Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

> Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supplementary Information**

For

## Nitrogen Atom Transfer Mediated by a New PN<sup>3</sup>P-Pincer Nickel Core via a Putative Nitrido Nickel Intermediate

Changguang Yao, Xiufang Wang and Kuo-Wei Huang\*

## **Table of Contents**

Table S1 Selected bond lengths (Å) or angles (°) of complexes 2-5 Fig. S1 FT-IR spectrum of complex 2 Fig. S2 <sup>1</sup>H NMR spectrum of complex 2 Fig. S3 <sup>31</sup>PNMR spectrum of complex 2 Fig. S4 <sup>13</sup>C NMR spectrum of complex 2 Fig. S5 FT-IR spectrum of complex 3a Fig. S6 <sup>1</sup>H NMR spectrum of complex 3a Fig. S7 <sup>31</sup>P NMR spectrum of complex 3a Fig. S8 <sup>13</sup>C NMR spectrum of complex 3a Fig. S9 FT-IR spectrum of complex 3b Fig. S10 <sup>1</sup>H NMR spectrum of complex 3b Fig. S11 <sup>31</sup>P NMR spectrum of complex 3b Fig. S12 <sup>13</sup>C NMR spectrum of complex 3b Fig. S13 <sup>1</sup>H NMR spectrum of complex 1-Br Fig. S14 <sup>31</sup>P NMR spectrum of complex 1-Br Fig. S15<sup>13</sup>C NMR spectrum of complex 1-Br Fig. S16<sup>1</sup>H NMR spectrum of complex 1-I Fig. S17 <sup>31</sup>P NMR spectrum of complex 1-I Fig. S18<sup>13</sup>C NMR spectrum of complex 1-I Fig. S19 1H NMR spectrum of 4a Fig. S20<sup>13</sup>C NMR spectrum of 4a Fig. S21 <sup>1</sup>H NMR spectrum of 4b Fig. S22 <sup>13</sup>C NMR spectrum of 4b Fig. S23 <sup>1</sup>H NMR spectrum of 4c Fig. S24<sup>13</sup>C NMR spectrum of 4c Fig. S25 <sup>1</sup>H NMR spectrum of 4d Fig. S26<sup>13</sup>C NMR spectrum of 4d Fig. S27 <sup>1</sup>H NMR spectrum of 4e Fig. S28<sup>13</sup>C NMR spectrum of 4e Fig. S29 <sup>1</sup>H NMR spectrum of 4f Fig. S30 <sup>13</sup>C NMR spectrum of 4f Fig. S31 <sup>1</sup>H NMR spectrum of 4g Fig. S32 <sup>13</sup>C NMR spectrum of 4g Fig. S33 <sup>1</sup>H NMR spectrum of complex 5 Fig. S34 <sup>31</sup>P NMR spectrum of complex 5 Fig. S35 <sup>13</sup>C NMR spectrum of complex 5 Fig. S36 <sup>1</sup>H NMR spectrum of the reaction of complex 3b and <sup>*t*</sup>BuNC Fig. S37 <sup>13</sup>C NMR spectrum of the reaction of complex 3b and <sup>t</sup>BuNC Fig. S38 ESI-MS spectrum of ArNCNH (Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)
Fig. S39 HRMS spectrum of complex 2
Fig. S40 HRMS spectrum of complex 3a
Fig. S41 HRMS spectrum of complex 3b
Fig. S42 HRMS spectrum of complex 5
Fig. S43 HRMS spectrum of compound 4a
Fig. S44 HRMS spectrum of compound 4b
Fig. S45 HRMS spectrum of compound 4c
Fig. S46 HRMS spectrum of compound 4d
Fig. S47 HRMS spectrum of compound 4e
Fig. S48 HRMS spectrum of compound 4f
Fig. S49 HRMS spectrum of compound 4g
Scheme S1 Proposed mechanism for the formation of complex 5, (PN<sup>3</sup>P)Ni(CN)
Table S2 Summary of Crystallographic Data for complexes 1-I and 1-Br

## **Experimental Procedures**

General Procedures. All experiments (if not mentioned otherwise) with metal complexes were carried out under an atmosphere of dry argon in a glovebox or using standard Schlenk techniques. All glassware was rigorously dried. All solvents were distilled from sodium benzophenone ketyl prior to use. All other chemicals were commercially available and used as received. Complex **1** was prepared according to the literature procedure (ref. 55). NMR spectra were recorded at 400 MHz (<sup>1</sup>H), 101 MHz (<sup>13</sup>C), and 162 MHz (<sup>31</sup>P) using a Bruker Avance-400 NMR spectrometer, 500 MHz (<sup>1</sup>H) and 126 MHz (<sup>13</sup>C) using a Bruker Avance-500 NMR spectrometer, and 600 MHz (<sup>1</sup>H), 151 MHz (<sup>13</sup>C), and 243 MHz (<sup>31</sup>P) using a Bruker Avance-600 NMR spectrometer. All spectra were recorded at 25 °C. All chemical shifts were reported in  $\delta$  units with references to the residual solvent resonance of the deuterated solvents for proton and carbon chemical shifts, and to external H<sub>3</sub>PO4 (85%) for phosphorus chemical shifts. Elemental analyses were carried out on a Flash 2000 elemental analyzer.

**Synthesis of complex 2, (PN<sup>3</sup>P)Ni(N<sub>3</sub>).** A toluene solution of N<sub>3</sub>SiMe<sub>3</sub> (230 mg, 2.0 mmol in 5 mL of toluene) and AgF (254 mg, 2.0 mmol) were added to the toluene solution of (PN<sup>3</sup>P)NiCl (575 mg, 1.0 mmol in 10 mL of toluene). The resulting suspension was stirred 3 days at room temperature, filtered and all the volatiles were removed *in vacuo* to yield a red solid. The elemental analysis sample was crystallized from pentane (523 mg, 90.0 %). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 5.37 (t, *J* = 3.2 Hz, 1H, -C(Et)=C*H*-), 2.48 (q, *J* = 7.5 Hz, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 2.03 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.46 (m, 36H, -PC(C*H*<sub>3</sub>)<sub>3</sub>), 1.26 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.10 (t, *J* = 7.4 Hz, 3H, -CH<sub>2</sub>C*H*<sub>3</sub>), 0.65 (t, *J* = 7.4 Hz, 6H, -CH<sub>2</sub>C*H*<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 109.73 (d, *J* = 284.0 Hz, 1P), 107.84 (d, *J* = 284.0 Hz, 1P). <sup>13</sup>C NMR (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C):  $\delta$  = 182.3 (m, -N=C-), 170.5 (m, -N=C-), 139.4 (s, -C(Et)=C*H*-), 135.7 (m, -C(Et)=C*H*-), 50.4 (m, -C(Et)<sub>2</sub>), 37.2 (m, -PC(CH<sub>3</sub>)<sub>3</sub>), 36.3 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 28.2 (s, -PC(CH<sub>3</sub>)<sub>3</sub>), 28.0 (s, -PC(CH<sub>3</sub>)<sub>3</sub>), 27.1 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 14.6 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.8 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) Calcd. for

C<sub>27</sub>H<sub>52</sub>N<sub>6</sub>P<sub>2</sub>Ni requires (M+H)<sup>+</sup> 581.3155, Found: 581.3138; Elemental analysis (%) for C<sub>27</sub>H<sub>52</sub>N<sub>6</sub>P<sub>2</sub>Ni: Calc. C, 55.78; H, 9.02; N, 14.46. Found: C, 56.02; H, 8.87; N, 14.74.

Synthesis of complex 3a, (PN<sup>3</sup>P)Ni(NCN'Bu). A solution of 'BuNC (10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) was added to the solution of (PN<sup>3</sup>P)Ni(N<sub>3</sub>) (5.80 mg, 10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) in a *J-Young* NMR tube. The red solution was irradiated for 48 hours, during which the color of the solution changed to yellow and completion of the reaction was confirmed by <sup>31</sup>P NMR spectroscopy. Removal of volatiles *in vacuo* resulted in a yellow solid that was used for analysis in NMR experiments. Crystals suitable for X-ray diffraction were grown by slow evaporation of a pentane solution (5.63 mg, 88.4 %). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 5.38$  (t, J = 3.2 Hz, 1H, -C(Et)=CH-), 2.49 (q, J = 7.4 Hz, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 2.04 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.50 (m, 45H, -PC(CH<sub>3</sub>)<sub>3</sub>, -C(CH<sub>3</sub>)<sub>3</sub>), 1.27 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.12 (t, J = 7.4 Hz, 3H, -CH<sub>2</sub>CH<sub>3</sub>), 0.66 (t, J = 7.4 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>). <sup>31</sup>P <sup>1</sup>H NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 109.85$  (d, J = 285.1 Hz, 1P). <sup>13</sup>C NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)  $\delta = 182.1$  (m, -N=C-), 170.4 (m, -N=C-), 142.6 (s, -NCN'Bu), 139.2 (s, -C(Et)=CH-), 135.7 (m, -C(Et)=CH-), 52.7 (s, -C(CH<sub>3</sub>)<sub>3</sub>), 27.2 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 14.7 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.8 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) Calcd. for C<sub>32</sub>H<sub>61</sub>N<sub>5</sub>P<sub>2</sub>Ni requires (M+H)<sup>+</sup> 636.3828, Found: 636.3810;

**Synthesis of complex 3b, (PN<sup>3</sup>P)Ni(NCNAr).** Following the procedure described for **3a**, reaction of ArNC (1.31 mg, 10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) and (PN<sup>3</sup>P)Ni(N<sub>3</sub>) (5.80 mg, 10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) gave **3b** as a yellow solid (6.34 mg, 92.5 %). <sup>1</sup>H NMR (600 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 7.13 (d, *J* = 7.4 Hz, 1H, Ar*H*), 6.90 (t, *J* = 7.4 Hz, 1H, Ar*H*), 5.38 (t, *J* = 3.2 Hz, 1H, -C(Et)=C*H*-), 2.62 (s, 6H, ArC*H*<sub>3</sub>), 2.48 (q, *J* = 7.4 Hz, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 2.02 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.43 (m, 36H, -PC(C*H*<sub>3</sub>)<sub>3</sub>), 1.27 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.10 (t, *J* = 7.4 Hz, 3H, -CH<sub>2</sub>C*H*<sub>3</sub>), 0.65 (t, *J* = 7.4 Hz, 6H, -CH<sub>2</sub>C*H*<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (243 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 111.76 (d, *J* = 279.6 Hz, 1P), 110.44 (d, *J* = 279.6 Hz, 1P). <sup>13</sup>C NMR (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C):  $\delta$  = 182.4 (m, -N=C-), 170.5 (m, -N=C-), 145.3 (s, -NCNAr), 139.4 (s, -C(Et)=C*H*-), 135.6 (m, -C(Et)=CH-), 131.2 (s, Ar*C*), 128.2 (s, Ar*C*), 128.1 (s, Ar*C*), 120.3(s, Ar*C*), 50.3 (m, -C(Et)<sub>2</sub>), 37.4 (m, -PC(CH<sub>3</sub>)<sub>3</sub>), 36.3 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 28.2 (m, -PC(CH<sub>3</sub>)<sub>3</sub>), 27.2 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 19.9 (s, Ar*Me*), 14.6 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.8 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) Calcd. for C<sub>36</sub>H<sub>61</sub>N<sub>5</sub>P<sub>2</sub>Ni requires (M+H)<sup>+</sup> 684.3828, Found: 684.3807; Elemental analysis (%) for C<sub>36</sub>H<sub>61</sub>N<sub>5</sub>P<sub>2</sub>Ni: Calc. C, 63.16; H, 8.98; N, 10.23. Found: C, 62.93; H, 8.91; N, 10.04.

Synthesis of complexes 1-Br/1-I and unsymmetrical carbodiimides 4a-4g. Excess amount of alkyl bromide or iodide (RBr or RI) was added to the solution of complex 3b (6.84 mg, 10.0  $\mu$ mol in 0.6 mL of C<sub>6</sub>D<sub>6</sub>) in a *J-Young* NMR tube. The solution was heated to 60 °C for 12 hours, and then all of the volatiles were removed *in vacuo* resulting in an orange or dark red solid (1-Br/1-I and carbodiimide) that was used for analysis in NMR experiments. The solid was extracted using deuterated acetonitrile (CD<sub>3</sub>CN) and subsequently crystalized the resultant solution at – 30 °C, a pure unsymmetrical carbodiimide (4b-4e) was obtained after removing the precipitate. Compounds 4a, 4f and 4g were purified by flash column chromatography. The elemental analysis samples of 1-Br and 1-I were crystallized from pentane.

**1-Br** (5.72 mg, 94.2 %; isolated yield): <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 5.42$  (t, J = 3.3 Hz, 1H, -C(Et)=CH-), 2.53 (q, J = 7.0 Hz, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 2.15–2.00 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.59-1.53 (m, 36H, -PC(CH<sub>3</sub>)<sub>3</sub>), 1.38–1.23 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.14 (t, J = 7.4 Hz, 3H, -CH<sub>2</sub>CH<sub>3</sub>), 0.70 (t, J = 7.4 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>); <sup>31</sup>P{<sup>1</sup>H}, NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 106.94$  (d, J = 286.7 Hz, 1P), 106.84 (d, J = 286.7 Hz, 1P). <sup>13</sup>C NMR (151 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 181.64-181.56$  (m, -N=*C*-), 170.05–169.96 (m, -N=*C*-), 139.11 (s, -C(Et)=CH-), 135.73 (dd, J = 11.2 Hz, 3.2 Hz, -C(Et)=CH-), 50.43–50.34 (m, -C(Et)<sub>2</sub>), 38.30 (dt, J = 14.8 Hz, 7.6 Hz, -PC(CH<sub>3</sub>)<sub>3</sub>), 36.44 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 28.69 (d, J = 33.2 Hz, -PC(CH<sub>3</sub>)<sub>3</sub>), 27.38 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 14.71 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.87 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). Elemental analysis (%) for C<sub>27</sub>H<sub>52</sub>BrN<sub>3</sub>NiP<sub>2</sub>: Calc. C, 52.37; H, 8.46; N, 6.79. Found: C, 52.56; H, 8.59; N, 6.66.

**1-I** (6.36 mg, 95.5 %; isolated yield): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 5.43 (t, *J* = 3.3 Hz, 1H, -C(Et)=C*H*-), 2.56 (q, *J* = 7.5 Hz, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 2.26–1.97 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.75–1.43 (m, 36H, -PC(C*H*<sub>3</sub>)<sub>3</sub>), 1.38–1.28 (m, 2H, -C*H*<sub>2</sub>CH<sub>3</sub>), 1.14 (t, *J* = 7.4 Hz, 3H, -CH<sub>2</sub>C*H*<sub>3</sub>), 0.71 (t, *J* = 7.4 Hz, 6H, -CH<sub>2</sub>C*H*<sub>3</sub>); <sup>31</sup>P{<sup>1</sup>H}, NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 112.71 (d, *J* = 270.7 Hz, 1P), 112.60 (d, *J* = 270.7 Hz, 1P). <sup>13</sup>C NMR (151 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 181.10–181.03 (m, -N=*C*-), 169.67–169.59 (m, -N=*C*-), 139.03 (s, -C(Et)=C*H*-), 135.66 (dd, *J* = 12.0 Hz, 4.9 Hz, -C(Et)=CH-), 50.34 (m, -C(Et)<sub>2</sub>), 39.02–38.85 (m, -PC(CH<sub>3</sub>)<sub>3</sub>), 36.50 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 29.09 (d, *J* = 31.3 Hz, -PC(CH<sub>3</sub>)<sub>3</sub>), 27.45 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 14.73 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.89 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). Elemental analysis (%) for C<sub>27</sub>H<sub>52</sub>IN<sub>3</sub>NiP<sub>2</sub>: Calc. C, 48.67; H, 7.87; N, 6.31. Found: C, 48.83; H, 7.96; N, 6.18.

**4a** (99 %; NMR yield): <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN)  $\delta$  = 7.41 (m, 5H, Ph-*H*), 7.21–7.14 (m, 2H, Ph-*H*), 4.42 (s, 2H, -NCNC*H*<sub>2</sub>Ph), 2.29 (s, 6H, PhC*H*<sub>3</sub>); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.42, 137.37, 135.88, 130.66, 130.17, 129.73 (t, *J* = 6.5 H), 57.82, 18.23; HRMS (APCI) Calcd. for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 237.1392, Found: 237.1386.

**4b** (99 %; NMR yield): <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  7.21–7.13 (m, 3H, Ph-*H*), 3.14 (s, 3H, NC*H*<sub>3</sub>), 2.38 (s, 6H, PhC*H*<sub>3</sub>); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 139.13, 137.15, 130.03, 129.64, 117.41, 40.84, 17.67; HRMS (APCI) Calcd. for C<sub>10</sub>H<sub>12</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 161.1079, Found: 161.1073.

**4c** (99 %; NMR yield): <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  7.21–7.13 (m, 3H, Ph-*H*), 3.33 (q, *J* = 7.3 Hz, 2H, NCH<sub>2</sub>CH<sub>3</sub>), 2.36 (s, 6H, PhCH<sub>3</sub>), 1.34 (t, *J* = 7.3 Hz, 3H, NCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.71, 137.28, 130.04, 129.52, 116.02, 48.40, 18.05, 13.52; HRMS (APCI) Calcd. for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 175.1235, Found: 175.1230.

**4d** (99 %; NMR yield): <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN)  $\delta$  = 7.20–7.14 (m, 3H, Ph-*H*), 3.55 (pd, *J* = 6.5 Hz, 0.9 Hz, 1H, -C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.36 (s, 6H, PhC*H*<sub>3</sub>), 1.29 (dd, *J* = 6.5 Hz, 0.9 Hz, 6H, -CH(C*H*<sub>3</sub>)<sub>2</sub>); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.06, 137.49, 130.18, 129.33, 115.04, 54.62, 21.15, 18.54; HRMS (APCI) Calcd. for C<sub>12</sub>H<sub>16</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 189.1392, Found: 189.1386.

**4e** (92 %; NMR yield): <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN)  $\delta$  = 7.20–7.14 (m, 3H, Ph-*H*), 3.68 (p, *J* = 6.9 Hz, 1H, -*CH*(CH<sub>2</sub>)<sub>2</sub>), 2.36 (s, 6H, Ph*CH*<sub>3</sub>), 2.00–1.96 (m, 2H, -*CH*<sub>2</sub>-), 1.84-1.77 (m, 4H, -*CH*<sub>2</sub>-), 1.64–1.59 (m, 2H, -*CH*<sub>2</sub>-); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.84, 137.39, 130.10, 129.38, 115.23, 64.65, 31.92, 24.10, 18.50; HRMS (APCI) Calcd. for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 215.1548, Found: 215.1543.

**4f** (99 %; NMR yield): <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  = 7.21–7.14 (m, 3H, Ph-*H*), 6.07 (ddt, *J* = 17.0 Hz, 10.1Hz, 6.9Hz, 1H, CH<sub>2</sub>=CHCH<sub>2</sub>-), 5.42–5.32 (m, 2H, CH<sub>2</sub>=CHCH<sub>2</sub>-), 3.90 (dt, *J* =7.0 Hz, 1.1 Hz, 2H, CH<sub>2</sub>=CHCH<sub>2</sub>-), 2.38 (s, 6H, PhCH<sub>3</sub>); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.64, 137.30, 132.52, 130.06, 129.65, 121.68, 116.03, 56.55, 18.24; HRMS (APCI) Calcd. for C<sub>12</sub>H<sub>14</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 187.1235, Found: 187.1230.

**4g** (99 %; NMR yield): <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  = 7.23–7.15 (m, 3H, Ph-*H*), 4.18 (d, *J* = 2.6 Hz, 2H, CHCC*H*<sub>2</sub>-), 2.83 (s, 1H, C*H*CCH<sub>2</sub>-), 2.40 (s, 6H, PhC*H*<sub>3</sub>); <sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN)  $\delta$  = 138.03, 137.55, 130.11, 130.04, 115.39, 77.64, 76.94, 43.63, 18.16; HRMS (APCI) Calcd. for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub> requires (M+H)<sup>+</sup> 185.1079, Found: 185.1073.

**Synthesis of complex 5, (PN<sup>3</sup>P)Ni(CN).** A solution of 'BuNC (10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) was added to a solution of (PN<sup>3</sup>P)Ni(NCN'Bu) (6.36 mg, 10.0  $\mu$ mol in 0.3 mL of C<sub>6</sub>D<sub>6</sub>) was put in a *J*-Young NMR tube. The red solution was heated to 60 °C for 24 hours, during which the color of the solution changed to yellow and completion of the reaction was confirmed by <sup>31</sup>P NMR spectroscopy. Removal of volatiles *in vacuo* resulted in a yellow solid that was used for analysis in NMR experiments. Crystals suitable for X-ray diffraction were grown by slow evaporation of a pentane solution (5.27 mg, 93.3 %). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 5.44$  (t, J = 3.2 Hz, 1H, -C(Et)=CH-), 2.53 (q, J = 7.3 Hz, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 2.07 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.58–1.37 (m, 36H, -PC(CH<sub>3</sub>)<sub>3</sub>), 1.31 (m, 2H, -CH<sub>2</sub>CH<sub>3</sub>), 1.13 (t, J = 7.4 Hz, 3H, -CH<sub>2</sub>CH<sub>3</sub>), 0.66 (t, J = 7.4 Hz, 6H, -CH<sub>2</sub>CH<sub>3</sub>).<sup>31</sup>P{<sup>1</sup>H} NMR (243 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta = 124.49$  (d, J = 225.6 Hz, 1P), 123.18 (d, J = 225.6 Hz, 1P).<sup>13</sup>C NMR (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)  $\delta = 181.7$  (m, -N=C-), 169.8 (m, -N=C-), 139.9 (s, -C(Et)=CH-), 135.6 (m, -C(Et)=CH-), 125.1 (m, -CN), 50.2 (m, -C(Et)<sub>2</sub>), 37.6 (m, -PC(CH<sub>3</sub>)<sub>3</sub>), 36.3 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 28.5 (s, -PC(CH<sub>3</sub>)<sub>3</sub>), 28.2 (s, -PC(CH<sub>3</sub>)<sub>3</sub>), 27.2 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 14.7 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)=CH-), 9.8 (s, -C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) Calcd. for C<sub>28</sub>H<sub>52</sub>N<sub>4</sub>P<sub>2</sub>Ni requires (M+H)<sup>+</sup> 565.3094, Found: 565.3077.

| Bond lengths (Å) or angles(°) | 2           | <b>3</b> a | 3b         | 5          |
|-------------------------------|-------------|------------|------------|------------|
| Ni(1)-N(1)                    | 1.8913(12)  | 1.8906(19) | 1.880(4)   | 1.888(2)   |
| Ni(1)-P(1)                    | 2.2151(4)   | 2.1924(7)  | 2.1912(15) | 2.1825(7)  |
| Ni(1)-P(2)                    | 2.1942(4)   | 2.2020(7)  | 2.1870(18) | 2.1793(8)  |
| Ni(1)-N(4)                    | 1.8790(13)  | 1.835(2)   | 1.843(6)   | -          |
| N(4)-N(5)                     | 1.204(2)    | -          | -          | -          |
| N(5)-N(6)                     | 1.155(2)    | -          | -          | -          |
| N(4)-C(28)                    | -           | 1.159(4)   | 1.108(8)   | 1.145(5)   |
| C(28)-N(5)                    | -           | 1.266(5)   | 1.229(9)   | -          |
|                               |             |            |            |            |
| N(1)-Ni(1)-N(4)               | 172.02(6)   | 175.86(12) | 178.9(2)   | -          |
| N(1)-Ni(1)-C(28)              | -           | -          | -          | 177.97(16) |
| P(1)-Ni(1)-P(2)               | 165.629(17) | 166.15(3)  | 166.30(7)  | 166.84(3)  |
| Ni(1)-N(4)-N(5)               | 129.05(12)  | -          | -          | -          |
| Ni(1)-N(4)-C(28)              | -           | 168.6(3)   | 172.5(6)   | -          |
| Ni(1)-C(28)-N(4)              | -           | -          | -          | 177.8(5)   |
| N(4)-N(5)-N(6)                | 176.16(19)  | -          | -          | -          |
| N(4)-C(28)-N(5)               | -           | 169.4(5)   | 172.4(7)   | -          |
| N(1)-Ni(1)-P(1)               | 83.29(4)    | 83.05(6)   | 83.24(12)  | 83.49(7)   |
| N(1)-Ni(1)-P(2)               | 82.83(4)    | 83.11(6)   | 83.07(13)  | 83.35(7)   |
| N(4)-Ni(1)-P(1)               | 98.74(4)    | 95.91(8)   | 95.8(2)    | -          |
| C(28)-Ni(1)-P(1)              | -           | -          | -          | 96.35(11)  |
| N(4)-Ni(1)-P(2)               | 95.52(4)    | 97.86(8)   | 97.9(2)    | -          |
| C(28)-Ni(1)-P(2)              | -           | -          | -          | 96.80(11)  |
| N(2)-P(1)-Ni(1)               | 101.64(4)   | 102.51(7)  | 102.13(15) | 102.22(8)  |
| N(3)-P(2)-Ni(1)               | 103.21(4)   | 102.38(7)  | 102.47(16) | 102.86(8)  |

 Table S1. Selected bond lengths (Å) or angles (°) of complexes 2-5.



Fig. S1 FT-IR spectrum of complex 2.



Fig. S2 <sup>1</sup>H NMR spectrum of complex 2 (600 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S3  $^{31}P$  NMR spectrum of complex 2 (243 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^{\circ}C$ ).



Fig. S4  $^{13}\mathrm{C}$  NMR spectrum of complex 2 (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S5 FT-IR spectrum of complex 3a.



Fig. S6 <sup>1</sup>H NMR spectrum of complex 3a (600 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S7  $^{31}P$  NMR spectrum of complex 3a (243 MHz, C\_6D\_6, 25 °C).



Fig. S8  $^{13}C$  NMR spectrum of complex 3a (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S9 FT-IR spectrum of complex 3b.



Fig. S10 <sup>1</sup>H NMR spectrum of complex 3b (600 MHz,  $C_6D_6$ , 25 °C).



Fig. S11  $^{31}P$  NMR spectrum of complex 3b (243 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^{\circ}C$ ).



Fig. S12  $^{13}$ C NMR spectrum of complex 3b (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^{\circ}$ C).



Fig. S13 <sup>1</sup>H NMR spectrum of complex 1-Br (400 MHz,  $C_6D_6$ , 25 °C).

€5.42 €5.42 5.41

-7.16

 $^{-108.70}_{106.94}$  $^{106.84}_{-105.07}$ 



Fig. S14  $^{31}P$  NMR spectrum of complex 1-Br (162 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S15  $^{13}$ C NMR spectrum of complex 1-Br (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^{\circ}$ C).



Fig. S16  $^1\text{H}$  NMR spectrum of complex 1-I (500 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^\circ\text{C}).$ 



Fig. S17  ${}^{31}$ P NMR spectrum of complex 1-I (202 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S18  $^{13}\text{C}$  NMR spectrum of complex 1-I (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



-4.42

Fig. S19 <sup>1</sup>H NMR spectrum of 4a (600 MHz, CD<sub>3</sub>CN, 25  $^{\circ}$ C).



Fig. S20  $^{13}$ C NMR spectrum of 4a (151 MHz, CD<sub>3</sub>CN, 25  $^{\circ}$ C).



-3.14 -2.38 -2.13 -1.94



**Fig. S21** <sup>1</sup>H NMR spectrum of **4b** (400 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S22  $^{13}$ C NMR spectrum of 4b (151 MHz, CD<sub>3</sub>CN, 25 °C).

7.21 7.19 7.14 7.14 7.14 7.14 7.14 7.14



**Fig. S23** <sup>1</sup>H NMR spectrum of **4c** (400 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S24  $^{13}$ C NMR spectrum of 4c (101 MHz, CD<sub>3</sub>CN, 25 °C).





**Fig. S25** <sup>1</sup>H NMR spectrum of **4d** (600 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S26  $^{13}$ C NMR spectrum of 4d (151 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S27 <sup>1</sup>H NMR spectrum of 4e (600 MHz CD<sub>3</sub>CN, 25 °C).



**Fig. S28** <sup>13</sup>C NMR spectrum of **4e** (151 MHz CD<sub>3</sub>CN, 25 °C).





Fig. S29 <sup>1</sup>H NMR spectrum of 4f (400 MHz, CD<sub>3</sub>CN, 25  $^{\circ}$ C).



Fig. S30  $^{13}$ C NMR spectrum of 4f (151 MHz, CD<sub>3</sub>CN, 25 °C).



**Fig. S31** <sup>1</sup>H NMR spectrum of **4g** (400 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S32  $^{13}$ C NMR spectrum of 4g (151 MHz, CD<sub>3</sub>CN, 25 °C).



Fig. S33  $^{1}$ H NMR spectrum of complex 5 (600 MHz, C<sub>6</sub>D<sub>6</sub>, 25  $^{\circ}$ C).

5.44 5.44 5.43

-7.16





Fig. S34  ${}^{31}$ P NMR spectrum of complex 5 (243 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S35  $^{13}$ C NMR spectrum of complex 5 (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S36 <sup>1</sup>H NMR spectrum of the reaction of complex 3b and <sup>*t*</sup>BuNC (600 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



Fig. S37 <sup>13</sup>C NMR spectrum of the reaction of complex 3b and <sup>*t*</sup>BuNC (151 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C).



**Fig. S38** ESI-MS spectrum of ArNCNH (Ar =  $2,6-Me_2C_6H_3$ ).



Scheme S1. Proposed mechanism for the formation of complex 5, (PN<sup>3</sup>P)Ni(CN).



Fig. S39 HRMS spectrum of complex 2.



Fig. S40 HRMS spectrum of complex 3a.



Fig. S41 HRMS spectrum of complex 3b.



Fig. S42 HRMS spectrum of complex 5.



Fig. S43 HRMS spectrum of compound 4a.



Fig. S44 HRMS spectrum of compound 4b.



Fig. S45 HRMS spectrum of compound 4c.







Fig. S47 HRMS spectrum of compound 4e.



Fig. S48 HRMS spectrum of compound 4f.



Fig. S49 HRMS spectrum of compound 4g.

| Entry                                | 2                      | 3a                     | 3b                           | 5                      |
|--------------------------------------|------------------------|------------------------|------------------------------|------------------------|
| Formula                              | $C_{27}H_{52}N_6NiP_2$ | $C_{32}H_{61}N_5NiP_2$ | $C_{78}H_{128}N_{10}Ni_2P_4$ | $C_{28}H_{52}N_4NiP_2$ |
| F. W.                                | 581.40                 | 636.51                 | 1447.20                      | 565.39                 |
| Crystal system                       | Monoclinic             | Triclinic              | Monoclinic                   | Monoclinic             |
| Space group                          | P2(1)/c                | P-1                    | P2(1)/c                      | P2(1)/c                |
| <i>a</i> (Å)                         | 17.9904(8)             | 10.0890(4)             | 8.5405(2)                    | 18.4429(4)             |
| <i>b</i> (Å)                         | 11.7439(5)             | 11.3946(4)             | 23.6154(6)                   | 10.9920(3)             |
| <i>c</i> (Å)                         | 14.8243(6)             | 17.0248(6)             | 41.0704(10)                  | 15.5534(4)             |
| α (deg)                              | 90                     | 88.997(2)              | 90                           | 90                     |
| β (deg)                              | 94.3730(10)            | 83.173(2)              | 90.8000                      | 93.6130(10)            |
| γ (deg)                              | 90                     | 67.5590(10)            | 90                           | 90                     |
| $V(\text{\AA}^3)$                    | 3123.0(2)              | 1795.31(11)            | 8282.6(4)                    | 3146.79(14)            |
| Ζ                                    | 4                      | 2                      | 4                            | 4                      |
| $D_{\rm calcd}$ (g/cm <sup>3</sup> ) | 1.237                  | 1.177                  | 1.161                        | 1.193                  |
| radiation (λ), Å                     | Cu K (1.5406)          | Cu K (1.5406)          | Cu K (1.5406)                | Cu K (1.5406)          |
| θ range (°)                          | 2.46 to 72.21          | 2.62 to 70.00          | 2.15 to 68.80                | 2.40 to 68.29          |
| $\mu$ (mm <sup>-1</sup> )            | 2.052                  | 1.816                  | 1.636                        | 2.004                  |
| F(000)                               | 1256                   | 692                    | 3128                         | 1224                   |
| no. of reflns collcd                 | 53193                  | 42598                  | 236639                       | 33757                  |
| no. of reflns unique                 | 6103                   | 6750                   | 15235                        | 5754                   |
| R(int)                               | 0.0323                 | 0.0325                 | 0.1072                       | 0.0270                 |
| GOF                                  | 1.123                  | 1.043                  | 1.028                        | 1.026                  |
| $R_1[I \ge 2\sigma(I)]$              | 0.0319                 | 0.0483                 | 0.0882                       | 0.0502                 |
| $wR_2[I \ge 2\sigma(I)]$             | 0.0802                 | 0.1229                 | 0.2501                       | 0.1294                 |
| $R_1$ [all data]                     | 0.0320                 | 0.0547                 | 0.1070                       | 0.0538                 |
| $wR_2$ [all data]                    | 0.0803                 | 0.1306                 | 0.2656                       | 0.1323                 |
| $\Delta$ max, min/e Å <sup>-3</sup>  | 0.634, -0.606          | 1.173, -0.791          | 1.848, -0.692                | 1.130, -1.268          |

 Table S2. Summary of Crystallographic Data for complexes 2-5.

| Entry                                   | 1-I                     | 1-Br                     |
|-----------------------------------------|-------------------------|--------------------------|
| Formula                                 | $C_{27}H_{52}N_3NiP_2I$ | $C_{27}H_{52}N_3NiP_2Br$ |
| F. W.                                   | 666.27                  | 619.28                   |
| Crystal system                          | Monoclinic              | Monoclinic               |
| Space group                             | P2(1)/c                 | P2(1)/c                  |
| <i>a</i> (Å)                            | 18.2867(10)             | 18.6867(7)               |
| <i>b</i> (Å)                            | 11.3201(6)              | 10.6672(4)               |
| <i>c</i> (Å)                            | 15.4141(8)              | 15.8620(6)               |
| α (deg)                                 | 90                      | 90                       |
| β (deg)                                 | 94.7100(10)             | 93.8170(10)              |
| γ (deg)                                 | 90                      | 90                       |
| $V(\text{\AA}^3)$                       | 3123.0(2)               | 3154.8(2)                |
| Ζ                                       | 4                       | 4                        |
| $D_{\text{calcd}}$ (g/cm <sup>3</sup> ) | 1.392                   | 1.304                    |
| radiation ( $\lambda$ ), Å              | Cu K (1.5406)           | Cu K (1.5406)            |
| θ range (°)                             | 2.42 to 72.19           | 2.37 to 70.14            |
| $\mu$ (mm <sup>-1</sup> )               | 9.585                   | 3.461                    |
| F(000)                                  | 1384                    | 1312                     |
| no. of reflns collcd                    | 61452                   | 48640                    |
| no. of reflns unique                    | 6263                    | 5991                     |
| R(int)                                  | 0.0410                  | 0.0333                   |
| GOF                                     | 1.098                   | 1.016                    |
| $R_1[I \ge 2\sigma(I)]$                 | 0.0354                  | 0.0406                   |
| $wR_2[I \ge 2\sigma(I)]$                | 0.1066                  | 0.1026                   |
| $R_1$ [all data]                        | 0.0354                  | 0.0428                   |
| $wR_2$ [all data]                       | 0.1066                  | 0.1045                   |
| $\Delta$ max, min/e Å <sup>-3</sup>     | 1.351, -1.953           | 1.530, -1.811            |

 Table S3. Summary of Crystallographic Data for complexes 1-I and 1-Br.