Supporting Information

A highly stable Mn^{II} phosphonate as highly efficient catalyst for CO₂ fixation under ambient conditions

Yang Yang,^a Chao-Ying Gao,^{ab} Hong-Rui Tian,^b Jing Ai,^b Xue Min^b and Zhong-Ming Sun^{*b}

^a Inner Mongolia Key Lab of Chemistry of Natural Products and Synthesis of Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities (IMUN), Tongliao 028000, People's Republic of China

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.

*Corresponding Authors. E-mail: szm@ciac.ac.cn

Supplementary Index

Contents

S1. Materials and Methods

S2. Supplementary tables and figures

S3. The NMR spectrums

S4. References

S1. Materials and Methods

1.1 General information

Materials and Instrument

All materials are commercially available and were used without further purification except for pyridin-4-yl-phosphonic acid (H₂L), which was synthesized by a modified procedure documented previously.¹

Powder X-ray diffraction (PXRD) was carried out at 40 kV and 40 mAon a MiniFlex 600 X-ray powder diffractometer equipped with a Cu sealed tube ($\lambda = 1.541$ 78 Å) over 2 θ range of 5-50° at room temperature. Thermal gravimetric analysis (TGA) was conducted on a SDT 2960 Simultaneous DSC-TGA of TA instruments with a heating rate of 10 °C/min up to 900 °C under an air atmosphere. Elemental analyses for C, H, and N were performed by a VarioEL analyzer. The infrared (IR) spectra (diamond) were recorded on a Nicolet 7600 FT-IR spectrometer within the 4000-500 cm⁻¹ region. Inductively coupled plasma (ICP) analyses were conducted on a Perkin-Elmer Optima 3300DV spectrometer. ¹H NMR spectra were carried out in CDCl₃ solvent on a Bruker 400 MHz spectrometer. The chemical shift is given in dimensionless δ values and is referenced relative to TMS in ¹H spectroscopy.

1.2 Synthesis of compound [MnL(H₂O)₂]·H₂O

A mixture of $Mn(Ac)_2 \cdot 4H_2O$ (0.2 mmol, 49 mg), pyridin-4-yl-phosphonic acid (H_2L) (0.5mmol, 80 mg) and distilled water (6 ml) was sealed in a Teflon-lined stainless steel autoclave (20 mL) under autogenous pressure and heated at 80 °C oven for 3 days. After the autoclave was cooled to room temperature, light-yellow block-shaped single crystals suitable for single-crystal X-ray crystallographic analysis were harvested as synthesized. Then, the mother liquor was decanted, and the resulting crystals were dried at room temperature overnight. Yield: 46.6 mg (87 % based on Mn^{II}). Phase purity was confirmed by PXRD analysis. FTIR (cm⁻¹): 1606 (w), 1418 (w), 1130 (s), 1084 (vs), 1010 (vs), 823 (s), 682 (w), 642(w), 542 (s). Elemental analysis calca (%) for MnC₅NPO₆H₁₂ (Mr = 268.1): C, 22.4; N, 5.2; H, 4.5. Found: C, 22.6; N, 5.1; H, 4.8.

1.3 Single-Crystal X-ray Crystallography

Single-crystal X-ray diffraction (SXRD) data of compound $[MnL(H_2O)_2]\cdot H_2O$ were collected on a Bruker diffractometer using Cu K*a* radiation ($\lambda = 1.54178$ Å) at 293 K. Data processing was accomplished with the SAINT processing program.² The structure was solved by the direct methods and refined by full-matrix least-squares fitting on F^2 using the SHELXTL crystallographic software package.³ Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. All hydrogen atoms of the organic molecule were placed by geometrical considerations and were added to the structure factor calculation. The final formula of $[MnL(H_2O)_2]\cdot H_2O$ was determined by single-crystal X-ray diffraction, TGA and elemental analysis. Crystallographic data for $[MnL(H_2O)_2]\cdot H_2O$ (1565561) has been deposited with Cambridge Crystallographic Data Centre. Data can be obtained free of charge upon request at www.ccdc.cam.ac.uk/data_request/cif. Crystal data and structure refinement is summarized in Table S1.

1.4 Chemical stability Test

Several batches of about 5 mg of freshly synthesized samples were added into vials containing 3 mL of aqueous solutions (pH = 2-12), pure water and various organic solvents, respectively. After immersion in those solutions for given times at room temperature or at 100 °C, the samples were centrifuged and then dried naturally.

1.5 ICP procedure

Firstly, the filter liquor after catalytic reaction is incinerated at about 500 degrees in the ceramic crucible; secondly, the alkali is dissolved; thirdly, the acid is neutralized; finally, the solution is added to the instrument for analysis.

1.6 Catalysis

In a typical reaction, the catalytic reaction was conducted in a Schlenk tube using the epoxides (20 mmol, 1850 mg for epichlorohydrin, 2733 mg for epibromohydrin, 2400 mg for styrene oxide, 3000 mg for 1,2-epoxy-3-phenoxypropane, 1420 mg forglycidol, 1442 mg for epoxybutane, 2604 mg for *n*-Butyl glycidyl ether) with CO₂ purged at 1 atm under solvent free environment at room temperature catalyzed by the activated sample (0.02mmol, 4 mg) and co-catalyst of tetrabutylammonium bromide (TBAB, 0.6g) for different intervals. The loading of the catalyst is a 0.1%ratio based on the epoxide. After given reaction time, a small aliquot of the supernatant reaction mixtures was dissolved in 0.6 mL of CDCl₃. The obtained solution was filtered through a syringe filter (PTFE) to be analyzed by ¹H NMR for calculating the conversion of the epoxide. For the recycle experiment, the catalyst was separated by centrifugation for 5 min after the reaction, and the supernatant was collected. The residual solid was washed with dichloromethane and centrifuged three times before being applied the next catalytic conditions.

1.7 Cycloaddition of CO_2 to epoxides

The conversion was calculated from ¹H NMR according to the following equation.

$$Ha \xrightarrow{O} CO_2, TBAB \xrightarrow{O} Hb \xrightarrow{O} R$$

conversion = $\frac{{}^{1}\text{Hb}}{({}^{1}\text{Ha} + {}^{1}\text{Hb})}$

S2 Supplementary tables and figures

Table S1	Crystallo	graphic	data

aphic data	
Formula	$MnC_5NPO_5H_{10}$
F _w	250.05
Crystal system	trigonal
Space group	R-3
a, Å	28.9848(19)
b, Å	28.9848(19)
c, Å	5.5266(7)
V, Å ³	4021.0(7)
Z	36
D _c , mg/mm ³	1.933
μ , mm ⁻¹	1.658
reflection collected	8292
GOF on F ²	1.069
R_1/wR_2 (I > 2 σ (I))	0.0504/0.1270
R_1/wR_2 (all data)	0.0601/0.1321

Scheme S1pyridin-4-yl-phosphonic acid (H_2L) as a ligand in this work.

Figure S1 Simplified 4,4-connected *ato* net of the compound.

Figure S2 Thermogravimetric analysis data for $[MnL(H_2O)_2] \cdot H_2O$.

Figure S3 PXRD patterns of $[MnL(H_2O)_2] \cdot H_2O$ upon the treatment using aqueous solution with a wide range of pH values (2 - 12).

Figure S4 PXRD patterns of $[MnL(H_2O)_2] \cdot H_2O$ upon the treatment withvariousorganic solvents.

Figure S5 PXRD patterns of $[MnL(H_2O)_2] \cdot H_2O$ upon the treatment with water.

Figure S6 PXRD patterns of $[MnL(H_2O)_2] \cdot H_2O$ upon the treatment with boiling water.

Figure S7 Infrared spectra of the compound.

Figure S8 Histogram of recyclibility study (six cycles) for catalytic acitivities of the catalyst in coupling of glycidol with CO_2 .

Figure S9 The N₂ sorption isotherm at 77K.

The very low N₂ adsorption capacity may be relevant to activated diffusion effects,²² as well as the little effective free volume of the desolvated framework, which is 15.6% (631.5 Å³ out of the 4021 Å³ unit cell volume) calculated by PLATON analysis.

Therefore, its porous structure was characterized using CO₂ adsorption at 273K (see Figure S10).

Figure S10 (a) CO_2 sorption isotherms. STP = standard temperature and pressure. (b) The pore size distribution calculated using the HK method.

The pore diameter is around 0.82 nm, which is consistent with that observed in the single-crystal structure.

Activation of the Mn^{II} phosphonate (evacuation at 473K for 12 h) afforded Brunauer-Emmett-Teller (BET) apparent surface area of 140.4 m² g⁻¹ from CO₂ adsorption isortherms at 273K.

MOFs	Metals	Ligands	Stable conditions	Ref.	
PCN-57	Zr	2',3',5',6'- tetramethylterphenyl-4,4''-	pH = 2-11 solutions for 2days		
PCN-225	Zr	tetrakis (4- carboxyphenyl)porphyrin	Boiling water or pH = 1-11 solutions for 12h	5	
PCN-777	Zr	4,4',4''-s-triazine-2,4,6-triyl- tribenzoic acid	pH = 3-11 solutions for 12h	6	
Ni₃(BTP)₂	Ni	1,3,5-tris(1H-pyrazol-4- yl)benzene	Boiling aqueous solutions of pH = 2-14 for 2 weeks.	7	
PCN-250(Fe ₂ Co)	Fe; Co	3,3',5,5'- Azobenzenetetracarboxylic	pH = 1-11 solutions for 24h.	8	
PCN-600	Fe	tetrakis (4- carboxyphenyl)porphyrin	pH = 2-11 solutions for 24h.	9	
LaBTB	La	1,3,5-tris (4-carboxyphenyl) benzene	pH = 2 solution (60 °C) or pH = 14 solution (60 °C or 100 °C) for 3 days.	10	
Eu ₂ (D-cam)(Himdc) ₂	Eu	D-camphoric acid; 4,5- imidazole dicarboxylic	pH = 2-13 solutions for 2 weeks.	11	
Cd ₃ (L)(bipy) ₂	Cd	hexa[4- (carboxyphenyl)oxamethyl]-	pH = 2-13 solutions for 24 h; water for 7 days.	12	
[MnL(H ₂ O) ₂]·H ₂ O	Mn	pyridin-4-yl-phosphonic acid	pH = 2-12 solution for 24 h; boling water for 7 days; 400 °C	This work	

 Table S2 Comparison of chemical stability conditions of selected stable MOFs.

Table S3 The Mn^{II} phosphonate catalyzed coupling of epoxides with CO_2 . Reaction conditions: epoxide (20 mmol), catalyst (0.02mmol, 0.1% based on the epoxide) and TBAB (0.6 g) under carbon dioxide (1 atm) at room temperature. The conversion was determined by ¹H NMR analysis.

$$R \xrightarrow{O} CO_2, TBAB \xrightarrow{O} O$$

catalyst, 25 °C, 1 atm

Entry	Substrates	Time (h)	Conversion (%)
1	Он	12	56.5
		24	77.5
		36	>99
2	OBr	12	62.1
		24	74.1
		36	89.3
3	۵ دا	12	49.8
		24	65.8
		36	76.9
4	<u>A</u>	12	21.3
		24	31.4
		36	49.3
5	٥	12	25.8
		24	43.3
		36	52.6
6		48	4.4
7		48	6.4

Table S4 Comparison with different MOF catalysts in the cycloaddition reaction of CO_2 and the same epoxies under similar conditions.

	catalyst, T, P							
Substrate	Catalyst	т (°С)	P (MPa)	T (h)	TON	TOF (h ⁻ 1)	Ref.	
	1·Gd	60	0.1	12	12.9	1.1	13	
	MOF-5	35	0.1	12	22.3	2.0	14	
	{[Eu(BTB)(phen)]·4.5DMF·2H ₂ O} _n	70	0.1	12	24.7	2.1	15	
g	FJI-H7(Cu)	25	0.1	60	332.5	5.5	16	
	CHB (M)	100	1.2	6	44.6	7.0	17	
	MMPF-18	70	0.1	48	396.0	8.3	18	
	$[Cu_4(L_1)]_n$	25	0.1	48	425.0	8.9	19	
	[MnL(H ₂ O) ₂]·H ₂ O	25	0.1	36	769.0	21.4	This work	
Дон	{[Eu(BTB)(phen)]·4.5DMF·2H ₂ O} _n	70	0.1	12	19.6	1.6	15	
	[MnL(H ₂ O) ₂]·H ₂ O	25	0.1	36	1000	27.8	This work	
<u>A</u> Br	[Cu ₄ (L ₁)] _n	25	0.1	48	440.0	9.2	19	
	[MnL(H ₂ O) ₂]·H ₂ O	25	0.1	36	893.0	24.8	This work	
٨	MMPF-18	25	0.1	48	356.0	8	18	
	[Cu ₄ (L ₁)] _n	25	0.1	48	415.0	8.6	19	
	MMPF-9	25	0.1	48	642.4	13.4	20	
	MMCF-2	25	0.1	48	708.0	14.8	21	
	[MnL(H₂O)₂]·H₂O	25	0.1	36	493.0	13.7	This work	
٩	MMPF-9	25	0.1	48	244.0	5.1	20	
	MMCF-2	25	0.1	48	336.8	7.0	21	
	[MnL(H₂O)₂]·H₂O	25	0.1	36	526.0	14.6	This work	

 $R \xrightarrow{O} CO_2, TBAB \xrightarrow{O} O$

Figure S11 X-ray photoelectron spectroscopy (XPS) Mn 2p core-level spectra of the as-synthesized and different treated samples.

The variation of major peak positions in core-level spectra of Mn 2p is discernible; the shift to the higher binding energy ascribes the electron dissociation of the Mn atoms, suggesting that there is some coordination between Mn(II) and epoxide.

Scheme S2 The schematic representation of the tentatively proposed catalytic mechanism for the cycloaddition of epoxides and CO_2 into cycliccarbonates in this work (L⁺ = tetra-n-butylammonium). Mn: green; O: red; P: pink; C: black.

S3 The NMR spectrums

Figure S12 ¹H NMR spectra of styrene oxide (400 MHz, CDCl₃): δ = 7.27 – 7.37 (m, 5H, Ar-H), 3.87 (t, J=4.0 Hz, 1H, O-CH^{*}), 3.16 (q, J=4.0 Hz, 1H, O-CH₂), 2.81 (q, J = 4.0 Hz, 1H, O-CH₂).

Figure S13 ¹H NMR spectra of the cycloaddition product of styrene oxide and CO₂ for 48 h (400 MHz, CDCl₃) : δ = 5.60 (t, J = 8.0 Hz, 1H, COO-CH* of product), , 3.79-3.80 (t, J = 8.0 Hz, 2.20H, O-CH* of raw material).

Figure S14 ¹H NMR spectra of 1,2-epoxy-3-phenoxypropane (400 MHz, CDCl₃) : δ = 7.18 – 7.23 (m, 2H, Ar-H), 6.84 – 6.91 (m, 3H, Ar-H), 4.14 (q, J = 4.0 Hz, 1H, ArO-CH₂), 3.88 (q, J = 4.0 Hz, 1H, ArO-CH₂), 3.26 – 3.30 (m, 1H,O-CH*), 2.83 (t, J = 4.0 Hz, 1H,O-CH₂), 2.68 (q, J = 4.00 Hz, 1H,O-CH₂).

Figure S15 ¹H NMR of the cycloaddition product of 1,2-epoxy-3-phenoxypropane and CO₂ for 48 h (400 MHz, CDCl₃): δ = 4.95 – 5.00 (m, 1H, COO-CH^{*} of product), 4.55 (t, J = 8.0 Hz, 1H, COO-CH₂), 3.26 – 3.34 (m, 0.46H, O-CH^{*} of raw material).

Figure S16 (a) ¹H NMR spectra of epichlorohydrin (400 MHz, CDCl₃): δ = 3.58 (d, J = 8.0 Hz, 2H, Cl-CH₂), 3.23 – 3.27 (m, 1H, O-CH*), 2.90 (t, J = 4.0 Hz, 1H, O-CH₂), 2.70 (q, J = 4.0 Hz, 1H, O-CH₂).

(b-d) ¹H NMR spectra of the cycloaddition product of epichlorohydrin and CO₂ catalyzed for 12 h, 24 h 36 h, respectively (400 MHz, CDCl₃) : δ = 4.90 – 4.97 (m, 1H, COO-CH* of product), 3.15 – 3.20 (m, 1H, O-CH* of raw material).

Figure S17 (a) ¹H NMR spectra of epibromohydrin (400 MHz, CDCl₃): δ = 3.42 (q, J = 8.0 Hz, 1H, Br-CH₂), 3.33 (q, J = 8.0 Hz, 1H, Br-CH₂), 3.25 – 3.29 (m, 1H, O-CH*), 2.95 (t, J = 4.0 Hz, 1H, O-CH₂), 2.67 (q, J = 4.0 Hz, 1H, O-CH₂).

(b-d) ¹H NMR spectra of the cycloaddition product of epibromohydrin and CO₂ for 12 h, 24 h, 36 h, respectively (400 MHz, CDCl₃) : δ = 4.88 – 4.95 (m, 1H, COO-CH* of product), 3.18–3.23 (m, 1H, O-CH* of raw material).

- Figure S18 (a) ¹H NMR spectra of glycidol (400 MHz, CDCl₃): δ = 3.94 3.99 (m, 1H, HO-CH₂), 3.56 3.62 (m, 1H, HOCH₂), 3.16 3.19 (m, 1H, O-CH^{*}), 2.83 (t, J = 4.0 Hz, 1H, O-CH₂), 2.76 (q, J = 4.0 Hz, 1H, O-CH₂), 2.52 (t, J = 4.0 Hz, 1H, -OH).
 - (b-d) ¹H NMR spectra of the cycloaddition product of glycidol and CO₂ for 12 h, 24 h, 36 h, respectively (400 MHz, CDCl₃) : δ = 4.72 – 4.78 (m, 1H, COO-CH* of product), 3.09–3.12(m, 1H, O-CH* of raw material).

Figure S19 (a) ¹H NMR spectra of epoxybutane (400 MHz, CDCl₃): δ = 2.83 (m, 1H, O-CH*), 2.67 (t, J = 5.0, 4.0 Hz, 1H, O-CH₂), 2.41 (m, 1H, O-CH₂), 1.51 (m, 2H, -CH₂), 0.94 (t, J = 7.5 Hz, 3H, -CH₃).

(b-d) ¹H NMR spectra of the cycloaddition product of epoxybutane and CO₂ for 12 h, 24 h, 36 h, respectively (400 MHz, CDCl₃) : δ = 4.56 – 4.93 (m, 1H, COO-CH* of product), 2.81-2.85 (m, 1H, O-CH* of raw material).

Figure S20 (a) ¹H NMR spectra of *n*-Butyl glycidyl ether (400 MHz, CDCl₃): δ = 3.73-3.69 (dd, J = 11.5, 3.1 Hz, 1H, O-CH₂-cycle), 3.55-3.44 (m, 2H, O-CH₂-chain), 3.41-3.36 (m, 1H, O-CH₂-cycle), 3.17-3.13 (t, J = 5.8, 4.1, 2.9 Hz, 1H, O-CH*-cycle), 2.81-2.79 (dd, J = 5.0, 4.2 Hz, 1H, O-CH₂-chain), 2.62-2.60 (dd, J = 5.0, 2.7 Hz, 1H, O-CH₂-chain), 1.62 – 1.54 (m, 2H, -CH₂-), 1.43 – 1.33 (m, 2H, -CH₂-), 0.94-0.91 (t, J = 7.4 Hz, 3H, -CH₃).

(b-d) ¹H NMR spectra of the cycloaddition product of *n*-Butyl glycidyl ether and CO₂ for 12 h, 24 h, 36 h, respectively (400 MHz, CDCl₃) : δ = 4.76 – 4.71 (m, 1H, COO-CH* of product), 3.10-3.06 (m, 1H, O-CH* of raw material).

Figure S21 ¹H NMR spectra of the cycloaddition product of epibromohydrin and CO₂ for 3 h at 373 K and under 1 MPa.

S4 References

- 1. (a) Patent: WO2008/10985A2, 2008; (b) D. Redmore, J. Org. Chem., 1976, 41, 2149.
- SMART and SAINT software package, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
- (a) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339; (b) G. M. Sheldrick, *ActaCryst. A*, 2008, **64**, 112; (c) G. M. Sheldrick, *ActaCryst. C*, 2015, **71**, 3.
- 4. H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 14690.
- H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 13934.
- D. Feng, K. Wang, J. Su, T.-F. Liu, J. Park, Z. Wei, M. Bosch, A. Yakovenko, X. Zou and H.-C. Zhou, *Angew. Chem. Int. Ed.*, 2015, 54, 149.
- 7. V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J. R. Long, *Chem. Sci.*, 2011, 2, 1311.
- D. Feng, K. Wang, Z. Wei, Y.-P. Chen, C. M. Simon, R. K. Arvapally, R. L. Martin, M. Bosch, T.-F. Liu, S. Fordham, D. Yuan, M. A. Omary, M. Haranczyk, B. Smit and H.-C. Zhou, *Nat. Commun.*, 2015, 5, 5723.
- 9. K. Wang, D. Feng, T.-F. Liu, J. Su, S. Yuan, Y.-P. Chen, M. Bosch, X. Zou and H.-C. Zhou, *J. Am. Chem. Soc.*, 2014, **136**, 13983.
- 10. J. Duan, M. Higuchi, S. Horike, M. L. Foo, K. P. Rao, Y. Inubushi, T. Fukushima and S. Kitagawa, *Adv. Funct. Mater.*, 2013, **23**, 3525.
- 11. Y.-H. Han, C.-B. Tian, Q.-H. Li and S.-W. Du, J. Mater. Chem. C, 2014, 2, 8065.
- 12. F.-Y. Yi, Y. Wang, J.-P. Li, D. Wu, Y.-Q. Lan and Z.-M. Sun, Mater. Horiz., 2015, 2, 245.
- 13. J. Dong, P. Cui, P.-F. Shi and B. Zhao, J. Am. Chem. Soc., 2015, 137, 15988.
- 14. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang and B. Han, *Green Chem.*, 2009, **11**, 1031.
- 15. H. Xu, B. Zhai, C.-S. Cao and B. Zhao, Inorg. Chem., 2016, 55, 9671.
- 16. J. Zheng, M. Wu, F. Jiang, W. Su and M. Hong, Chem. Sci., 2015, 6, 3466.
- 17. A. C. Kathalikkattil, D. W. Kim, J. Tharun, H. G. Soek, R. Roshan and D. W. Park, *Green Chem*. 2014, **16**, 1607.
- 18. W.-Y. Gao, C.-Y. Tsai, L. Wojtas, T. Thiounn, C.-C. Lin and S. Ma, Inorg. Chem., 2016, 55, 7291.
- 19. P.-Z. Li, X.-J. Wang, J. Liu, J.S. Lim, R. Zou and Y. Zhao, J. Am. Chem. Soc., 2016, 138, 2142.
- 20. W.-Y. Gao, L. Wojtas and S. Ma, Chem. Commun., 2014, 50, 5316.
- W.-Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P. J. Perez, L. Wojtas, J. Cai, Y.-S. Chen and S. Ma, *Angew. Chem. Int. Ed.*, 2014, **53**, 2615.
- 22. B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, and K. M. Thomas, *J. Am. Chem. Soc.*, 2008, **130**, 6411.