Supporting Information

Controllably, C≡C Triple Bond as One-Carbon

Synthon to Assembly of Benzothiazole Framework

Yubing Huang, Donghao Yan, Xu Wang, Peiqi Zhou, Wanqing Wu,* and Huanfeng

Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: cewuwq@scut.edu.cn, jianghf@scut.edu.cn

Contents

S2
S2
S2
S3
S4
S5
S14
S14
S16

A. General Methods

Melting points were determined with a Buchi Melting Point B-545 instrument. ¹H and ¹³C NMR spectra were recorded using a Bruker DRX-400 spectrometer with CDCl₃ as solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively, and chloroform is solvent with TMS as the internal standard. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatograph-mass spectrometer. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was effected at 254 nm. Unless otherwise noted, all reagents and solvents were obtained from commercial suppliers and used without further purification.

B. General Procedures

General procedure A: the synthesis of benzo[d]thiazole products 3a-3u: In a test tube, a mixture of 2-iodoaniline 1 (0.2 mmol), S_8 (0.24 mmol), phenylacetylene 2 (0.3 mmol), CuI (0.02 mmol), K_3PO_4 (0.4 mmol) and 1,10-phen (0.04 mmol) was stirred in DMSO (2.0 mL). The reaction was allowed to stir at 110 °C under 1 atm O_2 for 10 h. After that, water was added and extracted with ethyl acetate twice. The combined organic phase was dried over Na_2SO_4 and concentrated. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (PE/EA = 10:1–30:1) as the eluent to afford the desired product.

General procedure B: the synthesis of benzo[d]thiazole products 4a-4p: In air, a 25 mL Schlenk tube was charged with 2-iodoaniline 1 (0.2 mmol), S₈ (0.24 mmol), phenylacetylene 2 (0.3 mmol), CuTC (0.01 mmol), DBU (0.2 mmol) and 2.5 mL MeCN/H₂O (10:1). The flask was evacuated and filled with nitrogen for three cycles. The reaction was allowed to stir at 130 °C for 10 h. After that, water was added and extracted with ethyl acetate twice. The combined organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (PE/EA = 20:1–30:1) as the eluent to afford the desired product.

C. Optimization of the Reaction Conditions

 Table S1. Optimization of the Reaction Conditions ^{a,b}

N 1a	+ S₈ + H ₂	2a	[Cu]	- C N N N N N N N N N N N N N N N N N N	> + 5 4a	
ontry	[Cu]	hasa	additive	solvont	Yield	^d (%)
entry	ntry [Cu] base	iy [Cu] base (6	(equiv)	solvent	3 a	4 a
1	CuI	K ₂ CO ₃	-	DMSO	54	n.d
2	CuI	K_2CO_3	-	dioxane	trace	n.d
3	CuI	K_2CO_3	-	IPA	n.d	n.d
4	CuI	K ₃ PO ₄	-	DMSO	74	n.d
5	CuI	KOAc	-	DMSO	42	n.d

6	CuI	K_3PO_4	TBAI(1)	DMSO	60	n.d
7	CuI	K ₃ PO ₄	1,10-phen (0.2)	DMSO	87 (84) ^e	n.d
8	CuTC	DBU		MeCN	10	83
9	CuTC	DBU		MeCN ^c	trace	37
10	CuTC	DBU		MeCN/H ₂ O (10:1)	n.d	95 (90) ^e
11	CuTC	DBU		MeCN/H ₂ O (5:1)	n.d	89
12	CuTC	DBU		MeCN/H ₂ O (3:1)	n.d	86
13	CuTC	DBU		H ₂ O	n.d	8
14	CuTC	DBU	1,10-phen (0.2)	MeCN/H ₂ O (10:1)	n.d	71

^{*a*} Reaction conditions (entries 1-7): **1a** (0.1 mmol), **S**₈ (0.12 mmol), **2a** (0.15 mmol), CuI (10 mol %), base (2 equiv), additive in 1.0 mL solvent at 110 °C under 1 atm of O₂ for 10 h unless otherwise noted. ^{*b*} Reaction conditions (entries 8-13): **1a** (0.1 mmol), **S**₈ (0.12 mmol), **2a** (0.15 mmol), CuTc (5 mol %), DBU (1 equiv) in 1.5 mL solvent at 130 °C under N₂ for 10 h unless otherwise noted. ^{*c*} Super dry acetonitrile. ^{*d*} GC-MS yield using *n*-dodecane as an internal standard. ^{*e*} Isolated yield.

As indicated in Table S1, 2-Iodoaniline (0.1 mmol), S₈ (0.12 mmol) and phenylacetylene (0.15 mmol) were chosen as initially investigated substrates. Through series of copper salts and alkali screening, we believed that the use of CuI and potassium is more conducive to the formation of 2-phenylbenzo[d]thiazole (3a). When the reaction was performed in the presence of CuI (10 mol %) and K₂CO₃ (2 equiv) using DMSO as solvent at 110 °C under 1 atm of O₂, 2phenylbenzo[d]thiazole (3a) was obtained in 54% yield (entry 1). Other solvents including dioxane, IPA and MeCN did not effect on improving the yield of 3a (entries 2-3). When K₂CO₃ was replaced by K_3PO_4 or KOAc, 74% and 42% yields were obtain, respectively (entries 4-5). In order to further improve the yield, different additives were tested in the system (entries 6-7). The result showed that the addition of phase transfer reagent (TBAI) did not work in the reaction system, while the yield increased to 87% when using 1,10-phenanthroline as a ligand (entry 7). Next, when the reaction was performed in the presence of CuTC (5 mol %) and DBU (1 equiv) using 1.5 mL of MeCN as solvent at 130 °C under N₂, 2-benzylbenzo[d]thiazole (4a) was delivered in 83% yield and 10% yield of product 3a was detected (entry 8). The use of super dry acetonitrile was not conducive to the conversion, making the yield of 4a drop to 37% (entry 9). Subsequently, we replaced MeCN with a mixed solvent MeCN/H₂O (10:1), and the desired product 4a was delivered in 95% yield (entry 10) with no product 3a detected. When increasing the proportion of water in the mixed solvent, the yield was decreased slightly (entries 11-12). However, the reaction could not proceed well when water was used as a solvent (entry 13). Besides, when adding a ligand in the system, the yield was reduced to 71% (entry 14).

D. Free Radical Verification Experiments

Scheme S1. Free radical verification experiments. Condition A: CuI (10 mol %), K₃PO₄ (2 equiv), 1,10-phen (20 mol %), DMSO, O₂, 110 °C, 10 h. Condition B: CuTC (5 mol %), DBU (1 equiv), MeCN/H₂O (10:1), N₂, 130 °C, 10 h.

E. Deuterium-labeling Experiments

Scheme S2. Deuterium-labeling experiments. Reaction conditions: **1a** (0.2 mmol), **S**₈ (0.24 mmol), **2a** (0.3 mmol), CuTC (5 mol %), DBU (1 equiv) in 2.5 mL MeCN/D₂O (10:1) at 130 °C under N₂ for 10 h unless otherwise noted. Isolated yield. The product d_2 -**4a** was determined by ¹H NMR.

F. Characterization Data for Products

2-Phenylbenzo[*d*]**thiazole (3a).** White solid, yield 35 mg (84%), mp 113-114 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.05 (m, 3H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.50-7.46 (m, 4H), 7.39-7.35 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 168.1, 154.2, 135.1, 133.6, 131.0, 129.0, 127.6, 126.4, 125.2, 123.3, 121.6. IR (KBr, cm⁻¹): 3892, 3743, 3489, 1638, 1473, 958, 759. HRMS (ESI) (m/z): calcd for C₁₃H₁₀NS [M+H]⁺: 212.0528, found: 212.0531.

N 2-(4-Ethylphenyl)benzo[d]thiazole (3c). Yellow solid, yield 40 mg (83%), mp 61-62 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (dd, J = 20.9, 7.9 Hz, 3H), 7.89 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.39-7.31 (m, 3H), 2.72 (dd, J = 14.6, 7.1 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 168.3, 154.2, 147.7, 135.0, 131.2, 128.6, 127.6, 126.2, 125.0, 123.1, 121.6, 28.9, 15.3. IR (KBr, cm⁻¹): 3893, 3744, 3490, 3382, 2925, 1638, 1430, 1237, 964, 754. HRMS (ESI) (m/z): calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found: 240.0845.

N 2-(4-Methoxyphenyl)benzo[d]thiazole (3d). White solid, yield 41 mg (86%), mp 121-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.6 Hz, 3H), 7.87 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 162.0, 154.1, 134.8, 129.2, 126.4, 126.2, 124.8, 122.8, 121.5, 114.4, 55.5. IR (KBr, cm⁻¹): 3893, 3745, 3305, 3049, 1724, 1559, 1306, 963, 828, 752. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NOS [M+H]⁺: 242.0634, found: 242.0638.

2-(4-Chlorophenyl)benzo[*d*]thiazole (3e). White solid, yield 39 mg (80%), mp 115-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.52-7.43 (m, 3H), 7.39 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 154.1, 137.0, 135.1, 132.1, 129.3, 128.7, 126.5, 125.4, 123.3, 121.7. IR (KBr, cm⁻¹): 3894, 3746, 3483, 2923, 1603, 1467, 1252, 965, 831, 754. HRMS (ESI) (m/z): calcd for C₁₃H₉CINS [M+H]⁺: 246.0139, found: 246.0141.

N 4-(Benzo[d]thiazol-2-yl)benzonitrile (3f). White solid, yield 33 mg (69%), mp 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.2 Hz, 2H), 8.10 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.54 (t, J = 7.7 Hz, 1H), 7.44 (t, J =

7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 154.0, 137.5, 135.3, 132.8, 127.93, 126.9, 126.1, 123.8, 121.8, 118.3, 114.1. IR (KBr, cm⁻¹): 3924, 3698, 3346, 2923, 1740, 1471, 1244, 962, 833, 760. HRMS (ESI) (m/z): calcd for C₁₄H₉N₂S [M+H]⁺: 237.0481, found: 237.0482.

Ph

N 2-([1,1'-Biphenyl]-4-yl)benzo[d]thiazole (3g). Yellow solid, yield 26 mg (37%), mp 191-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.0 Hz, 2H), 8.10 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 7.9 Hz, 2H), 7.49 (dd, J = 13.1, 5.5 Hz, 3H), 7.40 (t, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 154.1, 143.8, 140.1, 135.0, 132.4, 129.0, 128.0, 127.7, 127.1, 126.4, 125.2, 123.2, 121.6. IR (KBr, cm⁻¹): 3907, 3702, 3336, 2921, 1736, 1590, 1462, 1249, 839, 752. HRMS (ESI) (m/z): calcd for C₁₉H₁₄NS [M+H]⁺: 288.0841, found: 288.0844.

2-(m-Tolyl)benzo[*d*]**thiazole (3h).** Yellow oil, yield 38 mg (85%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 1H), 7.95 (s, 1H), 7.91-7.86 (m, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 7.5 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 154.2, 138.9, 135.1, 133.5, 131.9, 129.0, 128.0, 126.3, 125.2, 124.9, 123.2, 121.6, 21.4. IR (KBr, cm⁻¹): 3893, 3744, 3481, 3050, 2100, 1738, 1505, 1246, 758. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found: 226.0689.

N 2-(Thiophen-2-yl)benzo[*d*]thiazole (3i). White solid, yield 33 mg (76%), mp 99-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 3.5 Hz, 1H), 7.46 (dd, J = 13.6, 6.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.13-7.09 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 153.7, 137.3, 134.7, 129.3, 128.7, 128.1, 126.5, 125.3, 123.0, 121.5. IR (KBr, cm⁻¹): 3893, 3741, 3071, 1743, 1608, 1417, 1227, 828, 704. HRMS (ESI) (m/z): calcd for C₁₁H₈NS₂ [M+H]⁺: 218.0093, found: 218.0097.

N 2-(Pyridin-2-yl)benzo[d]thiazole (3j). White solid, yield 19 mg (45%), mp 133-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.44-7.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 169.4, 154.3, 151.4, 149.7, 137.0, 136.2, 126.3, 125.7, 125.3, 123.6, 122.0, 120.8. IR (KBr, cm⁻¹): 3899, 3743, 3388, 3055, 1570, 1433, 1305, 979, 746. HRMS (ESI) (m/z): calcd for C₁₂H₉N₂S [M+H]⁺: 213.0481, found: 213.0484.

2-(Naphthalen-1-yl)benzo[*d*]**thiazole (3k)**. White solid, yield 36 mg (70%), mp 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.25 (d, *J* = 8.6 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.98 (dd, *J* = 16.1, 8.1 Hz, 3H), 7.93-7.89 (m, 1H), 7.61-7.53 (m, 3H), 7.44 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 154.2, 135.1, 134.6, 133.2, 130.9, 128.8, 127.9, 127.6, 127.5, 126.9, 126.4, 125.3, 124.5, 123.2, 121.7. IR (KBr, cm⁻¹): 3901, 3748, 3572, 3377, 2921, 1730, 1454, 1364, 840, 744. HRMS (ESI) (m/z): calcd for C₁₇H₁₂NS [M+H]⁺: 262.0685, found: 262.0686.

6-Methyl-2-phenylbenzo[*d*]thiazole (31). Yellow solid, yield 36 mg (81%), mp 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.06 (m, 2H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.68 (s, 1H), 7.48 (d, *J* = 4.9 Hz, 3H), 7.30 (d, *J* = 8.4 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 152.2, 135.4, 135.21, 133.7, 130.8, 129.0, 128.0, 127.5, 122.7, 121.4, 21.6. IR (KBr, cm⁻¹): 3893, 3746, 3376, 3037, 2920, 1643, 1447, 1230, 811, 685. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found: 226.0689.

N 6-Fluoro-2-phenylbenzo[d]thiazole (3m). Yellow solid, yield 33 mg (72%), mp 134-135 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.04 (ddd, J = 13.9, 7.3, 3.7 Hz, 3H), 7.58 (dd, J = 8.1, 2.1 Hz, 1H), 7.52-7.48 (m, 3H), 7.25-7.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8 (d, J = 3.5 Hz), 160.5 (d, J = 245.8 Hz), 150.8, 136.0 (d, J = 11.1 Hz), 133.4, 131.1, 129.1, 127.5, 124.2 (d, J = 9.4 Hz), 115.0 (d, J = 24.7 Hz), 107.9 (d, J = 26.8 Hz). IR (KBr, cm⁻¹): 3891, 3745, 3041, 1748, 1569, 959, 843. HRMS (ESI) (m/z): calcd for C₁₃H₉FNS [M+H]⁺: 230.0434, found: 230.0429.

6-Bromo-2-phenylbenzo[*d*]**thiazole (3n).** White solid, yield 44 mg (77%), mp 156-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.01 (m, 3H), 7.91 (d, *J* = 8.7 Hz, 1H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.50 (d, *J* = 5.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 153.0, 136.7, 133.2, 131.3, 129.9, 129.1, 127.6, 124.3, 124.2, 118.8. IR (KBr, cm⁻¹): 3895, 3740, 3057, 1727, 1478, 1301, 1077, 964, 819, 682. HRMS (ESI) (m/z): calcd for C₁₃H₉BrNS [M+H]⁺: 289.9634, found: 289.9631.

6-Methoxy-2-phenylbenzo[*d*]thiazole (30). White solid, yield 39 mg (80%), mp 116-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04-7.98 (m, 2H), 7.93 (d, *J* = 8.9 Hz, 1H), 7.44 (d, *J* = 5.2 Hz, 3H), 7.29 (s, 1H), 7.06 (dd, *J* = 8.9, 2.0 Hz, 1H), 3.83 (d, *J* = 1.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 157.8, 148.7, 136.5, 133.8, 130.6, 129.0, 127.2, 123.7, 115.7, 104.2, 55.8. IR (KBr, cm⁻¹): 3893, 3744, 3056, 1747, 1590, 1471, 1263, 1222, 821, 682. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NOS [M+H]⁺: 242.0634, found: 242.0631.

2-Phenyl-6-(trifluoromethyl)benzo[*d*]thiazole (3p). Yellow solid, yield 41 mg (74%), mp 152-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.11 (dd, *J* = 17.6, 7.8 Hz, 3H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.53-7.45 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 156.1 (d, *J* = 1.1 Hz), 135.1, 133.0, 131.7, 129.2, 127.8, 127.3 (q, *J* = 31.3 Hz), 124.2 (q, *J* = 272.2 Hz), 123.5, 123.3 (q, *J* = 3.4 Hz), 119.3 (q, *J* = 4.2 Hz). IR (KBr, cm⁻¹): 3954, 3805, 3525, 3445, 1640, 1321, 1114, 759. HRMS (ESI) (m/z): calcd for C₁₄H₉F₃NS [M+H]⁺: 280.0402, found: 280.0397.

N 5-Methyl-2-phenylbenzo[*d*]thiazole (3q). White solid, yield 37 mg (83%), mp 147-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.05 (m, 2H), 7.88 (s, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.50-7.46 (m, 3H), 7.21 (d, *J* = 8.1 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 154.5, 136.4, 133.7, 132.0, 130.9, 129.0, 127.5, 126.9, 123.3, 121.1, 21.6. IR (KBr, cm⁻¹): 3911, 3685, 3504, 3363, 3040, 2921, 1450, 1245, 765. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found: 226.0682.

CI S-Chloro-2-phenylbenzo[d]thiazole (3r). White solid, yield 36 mg (73%), mp 139-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 3H), 7.76 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 5.1 Hz, 3H), 7.32 (d, J = 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 155.0, 133.3, 133.2, 132.3, 131.4, 129.1, 127.6, 125.7, 123.0, 122.3. IR (KBr, cm⁻¹): 3892, 3745, 3074, 2922, 1756, 1539, 1245, 1066, 886, 760, 686. HRMS (ESI) (m/z): calcd for C₁₃H₉CINS [M+H]⁺: 246.0139, found: 246.0141.

Methyl 2-phenylbenzo[*d*]thiazole-6-carboxylate (3s). White solid, yield 36 mg (66%), mp 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.10-8.03 (m, 3H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.53-7.48 (m, 3H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 166.9, 154.0, 139.8, 133.2, 131.4, 129.1, 128.6, 127.7, 125.8, 124.7, 121.5, 52.4. IR (KBr, cm⁻¹): 3893, 3744, 3485, 2915, 1710, 1298, 1084, 964, 756. HRMS (ESI) (m/z): calcd for C₁₅H₁₂NO₂S [M+H]⁺: 270.0583, found: 270.0580.

Cl 4,6-Dichloro-2-phenylbenzo[d]thiazole (3t). White solid, yield 39 mg (70%), mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.08 (m, 2H), 7.77 (s, 1H), 7.53-7.47 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 149.9, 137.1, 132.9, 131.6, 130.9, 129.1, 128.5, 127.8, 127.1, 119.9. IR (KBr, cm⁻¹): 3844, 3742, 3612, 2926, 1648, 1532, 679. HRMS (ESI) (m/z): calcd for C₁₃H₈Cl₂NS [M+H]⁺: 279.9749, found: 279.9745.

F 6-Chloro-4-fluoro-2-phenylbenzo[*d*]thiazole (3u). White solid, yield 35 mg (67%), mp 156-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.4 Hz, 2H), 7.64 (s, 1H), 7.49 (d, J = 6.5 Hz, 3H), 7.21 (d, J = 9.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 155.2 (d, J = 260.4 Hz), 141.8 (d, J = 13.4 Hz), 138.3 (d, J = 4.4 Hz), 132.8, 131.6, 131.1 (d, J = 8.9 Hz), 129.1, 127.8, 117.2 (d, J = 4.4 Hz), 113.6 (d, J = 21.5 Hz). IR (KBr, cm⁻¹): 3894, 3745, 3383, 3046, 1741, 1559, 1233, 984, 840, 754. HRMS (ESI) (m/z): calcd for C₁₃H₈CIFNS [M+H]⁺: 264.0045, found: 264.0039.

2-Benzylbenzo[*d*]thiazole (4a). Brown oil, yield 41 mg (90%). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.37 (m, 6H), 4.48 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 153.3, 137.2, 135.7, 129.2, 128.9, 127.4, 126.0, 124.9, 122.8, 121.6, 40.7. IR (KBr, cm⁻¹): 3876, 3742, 2924, 1685, 1510, 757, 702. HRMS (ESI) (m/z): calcd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found: 226.0683.

2-(4-Methylbenzyl)benzo[*d*]thiazole (4b). Brown oil, yield 42 mg (88%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 7.9 Hz, 2H), 4.43 (s, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 153.3, 137.0, 135.7, 134.2, 129.6, 129.07, 126.0, 124.8, 122.8, 121.5, 40.2, 21.1. IR (KBr, cm⁻¹): 3877, 3736, 2922, 1646, 1489, 1287, 1119, 889, 757. HRMS (ESI) (m/z): calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found: 240.0844.

F 2-(4-Fluorobenzyl)benzo[d]thiazole (4c). Brown oil, yield 41 mg (85%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.48 (dd, J = 11.3, 4.1 Hz, 1H), 7.35 (ddd, J = 9.1, 6.3, 2.8 Hz, 3H), 7.06 (m, 2H), 4.43 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 162.2 (d, J = 246.0 Hz), 153.2, 135.6, 132.9 (d, J = 3.3 Hz), 130.7 (d, J = 8.1 Hz), 126.1, 125.0, 122.8, 121.6, 115.8 (d, J = 21.5 Hz), 39.7. IR (KBr, cm⁻¹): 3877, 3733, 2920, 1508, 1226, 830, 760. HRMS (ESI) (m/z): calcd for C₁₄H₁₁FNS [M+H]⁺: 244.0591, found: 244.0589.

Br 2-(4-Bromobenzyl)benzo[d]thiazole (4d). Yellow solid, yield 51 mg (84%), mp 84-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.7 Hz, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.27 (t, J = 6.5 Hz, 2H), 4.40 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 153.3, 136.1, 135.6, 132.0, 130.8, 126.1, 125.0, 122.9, 121.6, 121.4, 39.9. IR (KBr, cm⁻¹): 3918, 3660, 2916, 1701, 1487, 1240, 756. HRMS (ESI) (m/z): calcd for C₁₄H₁₁BrNS [M+H]⁺: 303.9790, found: 303.9798.

O—2-(4-Methoxybenzyl)benzo[d]thiazole (4e). Brown oil, yield 41 mg (81%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.30 (m, 3H), 6.88 (m, 2H), 4.37 (s, 2H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 158.9, 153.3, 135.6, 130.3, 129.3, 126.0, 124.8, 122.7, 121.5, 114.3, 55.3, 39.8. IR (KBr, cm⁻¹): 3876, 3731, 2921, 1595, 1507, 1253, 760. HRMS (ESI) (m/z): calcd for C₁₃H₁₄NOS [M+H]⁺: 256.0791, found: 256.0788.

2-(Naphthalen-2-ylmethyl)benzo[*d*]thiazole (4f). Brown oil, yield 43 mg (79%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.81 (m, 4H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.46 (m, 4H), 7.32 (t, *J* = 7.6 Hz, 1H), 4.60 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 153.2, 135.7, 134.6, 133.6, 132.6, 128.7, 127.9, 127.8, 127.8, 127.2, 126.3, 126.0, 126.0, 124.9, 122.8, 121.6, 40.8. IR (KBr, cm⁻¹): 3877, 3734, 2920, 1511, 1278, 1097, 754. HRMS (ESI) (m/z): calcd for C₁₈H₁₄NS [M+H]⁺: 276.0841, found: 276.0838.

2-Hexylbenzo[*d*]thiazole (4g). Yellow oil, Yield 31 mg (70%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 7.9 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.48 (m, 1H), 7.39 (m, 1H), 3.09 (t, *J* = 7.5 Hz, 2H), 1.79 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.38 (m, 2H), 1.29 (dd, *J* = 8.9, 5.4 Hz, 4H), 0.85 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.2, 153.3, 135.1, 126.4, 125.2, 122.6, 122.5, 33.9, 31.4, 29.4, 28.6, 22.4, 14.3. IR (KBr, cm⁻¹): 3879, 3732, 2926, 2857, 1520, 1443, 758. HRMS (ESI) (m/z): calcd for C₁₃H₁₈NS [M+H]⁺: 220.1154, found: 220.1159.

2-Heptylbenzo[*d*]thiazole (4h). Yellow oil, yield 32 mg (68%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 7.9 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.48 (m, 1H), 7.40 (dd, *J* = 11.2, 4.0 Hz, 1H), 3.09 (t, *J* = 7.5 Hz, 2H), 1.79 (dd, *J* = 14.8, 7.4 Hz, 2H), 1.29 (m, 8H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.2, 168.5, 153.3, 135.1, 126.4, 125.2, 122.6, 122.5, 33.9, 31.56, 29.4, 28.9, 28.8, 22.5, 14.4. IR (KBr, cm⁻¹): 3877, 3735, 2925, 2856, 1520, 1438, 758. HRMS (ESI) (m/z): calcd for C₁₄H₂₀NS [M+H]⁺: 234.1311, found: 234.1312.

2-Octylbenzo[*d*]thiazole (4i). Yellow oil, yield 35 mg (71%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 (dd, *J* = 7.9, 0.6 Hz, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.48 (m, 1H), 7.39 (m, 1H), 3.08 (t, *J* = 7.5 Hz, 2H), 1.79 (m, 2H), 1.30 (m, 10H), 0.84 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.2, 153.3, 135.1, 126.4, 125.2, 122.6, 122.4, 33.9, 31.7, 29.4, 29.1, 29.0, 28.9, 22.5, 14.4. IR (KBr, cm⁻¹): 3877, 3732, 2924, 2854, 1521, 1449, 759. HRMS (ESI) (m/z): calcd for C₁₅H₂₂NS [M+H]⁺: 248.1467, found: 248.1472.

2-(2-Cyclopentylethyl)benzo[*d*]**thiazole (4j).** Yellow oil, yield 29 mg (63%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.03 (d, J = 7.5 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.47 (dd, J = 11.2, 4.1 Hz, 1H), 7.41-7.37 (m, 1H), 3.13-3.08 (m, 2H), 1.76-1.65 (m, 6H), 1.34-1.29 (m, 1H), 1.18-1.14 (m, 2H), 0.93 (dd, J = 21.8, 10.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.5, 153.3, 135.1, 126.4, 125.2, 122.6, 122.5, 37.0, 33.0, 31.4, 26.5, 26.2. IR (KBr, cm⁻¹): 3880, 3732, 2921, 2849, 1519, 1443, 758. HRMS (ESI) (m/z): calcd for C₁₄H₁₈NS [M+H]⁺: 232.1154, found: 232.1150.

2-(Hex-5-yn-1-yl)benzo[*d*]thiazole (4k). Yellow oil, Yield 27 mg (62%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 7.6 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.48 (m, 1H), 7.40 (m, 1H), 3.13 (t, *J* = 7.6 Hz, 2H), 2.76 (t, *J* = 2.6 Hz, 1H), 2.24 (td, *J* = 7.1, 2.6 Hz, 2H), 1.91 (dt, *J* = 20.8, 7.6 Hz, 2H), 1.58 (dt, *J* = 14.5, 7.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.9, 153.3, 135.1, 126.4, 125.2, 122.6, 122.5, 84.6, 71.8, 33.3, 28.4, 27.8, 17.9. IR (KBr, cm⁻¹): 3877, 3734, 3296, 2926, 1519, 1436, 759, 634. HRMS (ESI) (m/z): calcd for C₁₃H₁₄NS [M+H]⁺: 216.0841, found: 216.0846.

2-(3-Phenylpropyl)benzo[*d*]thiazole (4l). Brown oil, yield 38 mg (76%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 7.9 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.0 Hz, 1H), 7.40 (t, *J* = 7.1 Hz, 1H), 7.29 (d, *J* = 7.4 Hz, 2H), 7.21 (m, 3H), 3.11 (t, *J* = 7.6 Hz, 2H), 2.71 (m, 2H), 2.11 (dd, *J* = 12.6, 4.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.8, 153.3, 141.8, 135.1, 128.8, 128.8, 126.5, 126.4, 125.3, 122.6, 122.5, 34.8, 33.3, 31.1. IR (KBr, cm⁻¹): 3878, 3732, 2919, 1702, 1517, 1434, 752, 696. HRMS (ESI) (m/z): calcd for C₁₆H₁₆NS [M+H]⁺: 254.0998, found: 254.1002.

N^{=−/} **2-(Pyridin-3-ylmethyl)benzo[d]thiazole (4m).** Yellow oil, yield 30 mg (67%). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 1.7 Hz, 1H), 8.54 (dd, J = 4.7, 1.1 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.46 (m, 1H), 7.35 (m, 1H), 7.26 (m, 1H), 4.43 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 153.3, 150.1, 148.7, 136.6, 135.5, 132.8, 126.2, 125.1, 123.7, 122.9, 121.6, 37.6. IR (KBr, cm⁻¹): 3054, 2920, 2852, 1423, 1101, 714. HRMS (ESI) (m/z): calcd for C₁₃H₁₁N₂S [M+H]⁺: 227.0637, found: 227.0639.

S² **2-(Thiophen-3-ylmethyl)benzo**[*d*]thiazole (4n). Brown oil, yield 30 mg (64%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.43 (m, 1H), 7.31 (m, 2H), 7.21 (d, J = 2.0 Hz, 1H), 7.07 (d, J = 4.9 Hz, 1H), 4.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 153.3, 137.0, 135.6, 128.4, 126.4, 126.0, 124.9, 123.1, 122.8, 121.6, 35.1. IR (KBr, cm⁻¹): 3069, 2915, 1511, 1427, 1096, 755. HRMS (ESI) (m/z): calcd for C₁₂H₁₀NS₂ [M+H]⁺: 232.0249, found: 232.0251.

2-Benzyl-6-methylbenzo[*d*]**thiazole (40).** Brown oil, yield 41 mg (86%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 1H), 7.56 (s, 1H), 7.34 (d, J = 6.5 Hz, 4H), 7.29 (dd, J = 5.8, 2.8 Hz, 1H), 7.24 (d, J = 2.8 Hz, 1H), 4.41 (s, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 151.2, 137.3, 135.8, 135.0, 129.2, 128.9, 127.6, 127.3, 122.2, 121.3, 40.5, 21.5. IR (KBr, cm⁻¹): 3875, 3731, 2918, 1594, 1511, 1450, 812, 697. HRMS (ESI) (m/z): calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found: 240.0847.

2-Benzyl-6-fluorobenzo[*d*]thiazole (4p). Brown solid, yield 40 mg (82%), mp 57-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.9, 4.8 Hz, 1H), 7.41 (dd, J = 8.1, 2.6 Hz, 1H), 7.33 (d, J = 4.5 Hz, 4H), 7.27 (m, 1H), 7.14 (dt, J = 8.9, 4.5 Hz, 1H), 4.38 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9 (d, J = 3.2 Hz), 160.3 (d, J = 245.1 Hz), 149.9, 137.0, 136.6 (d, J = 11.1 Hz), 129.2, 129.0, 127.5, 123.7 (d, J = 9.4 Hz), 114.6 (d, J = 24.7 Hz), 107.8 (d, J = 26.6 Hz), 40.6. IR (KBr, cm⁻¹): 3880, 3731, 2919, 1602, 1520, 1454, 1250, 817, 701. HRMS (ESI) (m/z): calcd for C₁₄H₁₁FNS [M+H]⁺: 244.0591, found: 244.0596.

2-Benzyl-6-(trifluoromethyl)benzo[*d*]thiazole (4q). Brown oil, yield 46 mg (78%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 2H), 7.68 (dd, *J* = 8.7, 1.2

Hz, 1H), 7.33 (m, 5H), 4.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 155.3, 136.6, 135.8, 129.2, 129.0, 127.6, 127.1 (q, *J* = 33.0 Hz), 124.2 (q, *J* = 273.0 Hz), 123.2, 123.0 (q, *J* = 3.5 Hz), 119.2 (q, *J* = 4.3 Hz), 40.8. IR (KBr, cm⁻¹): 3031, 2923, 1511, 1320, 1123, 649. HRMS (ESI) (m/z): calcd for C₁₅H₁₁F₃NS [M+H]⁺: 294.0559, found: 294.0562.

2-Benzyl-5-methylbenzo[*d*]thiazole (4r). Yellow solid, yield 41 mg (86%), mp 80-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.61 (s, 1H), 7.31 (m, 5H), 7.14 (d, *J* = 7.7 Hz, 1H), 4.40 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 153.7, 137.3, 136.1, 132.7, 129.2, 128.9, 127.3, 126.4, 122.9, 121.0, 40.7, 21.5. IR (KBr, cm⁻¹): 3880, 3736, 2919, 2856, 1506, 1451, 802, 700. HRMS (ESI) (m/z): calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841, found: 240.0845.

Benzo[d]thiazol-2-yl(phenyl)methanone (5).¹ White solid, yield 47 mg (99%), mp 73-74 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 8.0 Hz, 2H), 8.24 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H), 7.54 (dt, J = 16.1, 7.3 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 167.2, 153.9, 137.0, 135.0, 133.9, 131.3, 128.5, 127.6, 126.9, 125.7, 122.2. IR (KBr, cm⁻¹): 3061, 2922, 1633, 1481, 1282, 1118, 884, 708. HRMS (ESI) (m/z): calcd for C₁₄H₉NNaOS [M+Na]⁺: 262.0297, found: 262.0293.

2-(1-Phenylbut-3-en-1-yl)benzo[*d*]**thiazole (6).** Yellow oil, yield 50 mg (95%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.41 (m, 3H), 7.28 (m, 4H), 5.78 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.10 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 10.2 Hz, 1H), 4.47 (t, J = 7.8 Hz, 1H), 3.19 (dt, J = 14.3, 7.1 Hz, 1H), 2.94 (dt, J = 14.6, 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 153.2, 141.2, 135.4, 135.3, 128.8, 128.2, 127.4, 125.9, 124.8, 123.0, 121.5, 117.4, 50.8, 39.8. IR (KBr, cm⁻¹): 3067, 2921, 1504, 1439, 916, 756, 705. HRMS (ESI) (m/z): calcd for C₁₇H₁₆NS [M+H]⁺: 266.0998, found: 266.0999.

(E)-2-(1,2-Diphenylvinyl)benzo[*d*]thiazole (7).² Yellow solid, yield 53 mg (84%), mp 54-55 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.47-7.43 (m, 4H), 7.40 (dt, J = 5.0, 2.9 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.18-7.14 (m, 3H), 7.11 (dt, J = 7.9, 3.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 154.0, 138.2, 135.8, 135.4, 134.9, 132.9, 130.4, 130.2, 129.2, 128.7, 128.4, 128.2, 126.3, 124.8, 123.1,

121.4. IR (KBr, cm⁻¹): 3058, 2922, 1604, 1488, 1437, 1114, 757, 700. HRMS (ESI) (m/z): calcd for $C_{21}H_{16}NS [M+H]^+$: 314.0998, found: 314.1004.

[D₂]-2-benzylbenzo[d]thiazole (d₂-4a). Brown oil, yield 39 mg (87%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.46 (dd, J = 11.3, 4.0 Hz, 1H), 7.38 (m, 5H), 7.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 153.3, 137.2, 135.7, 129.2, 128.9, 127.4, 126.0, 124.8, 122.8, 121.6, 29.8. IR (KBr, cm⁻¹): 3843, 3749, 2924, 1504, 1437, 697. HRMS (ESI) (m/z): calcd for C₁₄H₁₀D₂NS [M+H]⁺: 228.0811, found: 228.0812.

G. References

- 1. H. Sterckx, J. De Houwer, C. Mensch, I. Caretti, K. A. Tehrani, W. A. Herrebout, S. Van Doorslaer, B. U. W. Maes, *Chem. Sci.*, 2016, 7, 346.
- 2. (a) G. Kaupp , D. Lübben, O. Sauerland, *Phosphorus, Sulfur, and Silicon*, 1990, 53, 109-120.
 (b) G. Kaupp, *Chem. Ber.*, 1984, 117, 1643.

H. X-ray Diffraction Parameters and Data for 4d

Table S2 Crystal	data and structure	e refinement for 4d.	
Identification code	3	4d	

40
C ₁₄ H ₁₀ BrNS
304.20
100.00(10)
triclinic
P-1
6.6340(3)
9.3287(3)
9.7895(2)
82.039(2)

β/°	85.191(3)
γ/°	89.175(3)
Volume/Å ³	597.89(4)
Ζ	2
$\rho_{calc}g/cm^3$	1.690
μ/mm^{-1}	6.091
F(000)	304.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.152 to 146.952
Index ranges	$-7 \le h \le 8, -11 \le k \le 11, -12 \le l \le 11$
Reflections collected	9253
Independent reflections	2350 [$R_{int} = 0.0315$, $R_{sigma} = 0.0222$]
Data/restraints/parameters	2350/0/154
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0271, wR_2 = 0.0778$
Final R indexes [all data]	$R_1 = 0.0274, wR_2 = 0.0780$
Largest diff. peak/hole / e Å $^{-3}$	0.61/-0.54

I. NMR Spectra

60	16	09 05 00 05 00 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 05	5
68.	54.	35.33.33.33.23.23.23.23.23.23.23.23.23.23.	
<u> </u>	<u></u>		•
1			

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3c

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3d

$\begin{array}{c} 05 \\ 03 \\ 03 \\ 03 \\ 03 \\ 01 \\ 01 \\ 01 \\ 01$	88
8.8.7.7.7.7.7.8.8	ω.
	1

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3d

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3e

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3e

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3f

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3f

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3g

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3h

168.38	154.15	138.89 135.06 133.54 131.86 128.03 126.32 121.64 121.64	21.40
1			1

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3i

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3i

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3j

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3k

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 31

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3m

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3n

¹H NMR (400 MHz, CDCl₃) spectrum of compound 30

94 94 94 94 94 94 94 94 94 94 94 94 94 9	08 05 05	83 83
-1 -1 × × ×	\neg \neg \neg \neg \neg	n n
	<u></u>	\checkmark

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 30

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3p

$\begin{array}{c}11\\14\\09\\08\\72\end{array}$	70 51 49 48
$\overline{\neg}$ ∞ ∞ ∞ ∞ $\overline{\frown}$	

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3p

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3q

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3r

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3r

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3s

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3s

169.34 166.88	153.98	139.84 133.17 131.41 129.12 128.65 127.68 127.80 124.71 124.71	52.35
52	1		1

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3t

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3t

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3u

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 3u

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4a

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4b

171.76	153.26	137.05 135.67 134.18 129.57 129.07 129.07 121.51 121.51 121.51	40.24	21.12
1 I	1			Ì

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4c

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4d

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4e

S42

3.04 3.03 3.03 3.03 3.03 7.94 7.7 40 7.49 7.41 7.41 7.41 7.41 7.39 7.39 7.37 7.37 7.37 7.37	3.11 3.09 7.87	1.76 1.38 1.38 1.38 1.38 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.2

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 4g

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 4h

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 4j

$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} 11 \\ 11 \\ 77 \\ 77 \\ 77 \\ 24 \\ 24 \\ 24 \\ 77 \\$	560 560 558 560 558 558 558 558 558 558 558 558 558 55
88777777777777777	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 4k

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 41

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4m

169.17	153.27 150.14 148.73 136.63	132.85 126.19 125.11 123.67 122.91 121.59	37.64
	<u> </u>		L.

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4n

170.70	153.28	137.01 135.61 128.35 126.37 126.37 124.91 123.12 122.81 121.58	35.13
1	1		

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 40

170.14	151.21 137.29 134.95 129.17 127.57 127.51 127.31 121.30 121.30	40.54	21.46
1		i	Ì

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4p

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4p

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4q

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4r

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 4r

171.26	153.71	137.34 136.06 132.67 129.19 128.87 127.32 126.43 122.86 121.04	40.67	21.51
1	1		Í	1

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 5

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 6

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 7

¹H NMR (400 MHz, CDCl₃) spectrum of compound d₂-4a

