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The synthesis and purification of Gd2@C79N is as reported in Reference 15 ‘Gd2@C79N: Isolation, 
Characterization, and Monoadduct Formation of a Very Stable Heterofullerene with a Magnetic Spin State of S = 
15/2’. 

	

	
Figure S1. Experimental cw EPR spectra of Gd2@C79N at measured at 94 GHz and 20 K, and at 9.4 GHz and 4 K 
(red solid) cited from ref. 15 and simulated spectra at both conditions (black dash) using EasySpin1. Input 
parameters based on reported values in ref. 15 are shown in Table S1. 

 
 
Table S1 Input parameters for cw EPR spectra simulation of Gd2@C79N at 94 GHz and 20 K, and at 9.4 GHz and 4 
K using EasySpin. 
 

S g-factor D / MHz E / MHz D-Strain / MHz isotropic broadening (Gaussian) / mT 
15/2 1.978 966 112 112 22 
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Figure S2. Simulated cw EPR spectra of Gd2@C79N at measured at 140 GHz and 1.2 K (top), and 95 GHz and 6.5 K 
(bottom), using EasySpin1. Input parameters based on reported values in ref. 15 are shown in Table S1. The figure 
shows that only the maximum spin projection states are populated under the conditions used in the DNP 
experiment (140GHz, 5T and 1.2K). 
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Figure S3. TM echo signal decay curves at 3.35 T and 6.5 K for the samples of 40 mM TEMPO with (red) and 
without (black) 60 μM Gd2@C79N.  

	

	
Figure S4. Experimental ELDOR spectra measured at texcite value of 3.9 ms (yellow line) and 23 ms (red line) and fits 
(black lines) using parameters in Table 1 with detection frequencies at δ=−189 MHz for the sample of 40 mM 
TEMPO + 60 μM Gd2@C79N.  
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Figure S5. Experimental ELDOR spectra measured at texcite value of 3.9 ms with detection frequencies at δ=−189 
MHz (yellow line) and δ=−219 MHz (blue line), and fits (black lines) using parameters in Table 1 for the sample of 
40 mM TEMPO + 60 μM Gd2@C79N.  

	
Figure S6. Experimental ELDOR spectra measured at texcite value of 23 ms with detection frequencies at δ=−189 
MHz (red line) and δ=−219 MHz (blue line), and fits (black lines) using parameters in Table 1 for the sample of 40 
mM TEMPO + 60 μM Gd2@C79N.  

 

DNP experiment parameters: 

The DNP polarizer consisted of a Bruker 89 mm bore 5 T NMR magnet and a continuous-flow cryostat. 
Continuous wave microwave irradiation at 140.71 GHz using 120 mW of power was used to create DNP 
polarization. The steady state DNP enhancements were measured after approximately 3 hours’ build up time to 
ensure full polarization of the samples and 1H spin signal decay rates after polarization were monitored by small flip 
angle pulses at 212 MHz. 1H DNP and NMR experiments were performed with same sample volume. For 13C DNP 
and NMR, different volumes were used for samples of 40 mM 4-oxo-TEMPO with and without Gd2@C79N. For 
each sample, the on/off DNP enhancement factor was calculated using steady-state NMR signals by turning MW 
on and off during signal buildup and acquisition. 
	

 
Figure S7.  Decay curves of hyperpolarized proton signal of toluene mixed with 40 mM 4-oxo-TEMPO (black 
square) and 40 mM 4-oxo-TEMPO doped with 60 uM Gd2@C79N (red dot). 
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Figure S8.  1H DNP spectra of toluene by 40 mM 4-oxo-TEMPO with and without 60 uM Gd2@C79N. 
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Figure S9.  13C NMR and DNP spectra of 67% 13C isotope enriched toluene by 40 mM 4-oxo-TEMPO with and 
without 60 uM Gd2@C79N. 

 

Reference: 

1. S. Stoll and A. Schweiger, Journal of Magnetic Resonance, 2006, 178, 42 – 55. 


