 (C-9), 128.5 (C-7), 128.0 (C-2',6'), 127.1 (C-1'), 122.3 (q, ¹*J*_{CF} = 285.1 Hz, CF₃), 121.4 (C-6a), 120.6 (C-8), 117.5 (C-5, C-10), 114.6 (C-3',5'), 110.3 (C-2), 94.8 (q, ²*J*_{CF} = 32.2 Hz, C-3), 79.2 (C-4a), 55.4 (OMe) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.8 (CF₃) ppm.

C₂₀H₁₆F₃NO₃ (375.34): calcd C, 64.00; H, 4.30; N, 3.73; F, 15.18. Found: C, 64.07; H, 4.39; N, 3.62; F, 14.78.

1-(4-Bromophenyl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol (3h), mixture of

(3*R**,4*aR**)- and (3*S**,4*aR**)-diastereomers. Obtained from quinoline 1a (0.065 g, 0.5 mmol), acetylene 2h (0.139 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 6 h. Light-yellow gum, yield 0.178 g (84%). Initial quinoline 1a was recovered (0.009 g,

conversion was 86%). IR (microlayer): 3395 (OH), 1639, 1597 (C=C), 1260, 1184, 1092 (C-F) cm⁻¹. (3*R**,4a*R**):(3*S**,4a*R**)-isomers ratio is 60:40 (¹H NMR).

 $(3R^*,4aR^*)$ -**3h**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.48 (m, 2H, H-3',5'), 7.38 (m, 2H, H-2',6'), 7.16 (d, ³*J*_{7,8} = 7.4 Hz, 1H, H-7), 6.92 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.91 (m, 1H, H-9), 6.85 (m, 1H, H-8), 6.27 (d, ³*J*_{9,10} = 7.8 Hz, 1H, H-10), 6.01 (dd, ³*J*_{4a,5} = 4.7 Hz, ³*J*_{5,6} = 9.7 Hz, 1H, H-5), 5.95 (s, 1H, H-2), 5.63 (d, ³*J*_{4a,5} = 4.7 Hz, 1H, H-4a), 3.33 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 147.6 (C-1), 137.0 (C-10a), 133.7 (C-1'), 132.5 (C-3',5'), 130.4 (C-6), 129.1 (C-9), 128.5 (C-7), 128.1 (C-2',6'), 124.4 (C-4'), 122.6 (q, ${}^{1}J_{CF} = 284.3$ Hz, CF₃), 121.6 (C-6a), 120.9 (C-8), 117.6 (C-5), 117.5 (C-10), 111.0 (C-2), 92.5 (q, ${}^{2}J_{CF} = 33.4$ Hz, C-3), 78.3 (C-4a) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.7 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**3h**: ¹H NMR (400.13 MHz, CDCl₃): δ 7.48 (m, 2H, H-3',5'), 7.38 (m, 2H, H-2',6'), 7.16 (d, ³*J*_{7,8} = 7.4 Hz, 1H, H-7), 6.92 (d, ³*J*_{5,6} = 9.7 Hz, 1H, H-6), 6.91 (m, 1H, H-9), 6.83 (m, 1H, H-8), 6.26 (d, ³*J*_{9,10} = 7.8 Hz, 1H, H-10), 6.06 (dd, ³*J*_{4a,5} = 4.6 Hz, ³*J*_{5,6} = 9.7 Hz, 1H, H-5), 5.93 (s, 1H, H-2), 5.57 (d, ³*J*_{4a,5} = 4.6 Hz, 1H, H-4a), 3.33 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 147.4 (C-1), 137.0 (C-10a), 133.7 (C-1'), 132.5 (C-3',5'), 130.6 (C-6), 129.1 (C-9), 128.5 (C-7), 128.1 (C-2',6'), 124.3 (C-4'), 122.3 (q, ${}^{1}J_{CF}$ = 285.5 Hz, CF₃), 121.6 (C-8), 121.5 (C-6a), 117.5 (C-5), 117.4 (C-10), 112.8 (C-2), 94.8 (q, ${}^{2}J_{CF}$ = 32.0 Hz, C-3), 79.1 (C-4a) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.3 (CF₃) ppm.

C₁₉H₁₃BrF₃NO₂ (424.21): calcd C, 53.79; H, 3.09; Br, 18.84; N, 3.30; F, 13.44. Found C, 53.74; H, 3.25; Br, 19.22; F, 13.18; N, 3.05.

1-(4-Methoxynaphthalen-1-yl)-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol, (3i)

mixture of $(3R^*,4aR^*)$ - and $(3S^*,4aR^*)$ diastereomers. Obtained from quinoline 1a (0.065 g, 0.5 mmol), acetylene 2i (0.139 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 184 h. Light-beige needles, m.p. 114-117 °C (hexane), yield 0.163 g (77%). Initial quinoline

1a was recovered (0.013 g, conversion was 80%). IR (microlayer): 3398 (OH), 1643, 1630 (C=C), 1245, 1183, 1100 (C-F) cm⁻¹. (3*R**,4a*R**):(3*S**,4a*R**)-isomers ratio is 80:20 (¹H NMR).

 $(3R^*,4aR^*)$ -**3i**: ¹H NMR (400.1 MHz, CDCl₃): δ 8.32 (m, 2H, H-5', H-8'), 7.48 (m, 3H, H-2', H-6' and H-7'), 7.09 (m, 1H, H-7), 6.90 (d, ³*J*_{5,6} = 9.6 Hz, 1H, H-6), 6.72 (m, 1H, H-3'), 6.71 (m, 2H, H-8, H-9), 6.43 (m, 1H, H-10), 6.03 (dd, ³*J*_{4a,5} = 4.7 Hz, ³*J*_{5,6} = 9.6 Hz, 1H, H-5), 5.87 (s, 1H, H-2), 5.87 (d, ³*J*_{4a,5} = 4.7 Hz, 1H, H-4a), 4.74 (br. s, 1H, OH), 3.97 (s, 3H, OMe) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 156.8 (C-4'), 146.5 (C-1), 137.0 (C-10a), 131.9 (C-8'a), 130.4 (C-6), 129.2 (C-9), 128.1 (C-7), 127.8 (C-8'), 127.6 (C-1'), 126.3 (C-7'), 125.7 (C-6'), 124.8 (C-4'a), 124.1 (C-2'), 122.8 (q, ¹*J*_{CF} = 284.3 Hz, CF₃; C-5'), 121.1 (C-6a), 120.6 (C-8), 117.6 (C-5), 116.3 (C-10), 113.1 (C-2), 103.6 (C-3'), 92.5 (q, ²*J*_{CF} = 33.0 Hz, C-3), 78.6 (C-4a), 55.7 (OMe) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.3 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**3i** as a minor isomer in a mixture with the $(3R^*,4aR^*)$ -**3i** isomer and quinoline **1a** (ratio is 15:55:30): ¹H NMR (400.1 MHz, CDCl₃): δ 8.32 (m, 2H, H-5', H-8'), 7.48 (m, 3H, H-2', H-6' and H-7'), 7.09 (m, 1H, H-7), 6.92 (d, ³*J*_{5,6} = 9.8 Hz, 1H, H-6), 6.72 (m, 1H, H₃⁻ from Napht), 6.71 (m, 2H, H-8, H-9), 6.43 (m, 1H, H-10), 6.11 (dd, ³*J*_{5,6} = 9.8 Hz, ³*J*_{4a,5} = 4.6 Hz, 1H, H-5), 5.81 (s, 1H, H-2), 5.80 (d, ³*J*_{4a,5} = 4.6 Hz, 1H, H-4a), 4.74 (br. s, 1H, OH), 3.97 (s, 3H, OMe) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 156.8 (C-4'), 145.0 (C-1), 137.0 (C-10a), 131.9 (C-8'a), 130.3 (C-6), 129.2 (C-9), 128.1 (C-7), 127.8 (C-8'), 127.6 (C-1'), 126.3 (C-7'), 125.7 (C-6'), 124.8 (C-4'a), 124.1 (C-2'), 122.8 (C-5'), 122.6 (q, ¹*J*_{CF} = 284.9 Hz, CF₃), 121.1 (C-6a), 120.5 (C-8), 117.3 (C-5), 116.2 (C-10), 114.2 (C-2), 103.6 (C-3'), 94.7 (q, ²*J*_{CF} = 32.4 Hz, C-3), 79.7 (C-4a), 55.7 (OMe) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.5 ppm.

C₂₄H₁₈F₃NO₃ (425.40): calcd C, 67.76; H, 4.26; N, 3.29; F, 13.40. Found C, 67.77; H, 4.51; N, 3.68; F, 13.23.

5-Methyl-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3j), mixture of ($3R^*$,4 aR^*)- and ($3S^*$,4 aR^*)-diastereomers. Obtained from quinoline 1b (0.072 g, 0.5 mmol),

acetylene **2a** (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 24 h. White needles, m.p. 104-106 °C (hexane), yield 0.134 g (75%). Initial quinoline **1b** was recovered (0.015 g, conversion was 79%). IR (microlayer): 3372 (OH), 1632, 1601 (C=C), 1258, 1178, 1084 (C-F) cm⁻¹. ($3R^*$, $4aR^*$):($3S^*$, $4aR^*$)-isomers ratio is 85:15 (¹H NMR).

 $(3R^*,4aR^*)$ -**3j**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.50 (m, 2H, H_o from Ph), 7.36 (m, 2H, H_m from Ph), 7.36 (m, 1H, H_p from Ph), 7.08 (d, ³J_{7,8} = 7.0 Hz, 1H, H-7), 6.80 (m, 2H, H-8, H-9), 6.64 (s, 1H, H-6), 6.27 (d, ³J_{9,10} = 8.0 Hz, 1H, H-10), 5.94 (s, 1H, H-2), 5.47 (s, 1H, H-4a), 3.19 (s, 1H, OH), 2.10 (s, 3H, Me) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 148.6 (C-1), 136.0 (C-10a), 134.9 (C_i from Ph), 130.1 (C_p from Ph), 129.2 (C_m from Ph), 127.9 (C-9), 127.1 (C-7), 126.9 (C-5), 126.7 (C_o from Ph), 126.1 (C-6), 122.6 (q, ¹J_{CF} = 284.3 Hz, CF₃), 122.2 (C-6a), 120.9 (C-8), 117.3 (C-10), 110.2 (C-2), 92.5 (q, ²J_{CF} = 33.4 Hz, C-3), 82.4 (C-4a), 19.7 (Me) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.7 (CF₃) ppm.

(3*S**,4a*R**)-**3j**: ¹H NMR (400.1 MHz, CDCl₃): δ 5.91 (s, 1H, H-2), 5.43 (s, 1H, H-4a), 2.14 (s, 3H, Me) ppm.

Other ¹H and ¹³C signals were not detected due to low concentration of this isomer.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.0 (CF₃) ppm.

C₂₀H₁₆F₃NO₂ (359.34): calcd C, 66.85; H, 4.49; N, 3.90; F, 15.86. Found C, 66.72; H, 4.29; N, 4.02; F, 15.61.

5-Bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3k), mixture of

 $\begin{array}{c} & (3R^*,4aR^*)- \text{ and } (3S^*,4aR^*)-\text{diastereomers.} \\ & (3R^*,4aR^*)- \text{ or } (3S^*,4aR^*)-\text{diastereomers.} \\ & (0.104 \text{ g}, 0.5 \text{ mmol}), \\ & (0.104$

°C, yield 0.145 g (68%). Initial quinoline **1c** was recovered (0.007 g, conversion was 93%). IR (microlayer): 3366 (OH), 1636, 1602 (C=C), 1258, 1180, 1097 (C-F) cm⁻¹. (3*R**,4a*R**):(3*S**,4a*R**)-isomers ratio is 97:3 (¹H NMR).

 $(3R^*,4aR^*)$ -**3k**: ¹H NMR (400.1 MHz, CDCl₃): δ 7.51 (m, 2H, H_o from Ph), 7.37 (m, 2H, H_m from Ph), 7.36 (m, 1H, H_p from Ph), 7.22 (s, 1H, H-6), 7.10 (d, ³J_{7,8} = 7.4 Hz, 1H, H-7), 6.90 (m, 1H, H-9), 6.83 (m, 1H, H-8), 6.32 (d, ³J_{9,10} = 8.1 Hz, 1H, H-10), 6.00 (s, 1H, H-2), 5.72 (s, 1H, H-4a), 3.85 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 147.7 (C-2), 136.0 (C-11a), 134.3 (C_i from Ph), 132.3 (C-6), 130.3 (C_p from Ph), 129.3 (C_m from Ph), 128.5 (C-9), 127.5 (C-7), 126.6 (C_o from Ph), 122.4 (q, ¹*J*_{CF} = 284.7 Hz, CF₃), 121.4 (C-6a), 121.3 (C-8), 117.7 (C-10), 111.4 (C-5), 111.1 (C-2), 92.8 (q, ²*J*_{CF} = 33.3 Hz, C-3), 83.1 (C-4a) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.6 (CF₃) ppm.

(3*S**,4a*R**)-3k: ¹H NMR (400.1 MHz, CDCl₃): δ 5.95 (s, 1H, H-2), 5.68 (s, 1H, H-4a) ppm.

Other ¹H and ¹³C signals were not detected due to low concentration of this isomer.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -78.7 (CF₃) ppm.

C₁₉H₁₃BrF₃NO₂ (424.21): calcd C, 53.79; H, 3.09; N, 3.30; Br, 18.84; F, 13.44. Found C, 53.98; H, 3.11; N, 3.68; Br, 18.90; F, 13.27.

Associate of 5-bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]oxazino[3,2-a]quinolin-3-ol and 3-

bromoquinoline (3k') (composition 1:1). Isolated as an admixture in the synthesis of the mixture of $(3R^*,4aR^*)$ -**3k** and $(3S^*,4aR^*)$ -**3k**. Colorless needles, m.p. 146-148 °C (ethanol), yield 0.040 g (13%). IR (microlayer): 1637, 1601 (C=C), 1258, 1177, 1125 (C-F) cm⁻¹; (diluted solution with CCl₄, d = 1 cm): 3568 (OH) cm⁻¹.

¹H NMR (400.1 MHz, CDCl₃): δ 8.91 (s, 1H, H-2'), 8.31 (s, 1H, H-4'), 8.10 (d, ³*J*_{7.8} = 8.6 Hz, 1H, H-8'), 7.70 (m, 2H, H-5', H-7'), 7.54 (m, 1H, H-6'), 7.51 (m, 2H, H_o from Ph), 7.37 (m, 2H, H_m from Ph), 7.36 (m, 1H, H_p from Ph), 7.22 (s, 1H, H-6), 7.10 (d, ${}^{3}J_{7,8} = 7.4$ Hz, 1H, H-7), 6.90 (m, 1H, H-9), 6.83 (m, 1H, H-8), 6.32 (d, ${}^{3}J_{9,10} = 8.1$ Hz, 1H, H-10), 6.00 (s, 1H, H-2), 5.72 (s, 1H, H-4a), 4.63 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 151.4 (C-2'), 147.7 (C-1), 146.2 (C-8a'), 137.7 (C-4'), 136.0 (C-10a), 134.3 (C_i from Ph), 132.3 (C-6), 130.3 (C_p from Ph), 130.0 (C-8'), 129.4 (C-7'), 129.3 (C_m from Ph; C-5'; C-4a'), 128.5 (C-9), 127.5 (C-7), 127.1 (C-6'), 126.6 (C_o from Ph), 122.4 (q, ¹*J*_{CF} = 284.3 Hz, CF₃), 121.4 (C-6a), 121.3 (C-8), 117.7 (C-10), 117.3 (C-3'), 111.4 (C-5), 111.1 (C-2), 92.8 (q, ²*J*_{CF} = 33.3 Hz, C-3), 83.1 (C-4a) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.5 (CF₃) ppm.

C₂₈H₁₉Br₂F₃N₂O₂ (633.27): calcd C, 53.19; H, 3.03; N, 4.43; F, 9.01; Br, 25.28. Found C, 53.53; H, 3.20; N, 4.49; F, 10.00; Br, 24.89.

8-Chloro-1-phenyl-3-(trifluoromethyl)-3H,4aH-[1,3]-oxazino[3,2-a]quinolin-3-ol (3l), mixture of

(3*R**,4a*R**)- and (3*S**,4a*R**)-diastereomers. Obtained from quinoline 1d (0.082 g, 0.5 mmol), acetylene 2a (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure II keeping the reaction mixture for 24 h. White needles, m.p. 127-129 °C

(hexane), yield 0.130 g (68%). Initial quinoline **1d** was recovered (0.015 g, conversion was 82%). IR (microlayer): 3392 (OH), 1638 (C=C), 1259, 1185, 1090 (C-F) cm⁻¹. $(3R^*,4aR^*):(3S^*,4aR^*)$ -isomers ratio is 95:5 (¹H NMR).

 $(3R^*,4aR^*)$ -**3**I: ¹H NMR (400.1 MHz, CDCl₃): δ 7.49 (m, 2H, H_o from Ph), 7.37 (m, 3H, H_{m,p} from Ph), 7.14 (d, ⁴*J*_{7,9} = 1.5 Hz, 1H, H-7), 6.85 (d, ³*J*_{5,6} = 9.4 Hz, 1H, H-6), 6.83 (dd, ³*J*_{9,10} = 8.8 Hz, 1H, H-9), 6.24 (d, ³*J*_{9,10} = 8.8 Hz, 1H, H-10), 6.07 (dd, ³*J*_{5,6} = 9.4 Hz, ³*J*_{4a,5} = 3.8 Hz, 1H, H-5), 5.96 (s, 1H, H-2), 5.64 (d, ³*J*_{4a,5} = 3.8 Hz, 1H, H-4a), 3.22 (s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 148.2 (C-1), 135.7 (C-10a), 134.3 (C_i from Ph), 130.4 (C-6), 129.6 (C_p from Ph), 129.4 (C_m from Ph), 128.7 (C-9), 127.5 (C-7), 126.6 (C_o from Ph), 125.9 (C-8), 122.9 (C-6a), 122.4 (q, ¹*J*_{CF} = 284.3 Hz, CF₃), 119.0 (C-5), 118.8 (C-10), 110.7 (C-2), 92.4 (q, ²*J*_{CF} = 34.1 Hz, C-3), 78.1 (C-4a) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.8 (CF₃) ppm.

 $(3S^*,4aR^*)$ -**31**: ¹H NMR (400.1 MHz, CDCl₃): δ 6.12 (dd, ³*J*_{4a,5} = 4.4 Hz, ³*J*_{5,6} = 9.6 Hz, 1H, H-5), 5.88 (s, 1H, H-2), 5.59 (d, ³*J*_{4a,5} = 4.4 Hz, 1H, H-4a) ppm.

Other ¹H and ¹³C signals were not detected due to low concentration of this isomer.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -79.6 (CF₃) ppm.

C₁₉H₁₃ClF₃NO₂ (379.76): calcd C, 60.09; H, 3.45; N, 3.69; Cl, 9.34; F, 15.01. Found C, 59.91; H, 3.50; N, 3.30; Cl, 9.63; F, 15.13.

(2R*,11bR)-4-Phenyl-2-(trifluoromethyl)-2H,11bH-[1,3]oxazino-[2,3-

a]isoquinolin-2-ol (5). Analogously procedure II, from isoquinoline (4) (0.039 g, 0.3 mmol), acetylene 2a (0.059 g, 0.3 mmol), and H₂O (0.005 g, 0.3 mmol) in 2 mL MeCN (-5~0 °C to 20-24 °C, 4 h) 1,3-oxazinoisoquinoline 5 (0.065 g, 63%) was obtained as an yellow oil. Initial isoquinoline 4 was recovered (0.010 g, conversion was 74%). IR (microlayer): br. 3344 (OH),

1634, 1603 (C=C), 1257, 1179, 1073 (C-F) cm⁻¹.

¹H NMR (400.1 MHz, CDCl₃): δ 7.50-7.40 (m, 7H, H-9, H-11, H_{o,m,p} from Ph), 7.27 (m, 1H, H-10), 7.15 (d, ³*J*_{8,9} = 7.2 Hz, 1H, H-8), 6.35 (d, ³*J*_{6,7} = 7.6 Hz, 1H, H-6), 5.71 (d, ³*J*_{6,7} = 7.6 Hz, 1H, H-7), 5.58 (s, 1H, H-11b), 3.58 (br. s, 1H, OH) ppm.

¹³C NMR (100.6 MHz, CDCl₃): δ 147.6 (C-4), 133.6 (C_i from Ph), 131.6 (C-7a), 130.3 (C_p from Ph), 129.7 (C-6), 129.0 (C_o from Ph), 128.9 (C-9), 128.7 (C_m from Ph), 127.5 (C-11), 126.9 (C-10), 125.3 (C-11a), 124.9 (C-8), 122.6 (q, ¹*J*_{CF} = 285.7 Hz, CF₃), 103.8 (C-3), 101.8 (C-7), 92.6 (q, ²*J*_{CF} = 33.4 Hz, C-2), 79.4 (C-11b) ppm.

¹⁹F NMR (376.5 MHz, CDCl₃): δ -82.0 (CF₃) ppm.

C₁₉H₁₄F₃NO₂ (345.32): calcd C, 66.09; H, 4.09; N, 4.06; F, 16.51. Found C, 65.97; H, 3.98; N, 3.68; F, 16.16.

(6aR,8R*)-10-phenyl-8-(trifluoromethyl)-6aH,8H-[1,3]oxazino[3,2-

a][1,8]naphthyridin-8-ol (7) obtained from 1,8-naphthyridine (6) (0.062 g, 0.475 mmol), acetylene 2a (0.099 g, 0.5 mmol) and H₂O (0.009 g, 0.5 mmol) by procedure I keeping the reaction mixture for 36 h. Pale brown crystals, m.p. 145-147 °C (hexane), yield 0.149 g (91%). ¹H NMR (400.1 MHz, CD₃CN): δ 7.73 (dd,

 ${}^{3}J = 5.0$ Hz, ${}^{4}J = 1.8$ Hz, 1H), 7.55 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.8$ Hz, 1H), 7.49-7.45 (m, 2H, H_o from Ph), 7.37-7.32 (m, 3H, H_{m,p} from Ph), 7.00 (d, ${}^{3}J = 9.7$ Hz, 1H), 6.82 (dd, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 4.9$ Hz, 1H), 6.16 (dd, ${}^{3}J = 9.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H), 5.96 (s, 1H), 5.81 (d, ${}^{3}J = 4.8$ Hz, 1H), 5.48 (s, 1H, OH) ppm. ¹⁹F NMR (376.50 Hz, CD₃CN): δ -82.2 (CF₃) ppm. ¹³C NMR (100.6 Hz, CD₃CN): δ 150.4, 148.6, 147.9, 137.2, 135.9, 129.8, 129.3, 126.7, 123.5 (q, ¹J_{CF} = 285.3 Hz, CF₃), 120.5, 117.8, 116.9, 111.9, 92.9 (q, ²J_{CF} = 33.2 Hz, <u>C</u>-CF₃), 78.8 ppm.

HRMS (ESI-TOF): m/z [M-OH]⁺ Calcd for $C_{18}H_{12}F_3N_2O^+$: 329.0896; found: 329.0899; m/z [M+H]⁺ Calcd for $C_{18}H_{14}F_3N_2O_2^+$: 347.1002; found: 347.1002.

Synthesis of 1,8-naphthyridine 6

Round bottom 250 mL three-neck flask was charged with dioxane (30 mL), water (30 mL), 2aminopyridine (5.00 g, 53 mmol) and glycerol (15.5 mL, 212 mmol) at stirring to give clear solution. After cooling on ice bath, conc. H₂SO₄ (55 mL) were added dropwise at 0-5 °C (about 2.5-3 h). Then, iodine (4.04 g, 15.9 mmol) were added and the reaction mixture was heated at reflux for 15 h (internal temperature 120-125 °C). After cooling to room temperature, the reaction mixture was carefully basified by 50% aq. NaOH solution (200-250 mL). The obtained brown-black syrup-like solution was filtered through a celite pad and extracted with CH₂Cl₂ (6 times by 70-80 mL until no spot of the product were observed on TLC run of new extracted portion). Light brown extract was dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by column chromatography on silica gel (CH₂Cl₂-MeOH 30:1 as an eluent) to give 0.820 g (12%) of 1,8-naphthyridine as a pale brown solid, m.p. 97-99 °C (lit. data: 97-98 °C, E. M. Hawes, D. G. Wibberley, *J. Chem. Soc. [Section] C: Organic*, **1967**, 1564-1568). ¹H NMR (400.1 MHz, CDCl₃): δ 9.04–9.01 (m, 2H), 8.09 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.4 Hz, 2H), 7.38 (dd, ³*J* = 8.1 Hz, ⁴*J* = 4.2 Hz, 2H). ¹³C NMR (100.6 Hz, CDCl₃): δ 155.9, 153.4, 136.9, 122.6, 121.9 ppm. NMR data are in agreement with those in the literature (N. R. Rivera, Y. Hsiao, J. A. Cowen, C. McWilliams, J. Armstrong, N. Yasuda, D. L. Hughes, *Synth. Commun.*, **2001**, *31*, 1573-1579).

¹⁹F NMR spectrum of (3*R**,4a*R**)-3a (376.3 MHz, CD₃CN)

8 Jul 2017

S20

¹⁹F NMR spectrum of (3*R**,4a*R**)-3d (376.3 MHz, CD₃CN)

10 Jul 2017

¹H NMR spectrum of (3*R**,4a*R**)-3e (400.1 MHz, CD₃CN)

10 Jul 2017

Date

Nucleus

100.61

65536

24154.59

FW 391.4078

Number of Transi

File Name

Solve

Acquisition Time (sec) 0.4999

Formula C₂₀H₁₆F₃NO₂S

ORM-D

CHLOROF

Comment

 D:\BN\output\2017\06.èþ í ü\BM-1126.C_002001r

 45
 Original Points Count
 12076

Imported from UXNMR.

Frequency (MHz)

ep Width (Hz)

Points Count

S_k

¹³C NMR spectrum of (3*R**,4a*R**)-**3f** (100.6 MHz, CD₃CN)

10 Jul 2017

10 Jul 2017

¹H NMR spectrum of (3*R**,4a*R**)-3k' (400.1 MHz, CDCl₃)

-95

-10(

11 Jul 2017

¹³C NMR spectrum of (3*R**,4a*R**)-**3n** (100.6 MHz, CD₃CN)

11 Jul 2017

¹H NMR spectrum of $(3R^*, 4aR^*)$ -**3**' (400.1 MHz, CDCl₃)

11 Jul 2017

¹⁹F NMR spectrum of **5** (376.5 MHz, CDCl₃)

¹H NMR spectrum of 7 (400.1 MHz, CD₃CN)

25 Jan 2018

Monitoring of the reaction mixture by ¹⁹F NMR spectrum 28.30 15.95

Fig. 1. The ¹⁹F NMR spectrum of mixture of quinoline 1a phenyltrifluoroacetylacetylene 2a with after 4 hours (a) and after 40 hours (b).

X-ray diffraction structural analysis data

The X-ray diffraction structural analysis was carried out on a Bruker D8 Venture monocrystal diffractometer with a Photon 100 detector using ω -2 θ scanning. The reflection intensities were integrated using the Bruker SAINT monitoring program. X-ray absorption by the crystal was taken into account by analysis of the intensities of equivalent reflections. After averaging the intensities of equivalent reflections, only independent reflections were used. The search for a model was carried out using the SHELXS program (G. M. Sheldrick, *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *A64*, 112) and direct methods, which gave the coordinates of all the non-hydrogen atoms. The structures obtained were refined by method of least squares using the SHELXL program.

The determination of the unit cell and the data collection for 1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (**3a**) (Fig. 2) was performed at 100.0(2) K using the ω - φ scan technique. A specimen of <u>C₁9H₁₄NO₂F₃</u>, approximate dimensions 0.210 mm x 0.330 mm x 0.470 mm, pale, yellow, irregular crystal was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using an monoclinic unit cell with *C2/c* space group yielded a total of 21815 reflections to a maximum θ angle of 26.14° (0.81 Å resolution), of which 3200 were independent (average redundancy 6.817, completeness = 99.4%, Rint = 2.54%, Rsig = 1.53%) and 2855 (89.22%) were greater than $2\sigma(F2)$. The final cell constants of **a** = 19.9333(7) Å, **b** = 9.8491(3) Å, **c** = 16.6571(6) Å, β =98.9990(10)°, Z= 8, volume = 3229.95(19) Å³, are based upon the refinement of the XYZ-centroids of 9996 reflections above 20 $\sigma(I)$ with 4.952° < 2 θ < 52.27°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.912. The H atoms were determined from a difference Fourier synthesis. The unit cell is presented by 2 enantiomers: (3*R*,4a*R*)- and (3*S*,4a*S*)-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2-*a*]quinolin-3-ol (**3a**).

The final anisotropic full-matrix least-squares refinement on F2 with 229 variables converged at R1 = 3.34%, for the observed data and wR2 = 9.00% for all data. The goodness-of-fit was 1.032. The largest peak in the final difference electron density synthesis was 0.34 e⁻/Å³ and the largest hole was - 0.240 e⁻/Å³ with an RMS deviation of 0.055 e⁻/Å³. On the basis of the final model, the calculated density was 1.420 g/cm³ and F(000), 1424 e⁻. CCDC 1545030.

Figure 2. X-ray structure of 1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-[1,3]oxazino[3,2*a*]quinolin-3-ol (3a). Thermal ellipsoids set at 50% probability.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C15	1.3341(14)	C4	C18	1.3992(18)
F2	C15	1.3452(14)	C5	C6	1.4824(16)
F3	C15	1.3422(14)	C5	C12	1.3398(18)
01	C10	1.4758(15)	C6	C7	1.3989(18)
01	C11	1.4217(15)	C6	C14	1.3967(18)
O2	C11	1.3961(15)	C7	C8	1.3889(18)
N1	C4	1.4097(16)	C8	C9	1.385(2)
N1	C5	1.4146(16)	C9	C13	1.388(2)
N1	C10	1.4383(15)	C10	C16	1.4881(17)
C1	C2	1.386(2)	C11	C12	1.5068(16)
C1	C19	1.389(2)	C11	C15	1.5429(18)
C2	C3	1.3952(19)	C13	C14	1.3895(18)
C3	C4	1.4091(18)	C16	C17	1.330(2)
C3	C17	1.4537(19)	C18	C19	1.3912(19)

Table S2. Bond Lengths for 3a.

Table S3. Bond Angles for 3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°

C11	01	C10	111.43(9)	N1	C10	01	108.50(9)
C4	N1	C5	123.03(10)	N1	C10	C16	113.67(11)
C4	N1	C10	120.56(10)	01	C11	C12	113.57(10)
C5	N1	C10	111.27(10)	01	C11	C15	103.48(9)
C2	C1	C19	119.64(13)	O2	C11	01	112.08(9)
C1	C2	C3	120.75(13)	O2	C11	C12	108.62(10)
C2	C3	C4	119.29(13)	O2	C11	C15	109.41(10)
C2	C3	C17	121.89(12)	C12	C11	C15	109.53(10)
C4	C3	C17	118.69(12)	C5	C12	C11	122.45(11)
C3	C4	N1	117.88(11)	C9	C13	C14	120.32(12)
C18	C4	N1	122.43(11)	C13	C14	C6	120.38(12)
C18	C4	C3	119.68(12)	F1	C15	F2	107.35(10)
N1	C5	C6	117.99(11)	F1	C15	F3	107.30(10)
C12	C5	N1	117.11(11)	F1	C15	C11	111.94(10)
C12	C5	C6	124.33(11)	F2	C15	C11	111.60(10)
C7	C6	C5	120.29(11)	F3	C15	F2	106.95(10)
C14	C6	C5	120.65(11)	F3	C15	C11	111.43(10)
C14	C6	C7	118.98(11)	C17	C16	C10	121.19(12)
C8	C7	C6	120.14(12)	C16	C17	C3	121.63(12)
C9	C8	C7	120.61(12)	C19	C18	C4	119.63(12)
C8	C9	C13	119.57(12)	C1	C19	C18	120.78(13)
01	C10	C16	108.12(10)				

Table S4. Torsion Angles for 3a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	C10	C16	C17	-106.99(14)	C5	N1	C10	C16	175.54(10)
01	C11	C12	C5	-15.32(16)	C5	C6	C7	C8	176.73(11)
01	C11	C15	F1	61.72(12)	C5	C6	C14	C13	-176.90(11)
01	C11	C15	F2	-58.63(12)	C6	C5	C12	C11	-175.68(11)
01	C11	C15	F3	-178.12(9)	C6	C7	C8	C9	0.49(19)
02	C11	C12	C5	-140.75(12)	C7	C6	C14	C13	0.00(18)
02	C11	C15	F1	-178.66(9)	C7	C8	C9	C13	-0.6(2)
02	C11	C15	F2	60.99(13)	C8	C9	C13	C14	0.4(2)
02	C11	C15	F3	-58.49(13)	C9	C13	C14	C6	-0.1(2)
N1	C4	C18	C19	-175.01(11)	C10	01	C11	O2	101.39(11)
N1	C5	C6	C7	19.79(16)	C10	01	C11	C12	-22.17(13)
N1	C5	C6	C14	-163.35(11)	C10	01	C11	C15	-140.83(9)
N1	C5	C12	C11	13.24(17)	C10	N1	C4	C3	27.92(16)
N1	C10	C16	C17	13.54(18)	C10	N1	C4	C18	-152.58(12)
C1	C2	C3	C4	2.3(2)	C10	N1	C5	C6	-144.80(11)
C1	C2	C3	C17	-173.53(13)	C10	N1	C5	C12	26.86(15)
C2	C1	C19	C18	-2.7(2)	C10	C16	C17	C3	2.9(2)
C2	C3	C4	N1	174.08(11)	C11	01	C10	N1	61.23(12)
C2	C3	C4	C18	-5.43(18)	C11	01	C10	C16	-175.06(10)
C2	C3	C17	C16	170.74(13)	C12	C5	C6	C7	-151.22(13)

C3	C4	C18	C19	4.48(18)	C12	C5	C6	C14	25.64(18)
C4	N1	C5	C6	60.56(15)	C12	C11	C15	F1	-59.71(13)
C4	N1	C5	C12	-127.78(12)	C12	C11	C15	F2	179.94(10)
C4	N1	C10	01	91.21(13)	C12	C11	C15	F3	60.46(13)
C4	N1	C10	C16	-29.10(16)	C14	C6	C7	C8	-0.19(18)
C4	C3	C17	C16	-5.14(19)	C15	C11	C12	C5	99.81(14)
C4	C18	C19	C1	-0.39(19)	C17	C3	C4	N1	-9.93(17)
C5	N1	C4	C3	-179.69(11)	C17	C3	C4	C18	170.56(12)
C5	N1	C4	C18	-0.19(18)	C19	C1	C2	C3	1.8(2)
C5	N1	C10	01	-64.14(12)					

The determination of the unit cell and the data collection for 5-bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-dihydro-[1,3]oxazino[3,2-a]quinolin-3-ol (3k') (Fig. 3) was performed at 296.15(2) K using the $\omega - \varphi$ scan technique. A specimen of <u>C19H13N1O2F3Br1</u>·C9H6N1Br1, approximate dimensions 0.228 mm x 0.315 mm x 0.513 mm, lustrous, light, block-like crystal was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using an monoclinic unit cell with $P2_1/n$ space group yielded a total of 52763 reflections to a maximum θ angle of 26.73° (0.79 Å resolution), of which 5518 were independent (average redundancy 9.562, completeness = 99.7%, Rint = 5.89%, Rsig = 3.76%) and 3696 (66.98%) were greater than $2\sigma(F2)$. The final cell constants of $\mathbf{a} = 10.054(5)$ Å, $\mathbf{b} = 15.229(9)$ Å, $\mathbf{c} = 17.101(10)$ Å, $\beta = 95.46(2)^{\circ}$, Z = 4, volume = 2606.(3) Å³, are based upon the refinement of the XYZ-centroids of 9890 reflections above 20 σ (I) with 4.541° < $2\theta < 47.61^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.543. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.2940 and 0.5330. The structure was solved and refined using the Bruker SHELXTL Software Package (G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112). The H atoms were determined from a difference Fourier synthesis. The unit cell is presented by 2 enantiomers: (3R,4aR)- and (3S,4aS)-5-bromo-1-phenyl-3-(trifluoromethyl)-3H,4aH-dihydro-[1,3]oxazino[3,2-a]quinolin-3-ol (3k²).

The final anisotropic full-matrix least-squares refinement on F2 with 337 variables converged at R1 = 4.45%, for the observed data and wR2 = 8.89% for all data. The goodness-of-fit was 1.021. The largest peak in the final difference electron density synthesis was 0.56 e⁻/Å³ and the largest hole was - 0.460 e⁻/Å³ with an RMS deviation of 0.076 e⁻/Å³. On the basis of the final model, the calculated density was 1.611 g/cm³ and F(000), 1256 e⁻. CCDC 1545031.

Figure 3. X-ray structure of 5-bromo-1-phenyl-3-(trifluoromethyl)-3*H*,4a*H*-dihydro-[1,3]oxazino[3,2-*a*]quinolin-3-ol (3k'). Thermal ellipsoids set at 50% probability.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C2	1.893(3)	C8	C9	1.360(5)
Br2	C27	1.892(3)	C10	C11	1.375(5)
01	C21	1.455(3)	C10	C19	1.366(5)
01	C22	1.419(3)	C11	C12	1.390(5)
F2	C23	1.342(4)	C12	C13	1.394(4)
F3	C23	1.328(4)	C13	C20	1.402(4)
F4	C23	1.335(4)	C14	C15	1.480(4)
O0AA	C22	1.387(3)	C14	C24	1.339(4)
N1	C1	1.313(4)	C15	C16	1.389(4)
N1	C7	1.372(4)	C15	C25	1.384(4)
N2	C13	1.413(3)	C16	C17	1.379(4)
N2	C14	1.425(3)	C17	C18	1.364(5)
N2	C21	1.439(3)	C18	C26	1.367(5)
C1	C2	1.394(5)	C19	C20	1.399(5)
C2	C3	1.352(5)	C20	C28	1.449(4)
C3	C4	1.423(4)	C21	C27	1.490(4)
C4	C5	1.412(5)	C22	C23	1.535(4)
C4	C7	1.411(4)	C22	C24	1.504(4)
C5	C6	1.354(5)	C25	C26	1.385(4)
C6	C8	1.398(6)	C27	C28	1.322(4)
C7	C9	1.411(4)			

Table S5. Bond Lengths for 3k'.

Table S6. Bond Angles for 3k'.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C22	01	C21	110.2(2)	C25	C15	C16	118.1(3)
C1	N1	C7	118.1(3)	C17	C16	C15	120.5(3)
C13	N2	C14	122.4(2)	C18	C17	C16	120.6(3)
C13	N2	C21	120.5(2)	C17	C18	C26	120.0(3)
C14	N2	C21	110.7(2)	C10	C19	C20	120.9(3)
N1	C1	C2	123.2(3)	C13	C20	C28	119.0(3)
C1	C2	Br1	117.7(2)	C19	C20	C13	119.4(3)
C3	C2	Br1	122.1(3)	C19	C20	C28	121.5(3)
C3	C2	C1	120.3(3)	01	C21	C27	108.5(2)
C2	C3	C4	118.9(3)	N2	C21	01	110.2(2)
C5	C4	C3	123.9(3)	N2	C21	C27	112.2(2)
C7	C4	C3	117.2(3)	01	C22	C23	104.3(2)
C7	C4	C5	118.8(3)	01	C22	C24	112.4(2)
C6	C5	C4	120.6(4)	O0AA	C22	01	112.5(2)
C5	C6	C8	120.3(4)	O0AA	C22	C23	109.9(3)
N1	C7	C4	122.2(3)	O0AA	C22	C24	107.5(2)
N1	C7	C9	118.4(3)	C24	C22	C23	110.2(2)
C9	C7	C4	119.4(3)	F2	C23	C22	110.2(3)
C9	C8	C6	121.1(4)	F3	C23	F2	107.8(3)
C8	C9	C7	119.8(4)	F3	C23	F4	107.3(3)
C19	C10	C11	119.8(3)	F3	C23	C22	112.4(3)
C10	C11	C12	120.9(3)	F4	C23	F2	107.1(3)
C11	C12	C13	119.9(3)	F4	C23	C22	111.8(3)
C12	C13	N2	122.5(3)	C14	C24	C22	124.1(3)
C12	C13	C20	119.0(3)	C15	C25	C26	120.9(3)
C20	C13	N2	118.5(3)	C18	C26	C25	120.0(3)
N2	C14	C15	118.6(2)	C21	C27	Br2	114.6(2)
C24	C14	N2	117.6(2)	C28	C27	Br2	122.6(2)
C24	C14	C15	123.2(3)	C28	C27	C21	122.8(3)
C16	C15	C14	121.2(3)	C27	C28	C20	120.5(3)
C25	C15	C14	120.7(2)				

Table S7. Torsion Angles for 3k'.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
Br1	C2	C3	C4	179.8(2)	C11	C10	C19	C20	0.9(6)
Br2	C27	C28	C20	179.6(2)	C11	C12	C13	N2	-174.4(3)
01	C21	C27	Br2	75.4(2)	C11	C12	C13	C20	3.9(5)
01	C21	C27	C28	-105.4(3)	C12	C13	C20	C19	-3.9(5)
01	C22	C23	F2	-178.8(2)	C12	C13	C20	C28	174.6(3)
01	C22	C23	F3	60.9(3)	C13	N2	C14	C15	61.6(3)
01	C22	C23	F4	-59.9(3)	C13	N2	C14	C24	-127.4(3)
01	C22	C24	C14	-2.5(4)	C13	N2	C21	01	91.3(3)
O0AA	C22	C23	F2	-58.0(3)	C13	N2	C21	C27	-29.8(3)
O0AA	C22	C23	F3	-178.3(3)	C13	C20	C28	C27	-5.9(5)

O0AA	C22	C23	F4	60.9(3)	C14	N2	C13	C12	-6.4(4)
O0AA	C22	C24	C14	-126.9(3)	C14	N2	C13	C20	175.3(3)
N1	C1	C2	Br1	179.2(3)	C14	N2	C21	01	-61.2(3)
N1	C1	C2	C3	-2.2(5)	C14	N2	C21	C27	177.7(2)
N1	C7	C9	C8	-178.0(3)	C14	C15	C16	C17	-176.4(3)
N2	C13	C20	C19	174.4(3)	C14	C15	C25	C26	177.1(3)
N2	C13	C20	C28	-7.0(4)	C15	C14	C24	C22	177.5(3)
N2	C14	C15	C16	-155.6(3)	C15	C16	C17	C18	-0.8(5)
N2	C14	C15	C25	26.9(4)	C15	C25	C26	C18	-0.6(5)
N2	C14	C24	C22	7.0(4)	C16	C15	C25	C26	-0.5(5)
N2	C21	C27	Br2	-162.51(19)	C16	C17	C18	C26	-0.3(5)
N2	C21	C27	C28	16.6(4)	C17	C18	C26	C25	1.0(5)
C1	N1	C7	C4	2.0(5)	C19	C10	C11	C12	-1.0(6)
C1	N1	C7	C9	-178.8(3)	C19	C20	C28	C27	172.6(3)
C1	C2	C3	C4	1.2(5)	C21	01	C22	O0AA	89.0(3)
C2	C3	C4	C5	-180.0(3)	C21	01	C22	C23	-152.0(2)
C2	C3	C4	C7	1.1(5)	C21	01	C22	C24	-32.6(3)
C3	C4	C5	C6	-178.7(4)	C21	N2	C13	C12	-155.6(3)
C3	C4	C7	N1	-2.8(4)	C21	N2	C13	C20	26.1(4)
C3	C4	C7	C9	178.0(3)	C21	N2	C14	C15	-146.5(2)
C4	C5	C6	C8	0.4(6)	C21	N2	C14	C24	24.5(3)
C4	C7	C9	C8	1.2(5)	C21	C27	C28	C20	0.5(5)
C5	C4	C7	N1	178.2(3)	C22	01	C21	N2	66.0(3)
C5	C4	C7	C9	-1.0(5)	C22	01	C21	C27	-170.7(2)
C5	C6	C8	C9	-0.2(6)	C23	C22	C24	C14	113.4(3)
C6	C8	C9	C7	-0.6(5)	C24	C14	C15	C16	34.0(4)
C7	N1	C1	C2	0.5(5)	C24	C14	C15	C25	-143.6(3)
C7	C4	C5	C6	0.2(5)	C24	C22	C23	F2	60.3(3)
C10	C11	C12	C13	-1.4(5)	C24	C22	C23	F3	-60.0(3)
C10	C19	C20	C13	1.6(5)	C24	C22	C23	F4	179.2(3)
C10	C19	C20	C28	-176.9(4)	C25	C15	C16	C17	1.2(4)