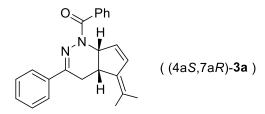
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information for

Catalytic Asymmetric Inverse Electron Demand Diels-Alder Reaction of Fulvenes with Azoalkenes

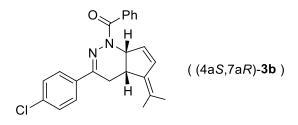
Liang Wei, Qiao Zhu, Zhi-Min Song, Kang Liu, Chun-Jiang Wang*

Table of Contents

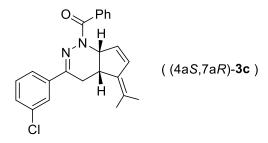

1	General Remarks	2
2	General Procedure for Catalytic Asymmetric IEDDA reaction of Fulvene with	Azoalkenes
Cat	talyzed by Cu(I)/ ^t Bu-Box	2
3	Synthetic Transformations	12
4	References	14
5	NMR and HPLC spectra	15

1 General Remarks

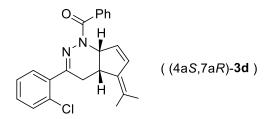
¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quartet, m = multiple or unresolved, and brs = broad single). ¹³C NMR spectra were recorded on a Bruker 75 MHz or 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Commercially available reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Diastereomeric ratios were determined from crude ¹H NMR or HPLC analysis. Enantiomeric ratios were determined by HPLC, using a chiralpak AS-H column, a chiralpak IC-H column or a chiralcel IE-H column with hexane and *i*-PrOH as solvents, and Azoalkenes¹ and fulvene² were prepared according to the literature procedure. The absolute configuration of **3f** were determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results.


2 General Procedure for Catalytic Asymmetric IEDDA reaction of Fulvene with Azoalkenes Catalyzed by Cu(I)/[#]Bu-Box

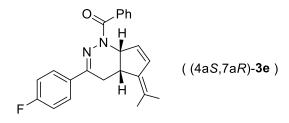
Under argon atmosphere, ^{*i*}Bu-Box (6.5 mg, 0.022 mmol) and CuOTf•1/2 PhH (5.0 mg, 0.020 mmol) were dissolved in 1.0 mL of DCM, and stirred at room temperature for about 0.5 h. After the reaction temperature was dropped to -20 °C, α -halogeno-hydrozone **2** (0.2 mmol), Na₂CO₃ (0.5 mmol) were added sequentially. Then, the fulvene **1** (0.3 mmol) in 1.0 mL of DCM was added. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography to give the cycloaddition product, which was then directly analyzed by HPLC to determine the enantiomeric excess.


(4aS,7aR)-phenyl(3-phenyl-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

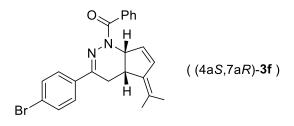
cyclopenta[**c**]**pyridazin-1-yl**)**methanone (table 2, entry 1):** Yield (73%); white solid; m.p. = 126 ^oC; $[α]^{20}_{D}$ = -591.0 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.58 – 7.56 (m, 2H), 7.42 – 7.31 (m, 6H), 6.51 – 6.49 (m, 1H), 6.20 (d, *J* = 5.2 Hz, 1H), 5.54 (d, *J* = 7.2 Hz, 1H), 3.26 – 3.20 (m, 1H), 2.93 – 2.87 (m, 1H), 2.30 – 2.24 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 151.1, 140.6, 136.6, 135.5, 134.0, 131.7, 130.3, 129.9, 129.3, 128.4, 127.3, 125.6, 124.0, 58.7, 36.0, 26.0, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₃N₂O ([M+H]⁺): 343.1805, found: 343.1798. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 7.13 and 10.43 min.


(4aS,7aR)-(3-(4-chlorophenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

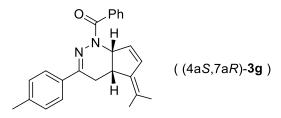
cyclopenta[c]pyridazin-1-yl)(phenyl)methanone (table 2, entry 2): Yield (80%); white solid; m.p. = 138 °C; $[\alpha]^{20}_{D}$ = -612.5 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.70 (m, 2H), 7.50 – 7.39 (m, 5H), 7.29 – 7.26 (m, 2H), 6.51 – 6.49 (m, 1H), 6.19 (d, *J* = 5.6 Hz, 1H), 5.52 (d, *J* = 7.6 Hz, 1H), 3.24 – 3.18 (m, 1H), 2.89 – 2.83 (m, 1H), 2.25 – 2.18 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 149.3, 140.5, 135.4, 135.2, 135.1, 134.0, 131.6, 130.4, 129.9, 128.6, 127.3, 126.8, 124.1, 58.5, 35.7, 25.8, 21.2, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₂ClN₂O ([M+H]⁺): 377.1415, found: 377.1407. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.31 and 9.27 min.


(4aS,7aR)-(3-(3-chlorophenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

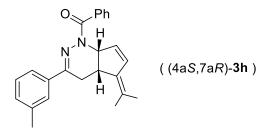
cyclopenta[**c**]**pyridazin-1-yl**)(**phenyl**)**methanone (table 2, entry 3):** Yield (89%); white solid; m.p. = $122 \,^{\circ}$ C; $[\alpha]^{20}_{D}$ = $-148.9 (c 0.23, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.72 (m, 2H), 7.54-7.41 (m, 5H), 7.26 – 7.23 (m, 2H), 6.51 – 6.49 (m, 1H), 6.20 (d, *J* = 5.2 Hz, 1H), 5.52 (d, *J* = 8.0 Hz, 1H), 3.23- 3.17 (m, 1H), 2.89 – 2.83 (m, 1H), 2.23 – 2.16 (m, 1H), 1.87 (s, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 148.7, 140.4, 138.5, 135.3, 134.5, 134.1, 131.6, 130.4, 129.9, 129.7, 129.1, 127.4, 125.8, 124.2, 123.6, 58.4, 35.5, 25.8, 21.2, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₂ClN₂O ([M+H]⁺): 377.1415, found: 377.1400. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254 \text{ nm}$; t_r = 6.34 and 8.90 min.


(4aS,7aR)-(3-(2-chlorophenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

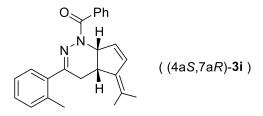
cyclopenta[c]pyridazin-1-yl)(phenyl)methanone (table 2, entry 4): Yield (93%); white solid; m.p. = 132 °C; $[\alpha]^{20}_{D}$ = -377.8 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.72 (m, 2H), 7.42 – 7.35 (m, 4H), 7.29 – 7.22 (m, 3H), 6.54- 6.52 (m, 1H), 6.25 (d, *J* = 5.6 Hz, 1H), 5.49 (d, *J* = 7.6 Hz, 1H), 3.34 – 3.28 (m, 1H), 2.92 – 2.87 (m, 1H), 2.24 – 2.17 (m, 1H), 1.80 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 154.5, 140.2, 137.4, 135.4, 133.8, 132.4, 131.8, 130.5, 130.02, 129.95, 129.9, 127.4, 127.0, 124.2, 59.9, 36.9, 30.4, 21.0, 20.9. HRMS (ESI+) Calcd. For C₂₃H₂₂ClN₂O ([M+H]⁺): 377.1415, found: 377.1407. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 7.28 and 10.22 min.


(4aS,7aR)-(3-(4-fluorophenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

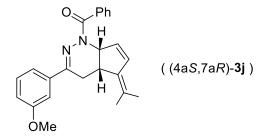
cyclopenta[c]pyridazin-1-yl)(phenyl)methanone (table 2, entry 5): Yield (93%); white solid; m.p. = 124 °C; $[\alpha]^{20}_{D}$ = -654.8 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.72 (m, 2H), 7.58 – 7.41 (m, 5H), 7.03-6.98 (m, 2H), 6.52 – 6.50 (m, 1H), 6.20 (d, *J* = 5.2 Hz, 1H), 5.55 – 5.53 (m, 1H), 3.27 – 3.21 (m, 1H), 2.90 – 2.84 (m, 1H), 2.29 – 2.22 (m, 1H), 1.87 (s, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 164.7, 162.2, 149.9, 140.5, 135.5, 134.0, 132.79, 132.76, 131.7, 129.8, 127.5, 127.4, 127.3, 124.0, 115.5, 115.3, 58.5, 35.9, 26.0, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₂FN₂O ([M+H]⁺): 361.1711, found: 361.1708. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 6.68 and 10.26 min.


(4aS,7aR)-(3-(4-bromophenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

cyclopenta[c]pyridazin-1-yl)(phenyl)methanone (table 2, entry 6): Yield (73%); white solid; m.p. = 151 °C; $[\alpha]^{20}_{D}$ = -539.2 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 2H), 7.46 – 7.38 (m, 7H), 6.51 – 6.49 (m, 1H), 6.19 (d, *J* = 5.2 Hz, 1H), 5.51 (d, *J* = 7.6 Hz, 1H), 3.23 – 3.18 (m, 1H), 2.88 – 2.83 (m, 1H), 2.24 – 2.18 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 149.3, 140.5, 135.5, 135.4, 134.0, 131.62, 131.58, 130.4, 129.9, 127.4, 127.1, 124.1, 123.6, 58.5, 35.6, 25.7, 21.2, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₂BrN₂O ([M+H]⁺): 421.0910, found: 421.0910. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.65 and 9.20 min

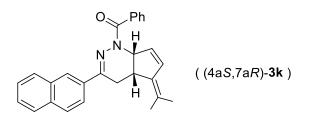

(4aS,7aR)-phenyl(5-(propan-2-ylidene)-3-(p-tolyl)-4,4a,5,7a-tetrahydro-1H-

cyclopenta[c]pyridazin-1-yl)methanone (table 2, entry 7): Yield (80%); white solid; m.p. = 137 ^oC; $[α]^{20}_D = -687.9$ (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.72 (m, 2H), 7.48 – 7.38 (m, 5H), 7.13 (m, 2H), 6.51 – 6.49 (m, 1H), 6.19 (d, *J* = 5.2 Hz, 1H), 5.54 (d, *J* = 7.6 Hz, 1H), 3.27 – 3.21 (m, 1H), 2.90 – 2.85 (m, 1H), 2.34 (s, 3H), 2.30 – 2.24 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 151.5, 140.7, 139.5, 135.6, 134.0, 133.8, 131.8, 130.3, 130.0, 129.2, 127.3, 125.6, 123.9, 58.8, 36.2, 26.1, 21.2, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₄H₂₅N₂O ([M+H]⁺): 357.1961, found: 357.1965. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.77 and 8.52 min.

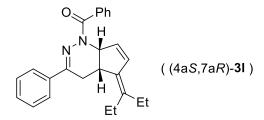

(4aS,7aR)-phenyl(5-(propan-2-ylidene)-3-(m-tolyl)-4,4a,5,7a-tetrahydro-1H-

cyclopenta[c]pyridazin-1-yl)methanone (table 2, entry 8): Yield (73%); white solid; m.p. = 90 °C; $[\alpha]^{20}_{D} = -236.1 (c \ 0.23, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.74 (m, 2H), 7.45 – 7.36 (m, 5H), 7.21 – 7.15 (m, 2H), 6.51 – 6.49 (m, 1H), 6.19 (d, *J* = 5.2 Hz, 1H), 5.54 (d, *J* = 7.6 Hz, 1H), 3.26 – 3.20 (m, 1H), 2.91 – 2.85 (m, 1H), 2.31 (s, 3H), 2.30 – 2.23 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 151.3, 140.6, 138.0, 136.5, 135.5, 134.0, 131.7, 130.3, 130.05, 135.00, 128.3, 127.2, 126.3, 123.9, 122.8, 58.7, 36.1, 26.1, 21.4, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₄H₂₅N₂O ([M+H]⁺): 357.1961, found: 357.1960. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 5.95 and 7.86 min.

(4aS,7aR)-phenyl(5-(propan-2-ylidene)-3-(o-tolyl)-4,4a,5,7a-tetrahydro-1H-


cyclopenta[c]pyridazin-1-yl)methanone (table 2, entry 9): Yield (75%); white solid; m.p. = 128 °C; $[\alpha]^{20}_{D}$ = -552.0 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.64 (m, 2H), 7.39 – 7.34 (m, 3H), 7.20 – 7.13 (m, 4H), 6.55 – 6.54 (m, 1H), 6.17 (d, *J* = 5.2Hz, 1H), 5.61 (d, *J* = 7.6 Hz, 1H), 3.39 – 3.34 (m, 1H), 2.72 – 2.66 (m, 1H), 2.37 – 2.31 (m, 1H), 2.18 (s, 3H), 1.81 (s, 3H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 157.0, 140.5, 137.5, 135.9, 135.8, 133.8, 132.3, 130.9, 130.1, 129.4, 128.5, 128.0, 127.4, 125.7, 124.1, 59.0, 37.6, 30.5, 21.0, 20.8, 20.7. HRMS (ESI+) Calcd. For C₂₄H₂₅N₂O ([M+H]⁺): 357.1961, found: 357.1951. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 6.98 and 17.65 min.

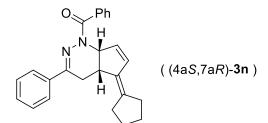
(4aS,7aR)-(3-(3-methoxyphenyl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-

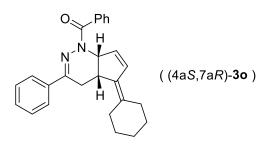

cyclopenta[c]pyridazin-1-yl)(phenyl)methanone (table 2, entry 10): Yield (82%); white solid; m.p. = 138 °C; $[\alpha]^{20}_{D}$ = -660.0 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.44 – 7.39 (m, 3H), 7.23 – 7.21 (m, 1H), 7.15 – 7.13 (m, 2H), 6.89 – 6.88 (m, 1H), 6.51 – 6.49 (m, 1H), 6.20 (d, *J* = 5.2 Hz, 1H), 5.51 (d, *J* = 7.2 Hz, 1H), 3.68 (s, 3H), 3.23 – 3.17 (m, 1H), 2.92 – 2.86 (m, 1H), 2.24 - 2.18 (m, 1H), 1.86 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 159.6, 150.1, 140.5, 137.9, 135.7, 134.0, 131.6, 130.1, 129.8, 129.3, 127.2, 124.0, 118.0, 115.8, 109.9, 58.5, 55.0, 35.7, 25.8, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₄H₂₅N₂O₂ ([M+H]⁺): 373.1911, found: 373.1905. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee

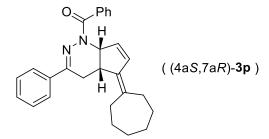
(Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 7.64 and 10.34 min.

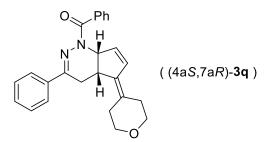


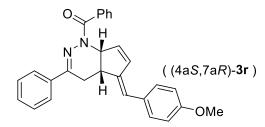
(4aS,7aR)-(3-(naphthalen-2-yl)-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-


cyclopenta[**c**]**pyridazin-1-yl**)(**phenyl**)**methanone** (**table 2**, **entry 11**): Yield (59%); white solid; m.p. = 130 °C; $[\alpha]^{20}_{D}$ = -618.6 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.79 – 7.70 (m, 6H), 7.46 – 7.41 (m, 5H), 6.50 – 6.48 (m, 1H), 6.22 (d, J = 5.2 Hz, 1H), 5.53 (d, J = 7.2 Hz, 1H), 3.22 – 3.17 (m, 1H), 3.04 – 2.98 (m, 1H), 2.34 – 2.28 (m, 1H), 1.88 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 171.7, 150.3, 140.6, 134.1, 134.0, 131.6, 130.3, 130.0, 128.4, 128.1, 127.6, 127.3, 126.7, 126.3, 125.3, 124.0, 123.0, 58.7, 35.8, 25.7, 21.1, 20.8. HRMS (ESI+) Calcd. For C₂₇H₂₅N₂O ([M+H]⁺): 393.1961, found: 393.1954. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AS-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm); t_r = 6.69 and 9.73 min.


(4a*S*,7a*R*)-(5-(pentan-3-ylidene)-3-phenyl-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazin-1yl)(phenyl)methanone: Yield (95%); white solid; m.p. = 90 °C; $[\alpha]^{20}_{D}$ = -561.8 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl3) δ 7.75 (m, 2H), 7.59 – 7.57 (m, 2H), 7.42 – 7.41 (m, 3H), 7.33 – 7.32 (m, 3H), 6.53 – 6.51 (m, 1H), 6.26 – 6.18 (m, 1H), 5.52 (d, *J* = 7.3 Hz, 1H), 3.24 – 3.18 (m, 1H), 2.92 – 2.87 (m, 1H), 2.27 – 2.20 (m, 5H), 1.12 (t, *J* = 7.5 Hz, 3H), 1.03 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 171.7, 150.5, 140.0, 136.6, 136.1, 135.5, 134.6, 131.5, 130.3, 130.0, 129.3, 128.4, 127.3, 125.6, 58.4, 35.3, 26.7, 25.4, 24.4, 13.9, 13.5. HRMS (ESI+) Calcd. For C₂₅H₂₇N₂O ([M+H]⁺): 371.2118, found: 371.2116. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak IE-H, *i*-propanol /hexane = 4/96, flow rate 1.0 mL/min, λ = 254 nm); t_r = 7.32 and 8.03 min.

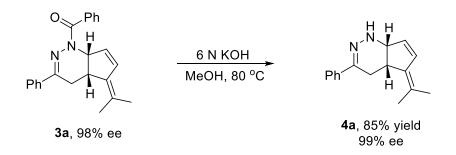

(4a*S*,7a*R*)-(5-cyclobutylidene-3-phenyl-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazin-1yl)(phenyl)methanone: Yield (87%); white solid; m.p. = 120 °C; $[\alpha]^{20}D = -650.3$ (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 2H), 7.59 – 7.57 (m, 2H), 7.39 – 7.31 (m, 6H), 6.22 – 6.21 (m, 1H), 6.12 (d, *J* = 5.6 Hz, 1H), 5.60 (d, *J* = 8 Hz, 1H), 3.30 – 3.29 (m, 1H), 2.76 – 2.74 (m, 1H), 2.72 – 2.70 (m, 4H), 2.57 – 2.50 (m, 1H), 2.10 – 2.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 153.8, 137.3, 136.3, 135.4, 132.9, 132.6, 131.8, 130.3, 129.8, 129.4, 128.4, 127.2, 125.6, 59.3, 36.5, 30.1, 29.7, 25.7, 17.5. HRMS (ESI+) Calcd. For C₂₄H₂₃N₂O ([M+H]⁺): 355.1805, found: 355.1797. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 16.71 and 17.38 min.


(4a*S*,7a*R*)-(5-cyclopentylidene-3-phenyl-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazin-1yl)(phenyl)methanone: Yield (73%); white solid; m.p. = 122 °C; $[\alpha]^{20}D = -289.7$ (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (m, 2H), 7.58 – 7.56 (m, 2H), 7.41 – 7.39 (m, 3H), 7.32 – 7.30 (m, 3H), 6.36 – 6.34 (m, 1H), 6.16 (d, *J* = 5.2 Hz, 1H), 5.56 (d, *J* = 7.6 Hz, 1H), 3.19 – 3.13 (m, 1H), 2.92 – 2.86 (m, 1H), 2.39 – 2.32 (m, 5H), 1.74 – 1.70 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 152.2, 136.8, 136.5, 135.4, 135.3, 133.03, 132.97, 130.3, 129.9, 129.9, 129.3, 128.4, 127.3, 125.6, 59.1, 37.3, 31.0, 30.8, 26.6, 26.4, 25.1. HRMS (ESI+) Calcd. For C₂₅H₂₅N₂O ([M+H]⁺): 369.1961, found: 369.1959. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak IC-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 16.83 and 18.44 min.

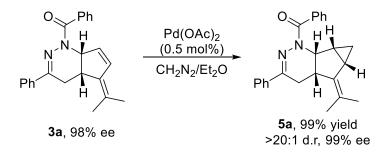

(4a*S*,7a*R*)-(5-cyclohexylidene-3-phenyl-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazin-1yl)(phenyl)methanone: Yield (92%); white solid; m.p. = 110 °C; $[α]^{20}D = -596.4$ (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.74 (m, 2H), 7.57 – 7.56 (m, 2H), 7.41 – 7.39 (m, 3H), 7.32 – 7.30 (m, 3H), 6.54 – 6.52 (m, 1H), 6.20 (d, *J* = 5.2 Hz, 1H), 5.55 – 5.52 (m, 1H), 3.28 – 3.22 (m, 1H), 2.82 – 2.81 (m, 1H), 2.30 – 2.25 (m, 5H), 1.61 (d, *J* = 14.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 151.0, 137.7, 136.4, 135.4, 134.1, 132.5, 131.1, 130.2, 129.9, 129.2, 128.3, 127.2, 125.5, 58.5, 35.3, 31.8, 31.3, 28.1, 27.9, 26.7, 26.5. HRMS (ESI+) Calcd. For C₂₆H₂₇N₂O ([M+H]⁺): 383.2118, found: 383.2115. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak IC-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 16.52 and 18.15 min.

(4a*S*,7a*R*)-(5-cycloheptylidene-3-phenyl-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazin-1yl)(phenyl)methanone: Yield (89%); white solid; m.p. = 125 °C; $[\alpha]^{20}_{D}$ = -582.3 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.74 (m, 2H), 7.59 – 7.57 (m, 2H), 7.42 – 7.41 (m, 3H), 7.33 – 7.32 (m, 3H), 6.53 (dd, *J* = 6.0, 2.4 Hz, 1H), 6.23 – 6.22 (m, 1H), 5.51 (d, *J* = 7.6 Hz, 1H), 3.23 – 3.17 (m, 1H), 2.92 (dd, *J* = 16.0, 6.0 Hz, 1H), 2.42 – 2.40 (m, 4H), 2.23 (dd, *J* = 16.0, 9.2 Hz, 1H), 1.72 – 1.64 (m, 3H), 1.57 – 1.55 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 150.6, 140.5, 136.6, 135.5, 134.1, 133.9, 131.5, 130.3, 129.9, 129.3, 128.4, 127.3, 125.6, 58.5, 35.5, 32.9, 32.1, 29.7, 28.9, 28.1, 27.9, 26.1. HRMS (ESI+) Calcd. For $C_{27}H_{29}N_2O$ ([M+H]⁺): 397.2274, found: 397.2265. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 13.90 and 14.48 min.

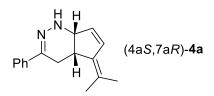
(4a*S*,7a*R*)-phenyl(3-phenyl-5-(tetrahydro-4H-pyran-4-ylidene)-4,4a,5,7a-tetrahydro-1Hcyclopenta[c]pyridazin-1-yl)methanone: Yield (72%); white solid; m.p. = 118 °C; $[\alpha]^{30}_{D}$ = -293.6 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.74 (m, 2H), 7.58 – 7.56 (m, 2H), 7.49 – 7.39 (m, 3H), 7.35 – 7.32 (m, 3H), 6.51 (dd, *J* = 5.6, 2.0 Hz, 1H), 6.28 (d, *J* = 5.2 Hz, 1H), 5.57 (d, *J* = 7.6 Hz, 1H), 3.87 – 3.67 (m, 4H), 3.32 – 3.27 (m, 1H), 2.84 (dd, *J* = 16.0, 6.4 Hz, 1H), 2.45 – 2.43 (m, 4H), 2.31 (dd, *J* = 16.0, 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 150.9, 139.7, 136.4, 135.6, 135.4, 130.6, 130.4, 130.0, 129.4, 128.5, 127.4, 126.7, 125.6, 68.9, 68.7, 58.4, 35.4, 32.2, 31.8, 26.7. HRMS (ESI+) Calcd. For C₂₅H₂₅N₂O₂ ([M+H]⁺): 385.1911, found: 385.1900. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE-H, *i*-propanol /hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm); t_r = 18.86 and 22.82 min.



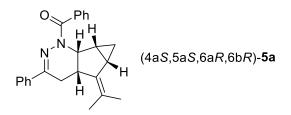
(4aS,7aR)-(E)-(5-(4-methoxybenzylidene)-3-phenyl-4,4a,5,7a-tetrahydro-1H-


cyclopenta[c]pyridazin-1-yl)(phenyl)methanone(Z/E = 0.7 : 1): Yield (79%); white solid; m.p. = 158 °C; [α]³⁰_D = -796.4 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.60 (m, 5.1H), 7.43 – 7.24 (m, 15.3H), 6.96 – 6.86 (m, 4.1H), 6.48 – 6.26 (m, 4.4H), 5.82 (d, *J* = 7.6 Hz, 1H), 5.68 (d, *J* = 7.6 Hz, 0.7H), 3.98 (q, *J* = 6.4 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 2.1H), 3.46 (q, *J* = 6.8 Hz, 0.7H), 2.95 – 2.60 (m, 3.4H). 13C NMR (101 MHz, CDCl₃) δ 171.5, 158.47, 158.45, 154.6, 153.4, 146.3, 146.1,

138.9, 138.1, 136.2, 136.1, 135.3, 134.3, 131.9, 130.55, 130.49, 130.1, 130.0, 129.6, 129.5, 129.4, 129.2, 128.5, 128.4, 127.4, 125.8, 121.9, 120.5, 114.2, 113.9, 60.3, 58.5, 55.3, 40.2, 37.2, 28.4, 25.0. HRMS (ESI+) Calcd. For $C_{28}H_{25}N_2O_2$ ([M+H]⁺): 421.1911, found: 421.1901. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol /hexane = 25/75, flow rate 1.0 mL/min, λ = 254 nm); t_r = 11.55, 14.16, 17.50, 22.49 min.


3 Synthetic Transformations

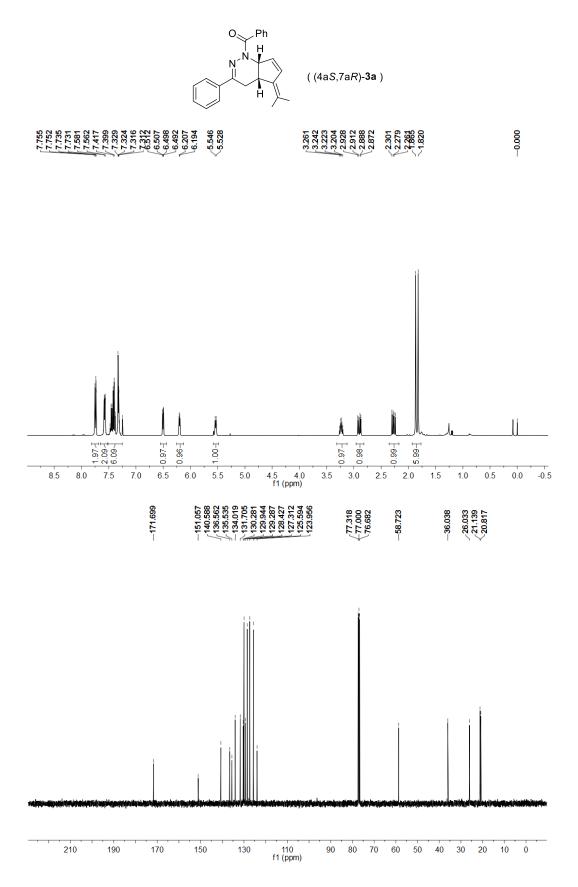
To methanol (10 mL) was added **3a** (0.3 mmol) and KOH (6 mmol), and the reaction mixture was heated to 80 °C until the starting material was consumed (monitored by TLC). Then, the reaction mixture was neutralized by 1 N HCl and extracted by DCM, the combined organic solvent was dried with Na₂SO₄ and was concentrated in vacuum. The residue was purified by column chromatography to give the product, which was then directly analyzed by HPLC to determine the enantiomeric excess.



3a (0.3 mmol) was added to a dry solution of diazomethame (prepare from 100 mg *N*-methyl-*N*nitrosourea, 1 mL ethyl ether) at 0 °C. Then catalytic amount of $Pd(OAc)_2$ was added in one portion and gas evolution was observed. After 1 h vigorous stirring at 0 °C, the organic solvent was concentrated in vacuum. The residue was purified by column chromatography to give the product, which was then directly analyzed by HPLC to determine the enantiomeric excess.

(4aS,7aR)-3-phenyl-5-(propan-2-ylidene)-4,4a,5,7a-tetrahydro-1H-cyclopenta[c]pyridazine:

Yield (85%); brown solid; m.p. = 21 °C; $[\alpha]^{30}_{D}$ = -198.0 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 2H), 7.39 – 7.30 (m, 3H), 6.49 (dd, *J* = 5.6, 1.2 Hz, 1H), 5.73 (d, *J* = 4.8 Hz, 1H), 4.46 (d, *J* = 8.4 Hz, 1H), 3.32 – 3.27 (m, 1H), 2.80 (dd, *J* = 14.0, 6.4 Hz, 1H), 2.36 (dd, *J* = 14.0, 6.8 Hz, 1H), 1.84 (s, 3H), 1.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 141.5, 137.8, 134.0, 133.4, 128.4, 128.3, 125.1, 123.3, 61.9, 40.3, 27.3, 21.00, 20.9. HRMS (ESI+) Calcd. For C₁₆H₁₉N₂ ([M+H]⁺): 239.1543, found: 239.1543. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm); t_r = 7.95, 10.37 min.

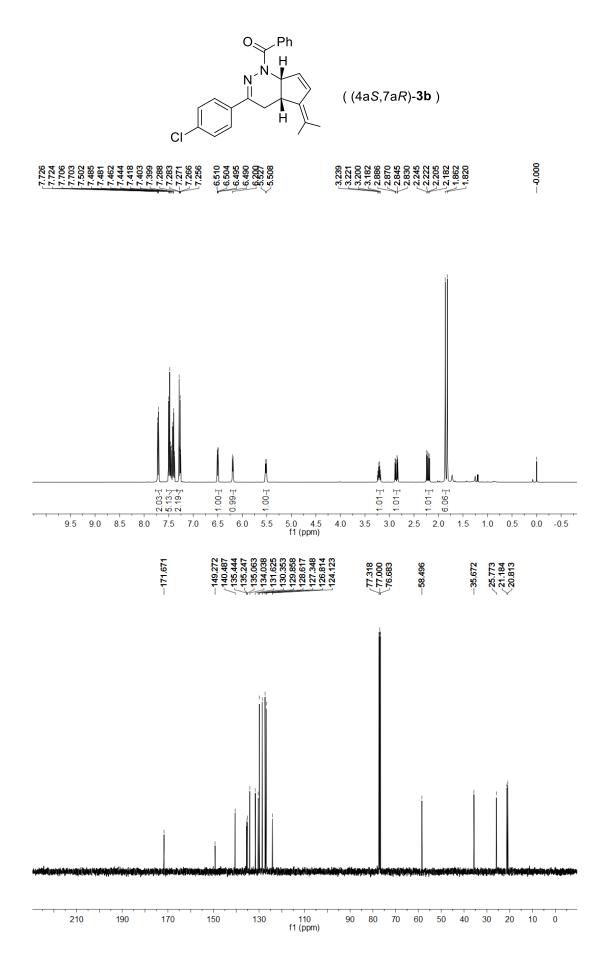

phenyl((4aS,5aS,6aR,6bR)-3-phenyl-5-(propan-2-ylidene)-4a,5,5a,6,6a,6b-

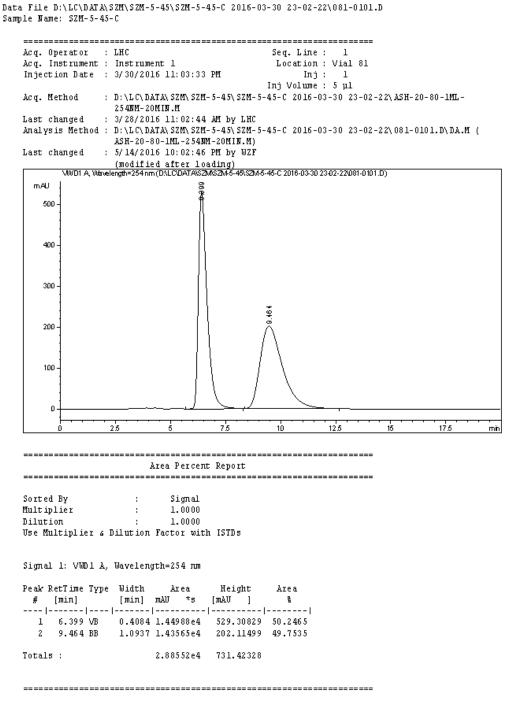
hexahydrocyclopropa[4,5]cyclopenta[1,2-c]pyridazin-1(4H)-yl)methanone: Yield (99%); white solid; m.p. = 42 °C; $[\alpha]^{30}_{D}$ = -88.0 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.73 (m, 2H), 7.56 – 7.54 (m, 2H), 7.46 – 7.42 (m, 3H), 7.35 – 7.27 (m, 3H), 4.99 (dd, *J* = 9.2, 5.2 Hz, 1H), 3.16 – 2.94 (m, 2H), 2.57 – 2.43 (m, 1H), 2.13 – 2.05 (m, 1H), 2.03 – 1.93 (m, 1H), 1.86 (s, 3H), 1.77 (s, 3H), 0.73 – 0.68 (m, 1H), 0.59 – 0.56 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.3, 137.3, 136.9, 135.8, 130.04, 129.96, 129.0, 128.4, 127.3, 125.2, 123.6, 52.5, 30.6, 26.8, 23.7, 21.2, 20.7, 20.3, 11.1. HRMS (ESI+) Calcd. For C₂₄H₂₄N₂NaO ([M+Na]⁺): 379.1781, found: 379.1781. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.03, 8.92 min.

4 References

- 1. M. C. Tong, X. Chen, J. Li, R. Huang, H. Tao, C. J. Wang, Angew. Chem. Int. Ed. 2014, 53, 4680.
- S. Collins, Yaping Hong, Mark Kataoka, and Thelam Nguyen, J. Org. Chem. 1990, 55, 3395-3398.

5 NMR and HPLC spectra

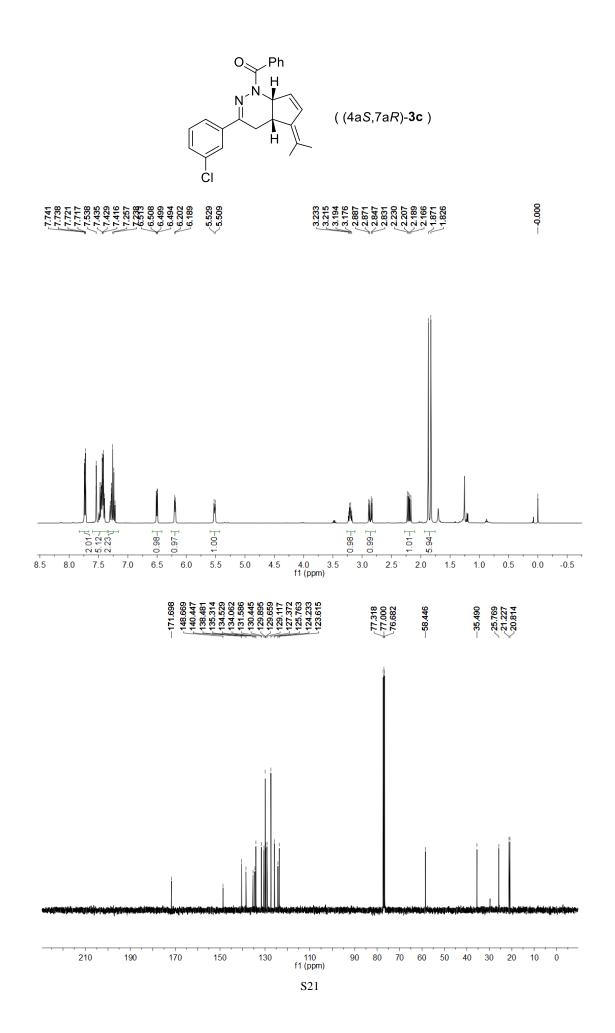



Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\071-0201.D Sample Name: SZM-5-45-1 Acq. Operator : WZF Acq. Instrument : Instrument 1 Seq. Line : 2 Location : Vial 71 Injection Date : 5/15/2016 2:11:39 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\ASH-20-80-1ML-254NM-30MIN.M Last changed : 5/15/2016 1:36:20 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\071-0201.D\DA.M (ASH-20-80-1ML-254NM-30MIN.M) Last changed : 5/15/2016 10:11:19 PM by WZF (modified after loading) WWD1 A. Wavelength=254nm(DXLCVDATAS2MS2M-5-46502M-5-46502D16-05-1513-38-50071-0201.D) mAU æ 500 400 197 ₽ 300 200 100 ۵ 25 15 20 5 10 min _____ Area Percent Report _____ Sorted By Simual . Multiplier 1.0000 : Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] màŭ *5 [màŭ] % 1 7.138 VB 0.3751 1.43769e4 565.75854 49.9861 2 10.197 BV 0.6560 1.43849e4 329.74820 50.0139 2.87618e4 895.50674 Totals : _____

Instrument 1 5/15/2016 10:11:25 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\075-0601.D Sample Name: SZM-5-50-1 Acq. Operator : WZF Acq. Instrument : Instrument 1 Seq. Line : 6 Location : Vial 75 Injection Date : 5/15/2016 4:17:54 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\ASH-20-80-1ML-254NM-30MIN.M Last changed : 5/15/2016 1:36:20 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\075-0601.D\DA.M (ASH-20-80-1ML-254NM-30MIN.M) Last changed : 5/15/2016 10:14:36 PM by WZF (modified after loading) \W/DIA, Wavelength=264nm(D\LC\DATA\S2M\S2M\5-46\S2M\5-46\502016-05-1513-38-50'075-0601.D) mAU 23 2000 1500 1000 500 ₫ Ē ۵ 25 15 20 10 5 min Area Percent Report _____ Sorted By Simual . 1.0000 Multiplier . . . Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Height Area Peak RetTime Type Width 1 7.128 BB 0.4274 6.81754e4 2422.35938 99.2040 2 10.434 BV 0.6287 547.02545 12.71287 0.7960 6.87225e4 2435.07224 Totals :

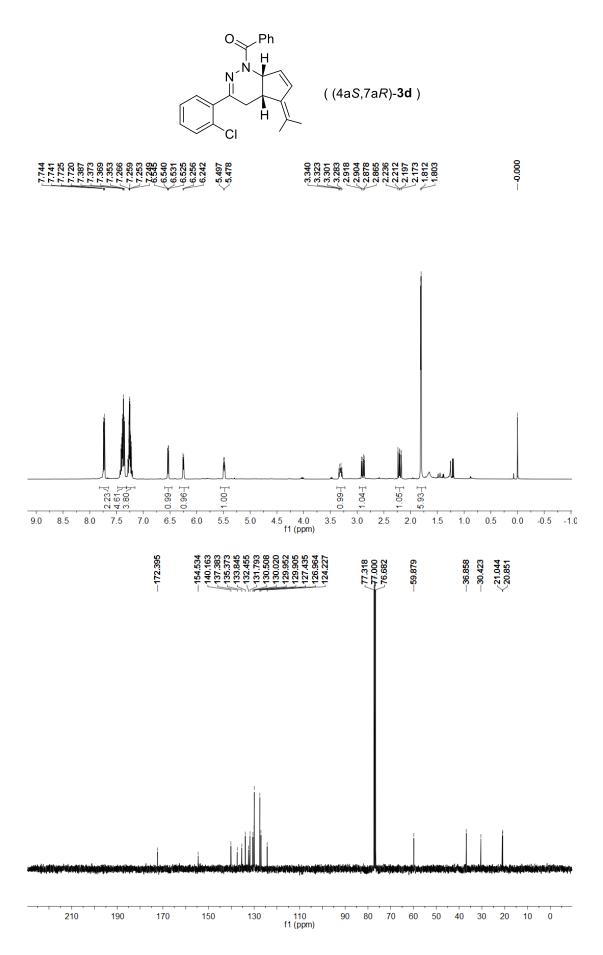
Instrument 1 5/15/2016 10:14:40 PM WZF



Instrument 1 5/14/2016 10:02:51 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-4 2016-03-28 11-30-54\082-0101.D Sample Name: SZM-5-50-4 Acq. Operator : LHC Seq. Line : 1 Location : Vial 82 Acq. Instrument : Instrument 1 Injection Date : 3/28/2016 11:32:15 AM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-4 2016-03-28 11-30-54\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-4 2016-03-28 11-30-54\082-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:26:44 PM by WZF (modified after loading) WVD1 A, Wavelength=254nm (D:LC:DATAS:22M-5-50/S2M-5-50-4-2016-03-28 11-30-54/082-0101.D) mAU \simeq 800 600 -400 -200 -272Dż 10 4 Ŕ. Ś. min _____ Area Percent Report _____ Sorted By Simual : : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width 2.97671e4 1007.46973 Totals : _____

Instrument 1 5/14/2016 10:26:50 PM WZF

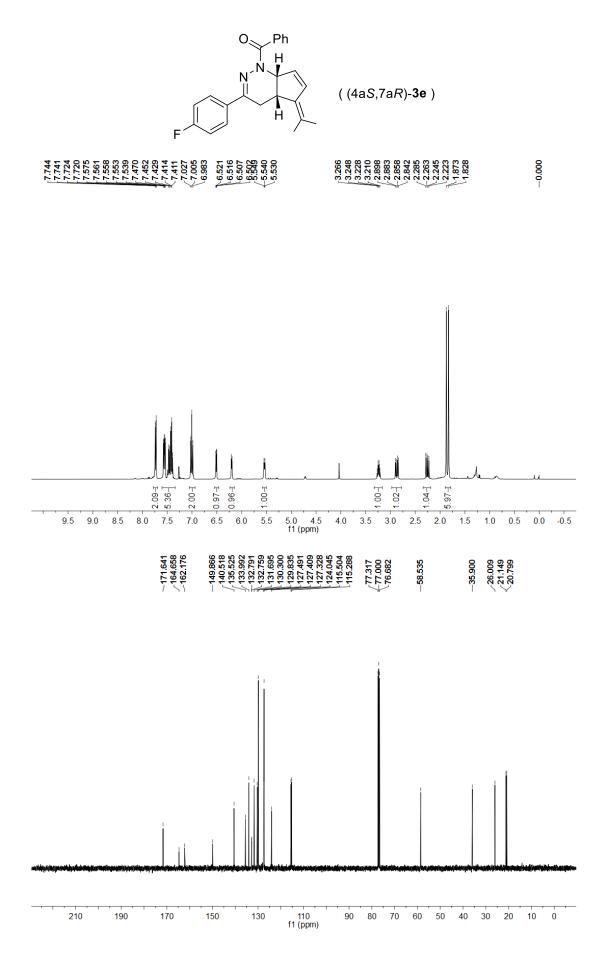


Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\073-0401.D Sample Name: SZM-5-45-B Acq. Operator : WZF Acq. Instrument : Instrument 1 Seq. Line : 4 Location : Vial 73 Injection Date : 5/15/2016 3:14:36 PM Inj: 1 یں ۔ Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\ASH-20-80-1ML-254NM-30MIN.M Last changed : 5/15/2016 1:36:20 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\073-0401.D\DA.M (ASH-20-80-1ML-254NM-30MIN.M) Last changed : 5/15/2016 10:12:55 PM by WZF (modified after loading) W/D1 A. Wavelength=254 nm (DALC/DATAKS2M/S2M-5-45/S22M-5-45/S0 2016-05-15 13-38-50'073-0401.D) mAU 1000 800 555 600 400 200 ۵ 25 15 5 10 20 min Area Percent Report _____ Sorted By Simual . 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Height Area 1 6.674 W 0.3680 2.77251e4 1106.75330 49.8976 2 9.555 VB 0.6630 2.78388e4 640.27997 50.1024 5.55638e4 1747.03326 Totals : _____

Instrument 1 5/15/2016 10:13:00 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-3 2016-03-28 11-05-02\081-0101.D Sample Name: SZM-5-50-3 Acq. Operator : LHC Seq. Line : 1 Location : Vial 81 Acq. Instrument : Instrument 1 Injection Date : 3/28/2016 11:06:37 AM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-3 2016-03-28 11-05-02\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-3 2016-03-28 11-05-02\081-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:21:19 PM by WZF (modified after loading) W/DIA, Wavelength=254nm (DALC/DATA/SZM-550/SZM-5-50-3 2016-03-28 11-05-02'081-0101.D) mAU 22 600 500 400 300 -200 -100 888 D-15 17.5 25 5 75 12.5 10 min _____ Area Percent Report _____ Sorted By Simual : : 1.0000 Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width 1.73323e4 661.78797 Totals : _____

Instrument 1 5/14/2016 10:21:24 PM WZF

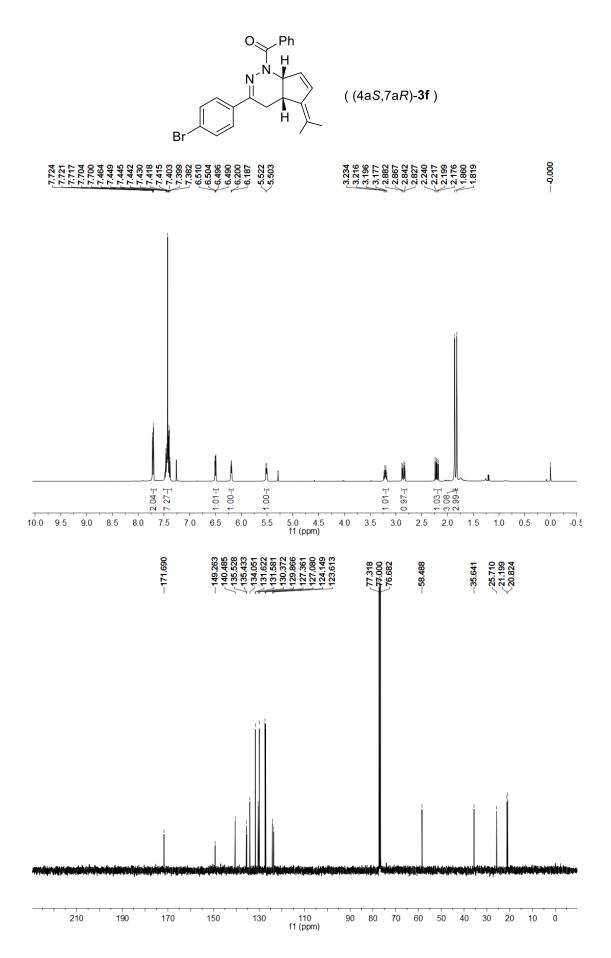


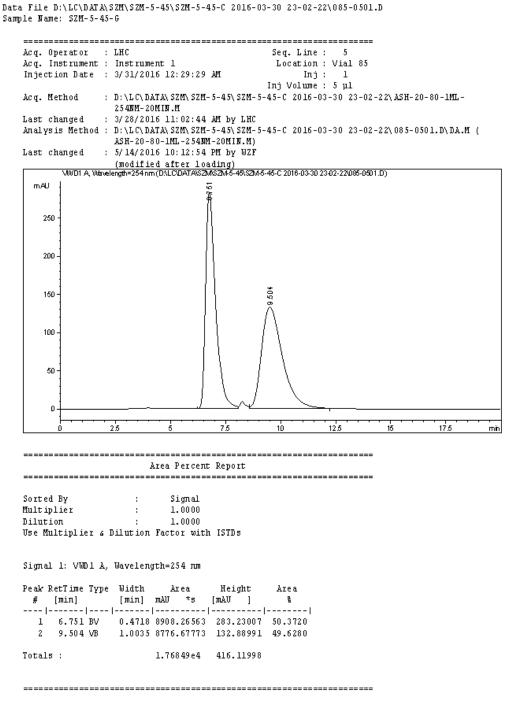
Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\072-0301.D Sample Name: SZM-5-45-A Acq. Operator : WZF Acq. Instrument : Instrument 1 Seq. Line : 3 Location : Vial 72 Injection Date : 5/15/2016 2:43:05 PM Inj : 1 ικς, _ Ική Volume : 5 μ1 Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\ASH-20-80-1ML-254NM-30MIN.M Last changed : 5/15/2016 1:36:20 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\072-0301.D\DA.M (ASH-20-80-1ML-254NM-30MIN.M) Last changed : 5/15/2016 10:12:19 PM by WZF (modified after loading) \W/D1 A \Wavelength=254nm(D\LC\DATA\S2M\S2M\5-45\502016-05-1513-38-50\072-0301.D) mAU 9 250 200 11.221 150 100 -50 ۵ 25 20 5 10 15 min _____ Area Percent Report _____ Sorted By Simual . 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Peak RetTime Type Width Height 1 7.346 VB 0.4998 9149.66797 279.53934 50.0163 2 11.221 BB 0.8298 9143.70312 168.08777 49.9837 1.82934e4 447.62711 Totals :

Instrument 1 5/15/2016 10:12:25 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-2 2016-03-28 17-24-20\083-0101.D Sample Name: SZM-5-50-2 Acq. Operator : LHC Seq. Line : 1 Location : Vial 83 Acq. Instrument : Instrument 1 Injection Date : 3/28/2016 5:26:15 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-2 2016-03-28 17-24-20\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-2 2016-03-28 17-24-20\083-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:18:07 PM by WZF (modified after loading) WDD1A, Wavelength=254nm(DALCADATAKSZMA5-50/SZMA5-50-2 2016-03-28 17-24-201083-0101.D) mAU 1000 800 -600 400 200 -10 2 2 0 Dż 6 10 12 à. Ś min _____ Area Percent Report _____ Sorted By Simual : : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area ª Height Peak RetTime Type Width 1 7.280 VB 0.6589 4.57762e4 1077.08020 98.5681 2 10.220 BB 0.7376 664.98889 12.78951 1.4319 4.64412e4 1089.86971 Totals : _____

Instrument 1 5/14/2016 10:18:12 PM WZF

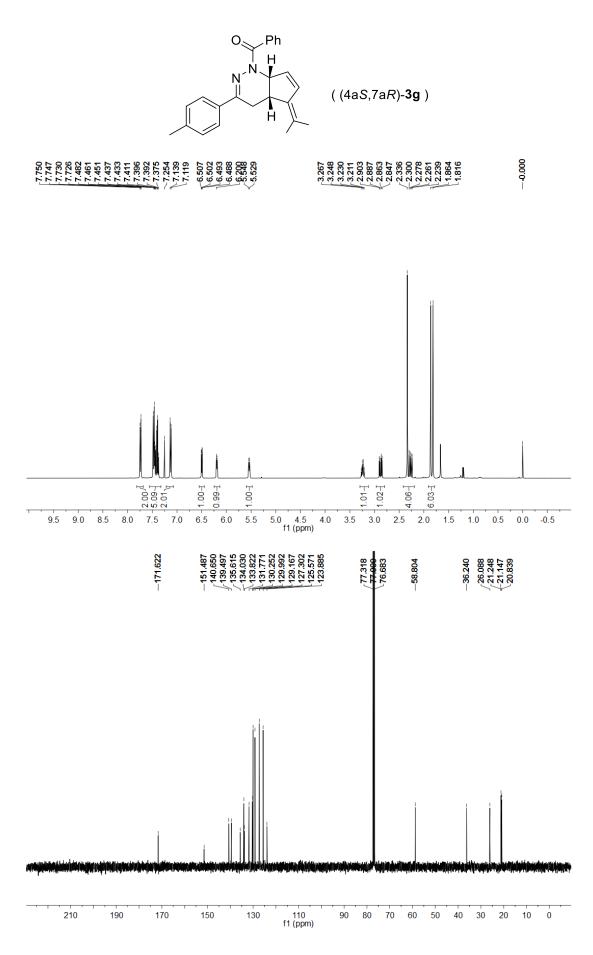



Instrument 1 5/14/2016 10:14:17 PM WZF

Sample Name: SZM-5-50-11 Acq. Operator : LHC Seq. Line : 3 Location : Vial 83 Acq. Instrument : Instrument 1 Injection Date : 3/31/2016 5:54:01 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\083-0301.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:31:00 PM by WZF (modified after loading) W/D1 A, Wavelength=254nm (D:LC/DATAS:20:45-50:820:16-03-31:17-09-56'083-0301.D) mAU 8 800 -600 400 200 10.265 D-15 25 7.5 17.5 -5 10 12.5 min _____ Area Percent Report Sorted By Simual : 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width 2.57322e4 954.78859 Totals : _____

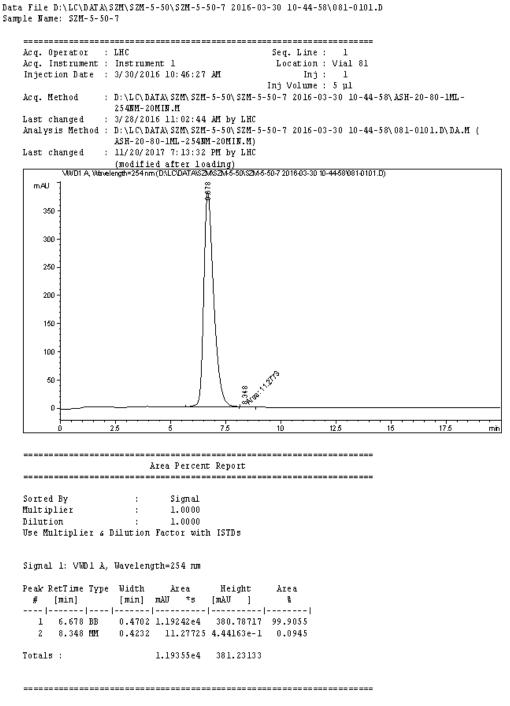
Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\083-0301.D

Instrument 1 5/14/2016 10:31:05 PM WZF

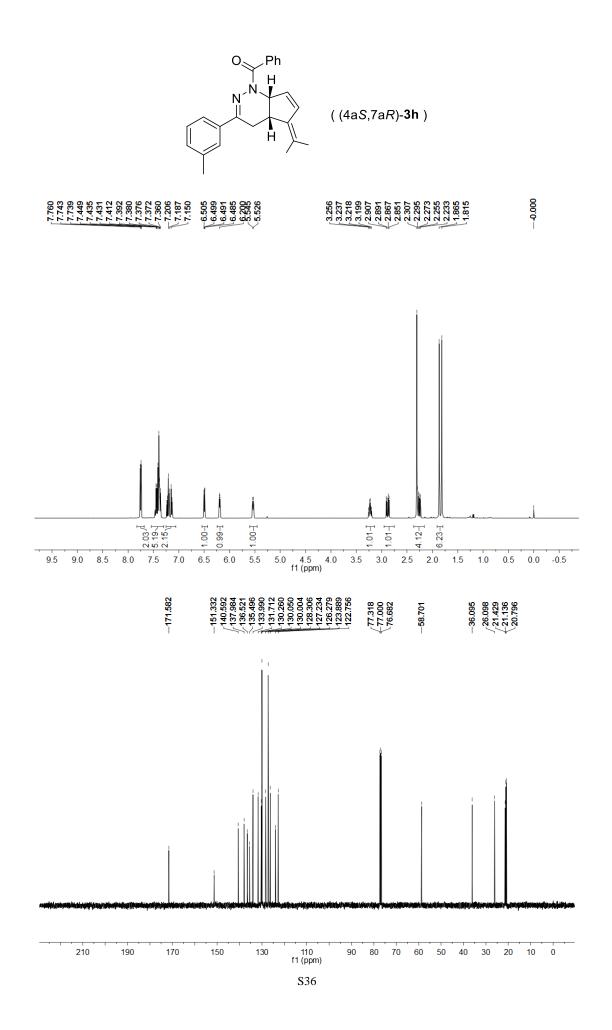


Instrument 1 5/14/2016 10:12:57 PM WZF

Sample Name: SZM-5-50-8 Acq. Operator : LHC Seq. Line : 1 Location : Vial 81 Acq. Instrument : Instrument 1 Injection Date : 3/31/2016 5:11:35 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\081-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:29:56 PM by WZF (modified after loading) W/D1A, Wavelength=254nm (DALC/DATAKSZM/S-50/82/016/03-3117-09-56/081-0101.D) mAU 8 700 600 500 400 -300 -200 -100 196 ٥ 7.5 15 17.5 25 -5 12.5 ó 10 min _____ Area Percent Report _____ Sorted By Simual : : Multiplier 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width 2.42060e4 800.69888 Totals : _____


Data File D:\LC\DATA\S2M\S2M-5-50\S2M-5-50-8 2016-03-31 17-09-56\081-0101.D

Instrument 1 5/14/2016 10:30:00 PM WZF



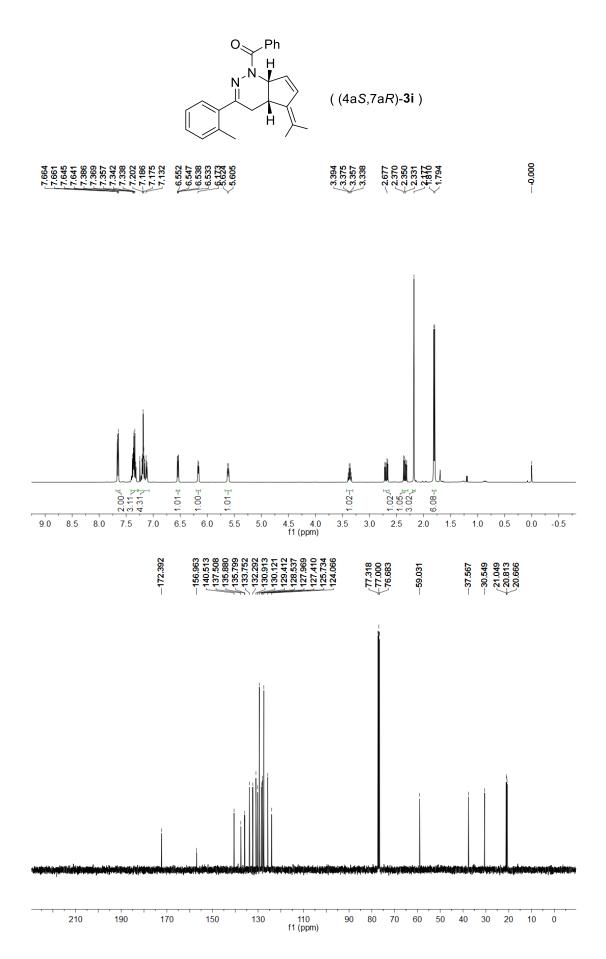
Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\084-0401.D Sample Name: SZM-5-45-F Acq. Operator : LHC Seq. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 84 Injection Date : 3/31/2016 12:07:58 AM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\084-0401.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:12:20 PM by WZF (modified after loading) W/D1A, Wavelength=254 nm (D:LC/DATA/S2M/52M/545/S2M/545-C 2016-03-30 23-02-22/084-0401.D) mAU _ 24 1 200 522 150 -100 50 -D-15 7.5 17.5 25 5 10 12.5 min _____ Area Percent Report Sorted By Simual : 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width Area 1 6.772 BV 0.4803 7861.48926 247.16179 49.9608 2 8.522 VB 0.6610 7873.83447 181.31389 50.0392 1.57353e4 428.47568 Totals : _____

Instrument 1 5/14/2016 10:12:24 PM WZF

Instrument 1 11/20/2017 7:13:42 PM LHC

Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\083-0301.D Sample Name: SZM-5-45-E Acq. Operator : LHC Seq. Line : Acq. Instrument : Instrument 1 3 Location : Vial 83 Injection Date : 3/30/2016 11:46:32 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\083-0301.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:11:52 PM by WZF (modified after loading) W/D1 A, Wavelength=254 nm (D:LC/DATAS:20:45-45:S2M-5-45:C 2016-03-30 23-02-22083-0301.D) mAU -69**0**4 800 883 600 400 200 ٥ 15 17.5 25 5 75 10 12.5 min _____ Area Percent Report Sorted By Simual : 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width 1 6.059 BV 0.3345 2.18704e4 980.55292 50.0591 2 7.863 VB 0.5022 2.18188e4 650.16644 49.9409 4.36892e4 1630.71936 Totals : _____

Instrument 1 5/14/2016 10:11:56 PM WZF


Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\082-0201.D Sample Name: SZM-5-50-6 Acq. Operator : LHC Seq. Line : 2 Location : Vial 82 Acq. Instrument : Instrument 1 Injection Date : 3/30/2016 10:06:28 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\082-0201.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:28:32 PM by WZF (modified after loading) WD1 A, Wavelength=254 nm (D:LC:DATAKSZM:5-50/522M:5-50.5 2016-03-30 21-43-34/082-0201.D) mAU 92 800 600 400 200 88 ۵ 15 17.5 7.5 25 5 10 12.5 min _____ Area Percent Report Sorted By Simual : : Multiplier 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width Area
 Peak Refilime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 mAU
 *s
 [mAU]
 %

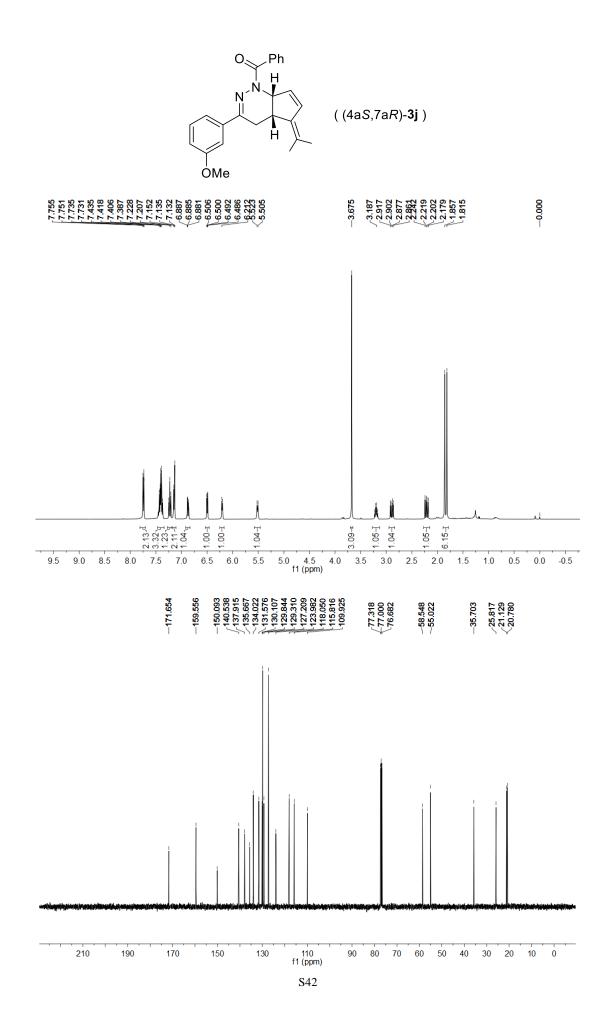
 ----|-----|------|

 ------|
 1
 5.949
 W
 0.3302
 2.04086e4
 930.22241
 98.9624

 2
 7.860
 VB
 0.4731
 213.97714
 6.23669
 1.0376
 2.06225e4 936.45910 Totals : _____

Instrument 1 5/14/2016 10:28:36 PM WZF

Sample Name: SZM-5-45-D Acq. Operator : LHC Seq. Line : 2 Location : Vial 82 Acq. Instrument : Instrument 1 Injection Date : 3/30/2016 11:25:01 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\082-0201.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:11:04 PM by WZF (modified after loading) W/D1A, Wavelength=254 nm (D:LC/DATA/S2M/52M/545/S2M/545-C 2016-03-30 23-02-22082-0201.D) mAU j 209 700 600 -500 400 300 568 200 100 D-15 17.5 7.5 25 5 10 12.5 min _____ Area Percent Report _____ Sorted By Simual : : Multiplier 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width 1 7.007 VB 0.4036 2.13671e4 788.37201 50.5964 2 17.568 BBA 1.7334 2.08633e4 179.46416 49.4036 4.22304e4 967.83617 Totals : _____


Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\082-0201.D

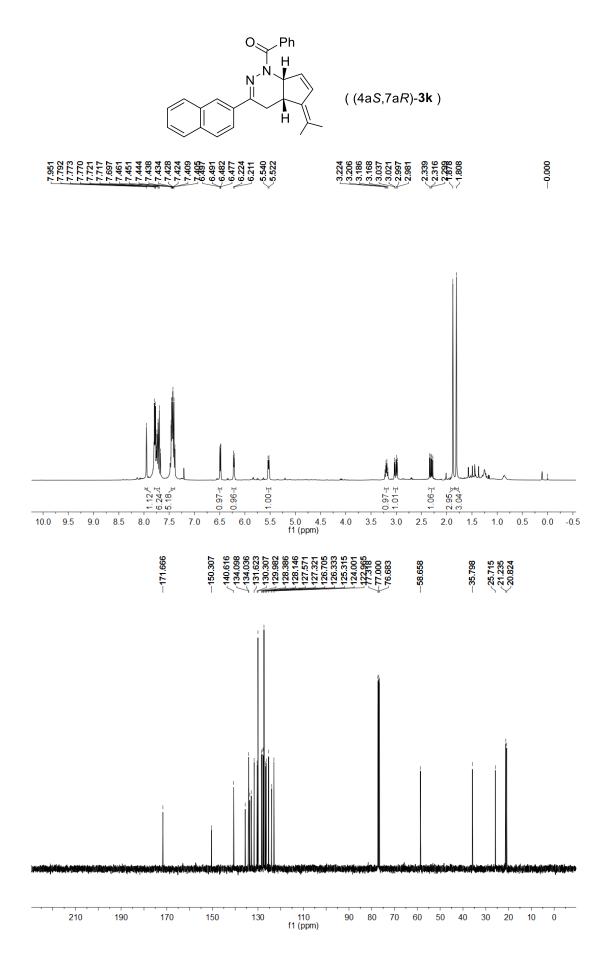
Instrument 1 5/14/2016 10:11:08 PM WZF

Sample Name: SZM-5-50-5 Acq. Operator : LHC Seq. Line : 1 Location : Vial 81 Acq. Instrument : Instrument 1 Injection Date : 3/30/2016 9:45:12 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\081-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:27:43 PM by WZF (modified after loading) W/DIA, Wavelength=254nm (DALC/DATA/SZM-550/SZM-5-50-52016-03-30 21-43-34/081-0101.D) mAU 2 1400 1200 1000 -800 600 400 -200 17.652 D-75 15 17.5 25 5 12.5 10 min _____ Area Percent Report _____ Sorted By Simual : : Multiplier 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width 1 6.976 BB 0.4104 4.15658e4 1521.63916 96.4436 2 17.652 BBA 1.2822 1532.74951 14.20427 3.5564 4.30985e4 1535.84343 Totals : _____

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-5 2016-03-30 21-43-34\081-0101.D

Instrument 1 5/14/2016 10:27:48 PM WZF

Sample Name: SZM-5-45-H əeq. Line : 6 Location : Vial 86 Ini : ' Acq. Operator : LHC Acq. Instrument : Instrument 1 Injection Date : 3/31/2016 12:51:02 AM Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\086-0601.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:13:37 PM by WZF (modified after loading) W/D1A, Wavelength=254 nm (D:LC/DATA/S2M/52M/545/S2M/545-C 2016-03-30 23-02-22/086-0601.D) mAU 8 250 10.384 200 -150 -100 -50 -D-15 17.5 25 5 75 12.5 10 min _____ Area Percent Report _____ Sorted By Simual : : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width Area 1 7.733 BB 0.4658 8571.19141 267.33536 51.0992 2 10.384 VB 0.6404 8202.44629 185.23439 48.9008 1.67736e4 452.56975 Totals : _____

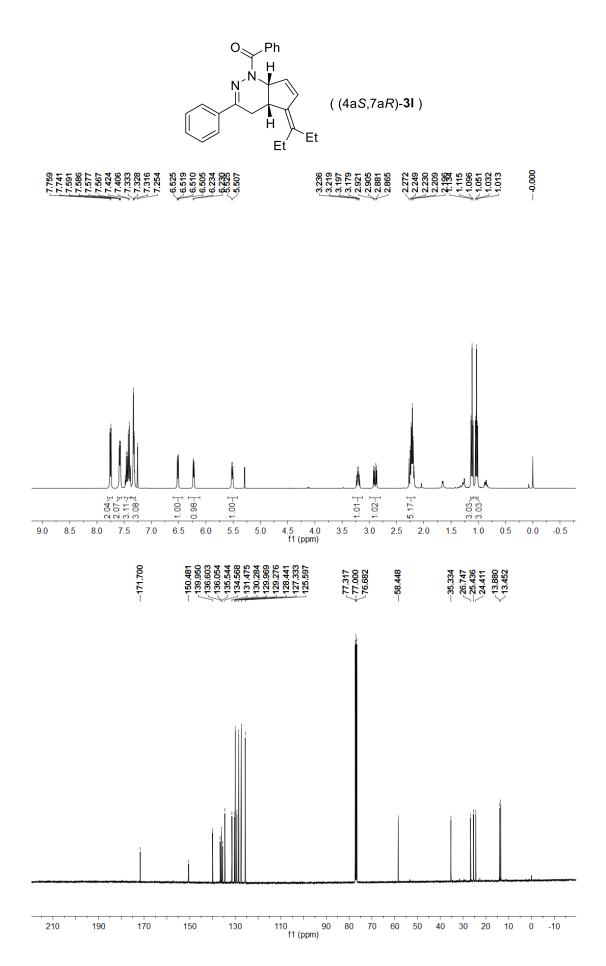

Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-C 2016-03-30 23-02-22\086-0601.D

Instrument 1 5/14/2016 10:13:41 PM WZF

Sample Name: SZM-5-50-9 Acq. Operator : LHC Seq. Line : 2 Location : Vial 82 Acq. Instrument : Instrument 1 Injection Date : 3/31/2016 5:32:49 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\082-0201.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:30:24 PM by WZF (modified after loading) WDD1A, Wavelength=254nm(DALCADATAKSZMA5-50/82M-5-50/82D16-03-3117-09-561082-0201.D) mAU 350 -300 -250 -200 -150 -100 -50 10.338 D-15 17.5 25 5 75 12.5 ó 10 min _____ Area Percent Report _____ Sorted By Simual : 1.0000 : Multiplier Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Height Peak RetTime Type Width Area 1.13131e4 364.37325 Totals : _____

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-8 2016-03-31 17-09-56\082-0201.D

Instrument 1 5/14/2016 10:30:31 PM WZF


Data File D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\074-0501.D Sample Name: SZM-5-45-i Acq. Operator : WZF Seq. Line : 5 Location : Vial 74 Acq. Instrument : Instrument 1 Injection Date : 5/15/2016 3:46:16 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\ASH-20-80-1ML-254NM-30MIN.M Last changed : 5/15/2016 1:36:20 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-45\SZM-5-45-50 2016-05-15 13-38-50\074-0501.D\DA.M (ASH-20-80-1ML-254NM-30MIN.M) Last changed : 5/15/2016 10:13:56 PM by WZF (modified after loading) W/D1 A. Wavelength=254 nm (DXLCVDATA/S2M/S2M-5-46\S2M-5-46\50 2016-05-15 13-38-50'074-0501.D) Les A. mAU ĩ 80 - 10.11 ~ 60 40 20 ۵ 25 15 5 10 20 min Area Percent Report _____ Sorted By Simual . Multiplier 1.0000 : Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Peak RetTime Type Width 1 7.194 MM 0.5579 3121.38794 93.25528 49.6454 2 10.772 MM 1.0224 3165.97461 51.60939 50.3546 6287.36255 144.86467 Totals : _____

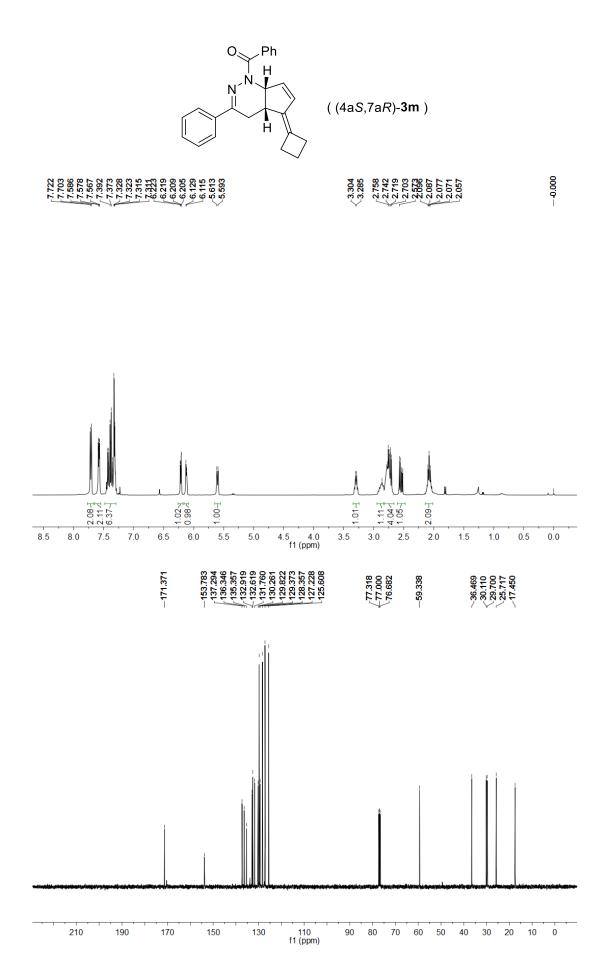
Instrument 1 5/15/2016 10:14:00 PM WZF

Sample Name: SZM-5-50-10 Acq. Operator : LHC Seq. Line : 1 Location : Vial 81 Acq. Instrument : Instrument 1 Injection Date : 4/5/2016 4:15:15 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-10 2016-04-05 16-13-27\ASH-20-80-1ML-254NM-20MIN.M Last changed : 3/28/2016 11:02:44 AM by LHC Analysis Method : D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-10 2016-04-05 16-13-27\081-0101.D\DA.M (ASH-20-80-1ML-254NM-20MIN.M) Last changed : 5/14/2016 10:31:43 PM by WZF (modified after loading) W/DIA, Wavelength=254nm(DXLC/DATA/S2M/S2M/5-50/S2M/5-50-10/2016-04-05/16-13-27/081-0101.D) mAU 1000 800 600 400 200 9.727 ۵ 75 15 17.5 25 5 10 12.5 min _____ Area Percent Report _____ Sorted By Simual . Multiplier 1.0000 : Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Height Peak RetTime Type Width Area 1 6.691 BB 0.4311 3.42152e4 1191.64990 99.0898 2 9.727 VB 0.6935 314.28152 6.04935 0.9102 3.45295e4 1197.69926 Totals :

Data File D:\LC\DATA\SZM\SZM-5-50\SZM-5-50-10 2016-04-05 16-13-27\081-0101.D

Instrument 1 5/14/2016 10:31:54 PM WZF

Data File D:\LC\DATA\WL\WL-FULVENE\WL-3-WUTONG-RAC 2016-12-13 09-20-26\054-0101.D Sample Name: WL-3-WUTONG-RAC

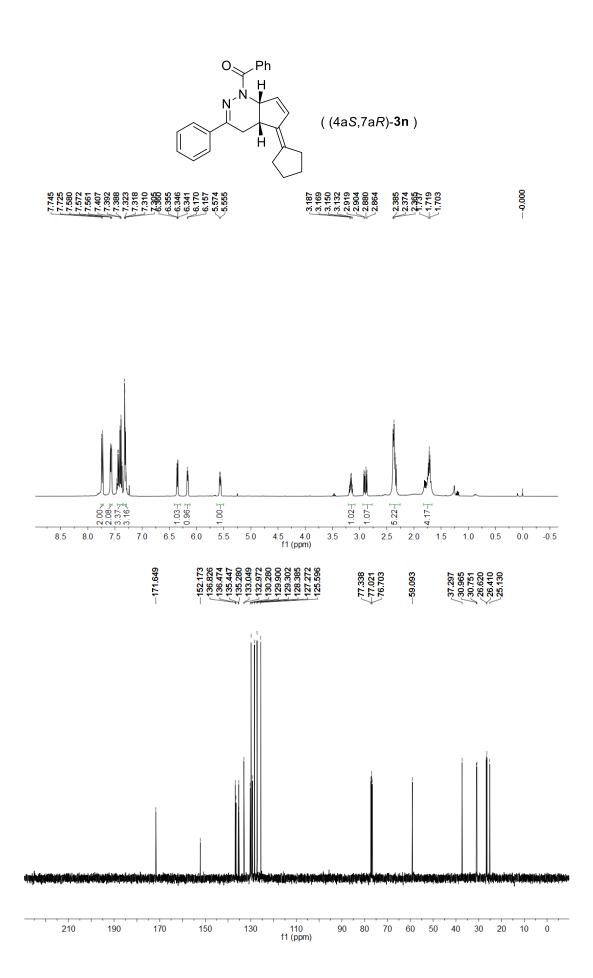

	: LHC Seq. Line : 1	
-	t: Instrument l Location : Vial 54	
Injection Date	: 12/13/2016 9:21:51 AM Inj : 1	
	Inj Volume : 5 µl	
Acq. Method	: D:\LC\DATA\WL\WL-FULVENE\WL-3-WUTONG-RAC 2016-12-13 09-20-26\IE-96-	4-
	245NM-30MIN.M	
Last changed	: 12/13/2016 9:20:36 AM by LHC	
	(modified after loading)	
Analysis Metho	1 : D:\LC\DATA\WL\WL-FULVENE\WL-3-WUTONG-RAC 2016-12-13 09-20-26\054-01	01.D\
	DA.M (IE-96-4-245NM-30MIN.M)	,
Last changed	: 11/20/2017 7:08:40 PM by SXS	
hase changed		
\	(modified after loading) avekngth=254nm(D/LCDATAWLWL-FULVENEWL3-WUTONG-RAC2016-12-1309-20-26054-0101.D)	
mAU 4		
1	1 4 ~	
700		
	l l li	
600		
500-		
400		
300-		
200		
200		
100 -		
0		
	1 2 3 4 5 6 7 8 9	min
	Area Percent Report	
Sorted By	: Signal	
Multiplier	: 1.0000	
-		
Dilution	: 1.0000	
Use Multiplier	د Dilution Factor with ISTDs	
Signal 1: VWD1	A, Wavelength=254 nm	
Peak RetTime To	ype Width Area Height Area	
# [min]		
1 7.324 V		
2 8.032 V	V 0.2327 1.01294e4 650.27850 51.1423	

Instrument 1 11/20/2017 7:08:58 PM SXS

Data File D:\LC\DATA\WL\WL-FULVENE\WL-3-WUTONG-OPT 2016-12-13 20-52-49\055-0101.D Sample Name: WL-3-WUTONG-OPT

Acq. Operator	: LHC	Seg. Line : 1	
Acq. Instrument		Location : Vial 55	
-	: 12/13/2016 8:54:21 PM	Inj: 1	
-		Inj Volume : 5 µl	
Acq. Method	• D • \ LC \ D &T & \ ML \ ML - FILLV FM F \ M	-3-WUTONG-OPT 2016-12-13 20-52-49\IB-96-4-	
noq. monod	245NM-30MIN.M		
Last changed	: 12/13/2016 8:51:29 PM by L	IC .	
-	-	3-WUTONG-OPT 2016-12-13 20-52-49\055-0101.D\	
Analysis method			
	DA.M (IB-96-4-245NM-30MIN.)		
Last changed	: 11/20/2017 7:07:17 PM by S	2	
5 404701 A 504-1-	(modified after loading)		-
	enger=254 nm(D:LC/DATAWOEWOE-FOEVENEV	WL3-WUTONG-OPT 2016-12-13 20-52-49/055-0101.D)	
1			
2500 -		8	
2000 -			
1500 -			
1000			
1000 -			
500-			
		~ \	
		5 J \	
0			
		<u> </u>	
			2
 0	Area Percent Report		
 0			
	Area Percent Report		
Sorted By	Area Percent Report		
	Area Percent Report		
Sorted By	Area Percent Report		
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000		
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000		
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000		
Sorted By Multiplier Dilution Use Multiplier 4	Area Percent Report : Signal : 1.0000 : 1.0000		
Sorted By Multiplier Dilution Use Multiplier 4	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs		
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 &	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 nm		
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 mm e Width Area Heigh		
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 nm e Width Area Heigh [min] mAU *s [mAU		
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 nm e Width Area Heigh (min) mAU *s (mAU -		
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 		λrea 8 	
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 nm e Width Area Heigh (min) mAU *s (mAU -	λrea 8 	
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 1 7.867 VV 2 8.606 VV	Àrea Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=254 nm e Width Area Heigh [min] mAU *s [mAU]	krea krea 10 mir 10	
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 		krea krea 10 mir 10	

Instrument 1 11/20/2017 7:07:20 PM SXS


Data File D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-C-D-E 2016-05-03 21-22-36\071-0101.D Sample Name: szm-5-59-c Acq. Operator : WZF Seq. Line : 1 Location : Vial 71 Acq. Instrument : Instrument 1 Injection Date : 5/3/2016 9:23:58 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-C-D-E 2016-05-03 21-22-36\ICH-20-80-1ML-254NM-25MIN.M Last changed : 4/28/2016 3:58:30 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-C-D-E 2016-05-03 21-22-36\071-0101.D\DA.M (ICH-20-80-1ML-254NM-25MIN.M) Last changed : 5/14/2016 9:56:18 PM by WZF (modified after loading) W/D1 A. Wavelength=254 nm (DALC/DATA/S2M/S59/S2M/S-59/S2M/S-59-C-D-E201605-0321-2236071-0101.D) 706 381 mAU ₽ ì 1000 -800 600 400 -200 ٥ ź 10 15 5 min Area Percent Report _____ Sorted By Simual . 1.0000 Multiplier : 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Height Area 1 16.706 W 0.4051 2.91916e4 1112.79346 48.0660 2 17.381 VB 0.4477 3.15408e4 1068.72375 51.9340 6.07325e4 2181.51721 Totals :

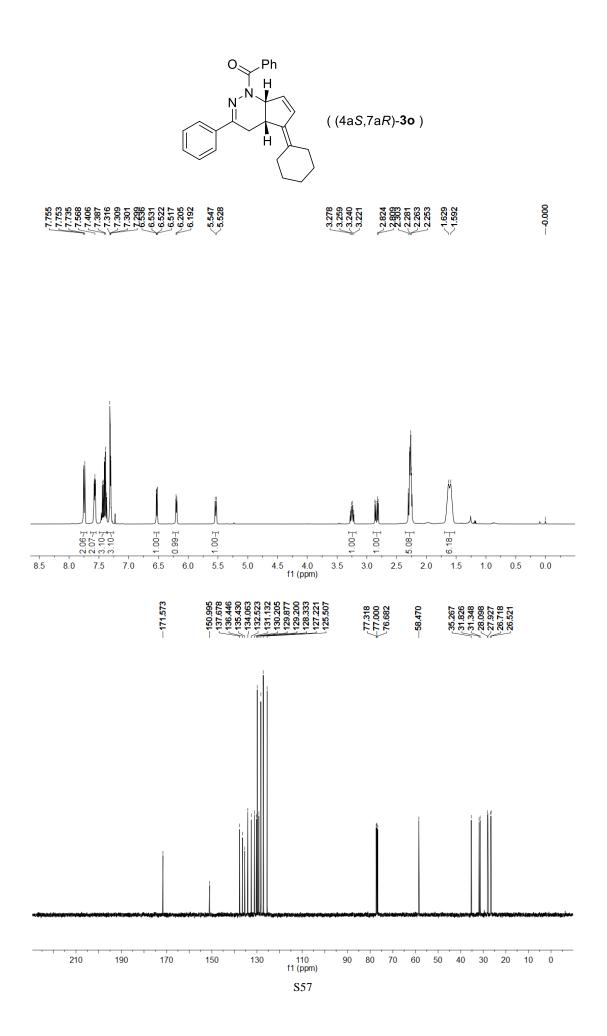
Instrument 1 5/14/2016 9:56:23 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\083-0301.D Sample Wame: SZM-5-60-C

ωq. Operator		Seq. Line : 3	
.cq. Instrument	: Instrument 1	Location : Vial 83	
njection Date	: 4/28/2016 5:51:42 PM	Inj: 1	
		Inj Volume : 5 µl	
æq. Method	: D:\LC\DATA\SZM\SZM-5-60\ 254NM-25MIN.M	SZM-5-60-A-B-C 2016-04-28 16-5	7-35\ICH-20-80-1ML-
ast changed	: 4/28/2016 3:58:30 PM by	102 F	
-		SZM-5-60-A-B-C 2016-04-28 16-5	7-35\083-0301.D\DA.M
1	(ICH-20-80-1ML-2540M-25M		
ast changed	: 5/14/2016 9:49:28 PM by	•	
	(modified after loading)		
	elength=254 nm (DALCADATA\SZMSZM-5-)	60\S2M-5-60-A-B-C 2016-04-28 16-57-35083-030	1.D)
mAU j		Ĩ	
-		4	
600 -		1	
1			
1		J	
500 -			
1		}	
400 -			
1			
		J	
300 -			
1		}	
200 -			
200 7			
1] {	
100 -			
1		š / \	
0		, <u>=</u> ,,	
<u>}</u>	5 1	D 15	20
U	5	D 15	ДJ
	less Dercent Denc		
	Area Percent Repo		
	Area Percent Repo	rt	
	Area Percent Repo	rt	
orted By	Area Percent Repo	rt	
orted By ultiplier	Area Percent Repo : Signal	rt	
orted By ultiplier ilution	Area Percent Repo : Signal : 1.0000	rt	
orted By Multiplier Multion	Area Percent Repo : Signal : 1.0000 : 1.0000	rt	
orted By ultiplier ilution se Multiplier &	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD	rt	
forted By fultiplier ilution fse Multiplier &	Area Percent Repo : Signal : 1.0000 : 1.0000	rt	
forted By hultiplier hilution fse Multiplier & fignal 1: VMD1 &	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm	rt 	
Corted By Multiplier illution Se Multiplier & Signal 1: VMD1 & Peak RetTime Typ	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width Area Hei	rt 5 ght Area	
Gorted By Multiplier Se Multiplier & Ggnal 1: VWD1 & Peak RetTime Typ # [min]	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width Area Hei [min] m&U *s [m&U	rt 5 ght Area] %	
Gorted By Gultiplier Lilution Se Multiplier & Gignal 1: VWD1 A Gak RetTime Typ # [min]	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD , Wavelength=254 nm e Width Area Hei [min] mAU *s [mAU -	rt 	
forted By fultiplier ilution se Multiplier & ignal 1: VWD1 & eak RetTime Typ # [min] 	Area Percent Repo : Signal : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width Area Hei [min] mAU *s [mAU - 0.3486 71.94296 2.	rt s ght Area] % 	
Gorted By Gultiplier Lilution Se Multiplier & Gignal 1: VWD1 A Gak RetTime Typ # [min]	Area Percent Repo : Signal : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width Area Hei [min] mAU *s [mAU - 0.3486 71.94296 2.	rt s ght Area] % 	
Corted By Multiplier ilution (se Multiplier & Multiplier & (ignal 1: VMD1 & (ack RetTime Typ # [min] 	Area Percent Repo : Signal : 1.0000 : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width /min] mAU	rt s ght Area] % 	
orted By ultiplier ilution se Multiplier & ignal 1: VWD1 & eak RetTime Typ # [min] 	Area Percent Repo : Signal : 1.0000 Dilution Factor with ISTD ., Wavelength=254 nm e Width Area Hei [min] mAU *s [mAU - 0.3486 71.94296 2.	rt s ght Area] % 	

Instrument 1 5/14/2016 9:49:33 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\081-0101.D Sample Wame: SZM-5-59-A

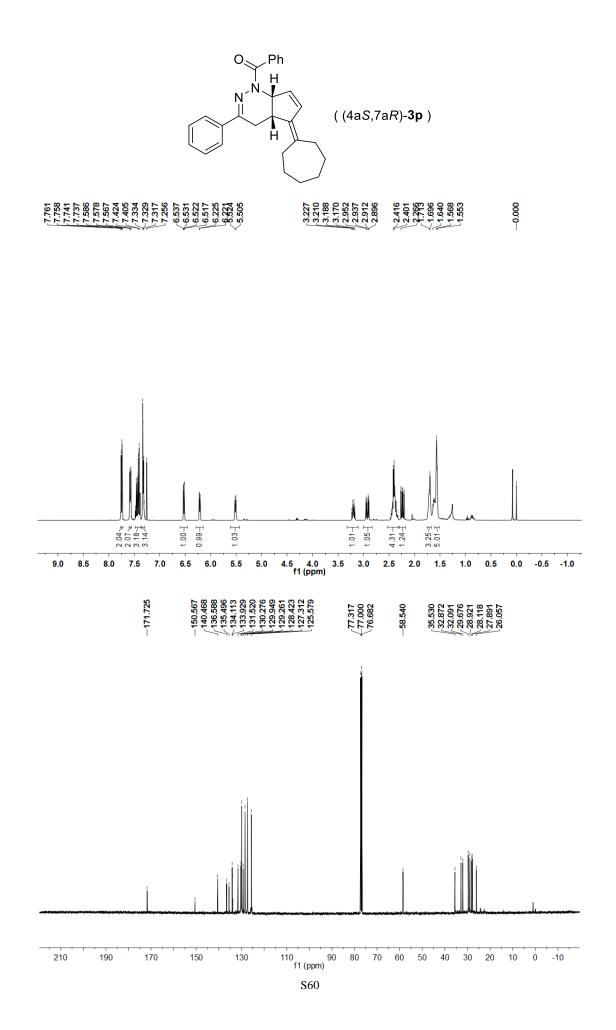

Acg. Operator	: WZF Seq. Line : 1
Acq. Instrument	•
	: 4/28/2016 4:00:29 PM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\ICH-20-80-1ML- 254MM-25MIN.M
Last changed	: 4/28/2016 3:58:30 PM by WZF
	: D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\081-0101.D\DA.M (
	ICH-20-80-1ML-254MM-25MIN.M)
Last changed	: 5/14/2016 9:53:29 PM by WZF
	(modified after loading)
	velength=254 nm (D\LC\DATA\SZM\$ZM\$559\\$ZM\$559\AB 2016-0428 1559-04081-0101.D)
mAU 120 -	lean stranger and st
100 -	
80 -	
40 -	
20 -	
0	
	5 10 15 20 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier	; Dilution Factor with ISTDs
Signal 1: VWD1.	A, Wavelength=254 лm
Peak RetTime Typ # [min]	[min] mAU *s [mAU] %
1 16.834 MM 2 18.444 MM	
Totals :	7579.66406 247.53127

Instrument 1 5/14/2016 9:53:33 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\081-0101.D Sample Name: SZM-5-60-A

Acq. Operator : W	NZF Seq. Line : 1
Acq. Instrument : I	instrument 1 Location : Vial 81
Injection Date : 4	1/28/2016 4:58:47 PM Inj: 1
	Inj Volume : 5 pl
Acq. Method : D	: \LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\ICH-20-80-1ML-
2	54NM-25MIN.M
Last changed : 4	V28/2016 3:58:30 PM by WZF
Analysis Method : D	:\LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\081-0101.D\DA.M
(ICH-20-80-1ML-2540M-25MIN.M)
Last changed : 5	/14/2016 9:45:09 PM by WZF
	modified after loading)
	gth=254 nm (DALC/DATA/S/2M/S/2M/5-60/S/2M/5-60-A-B-C 2016-04-28 16-57-35/081-0101.D)
mAU (Ę
800 -	4
	l.
700-	
	Ц
600 -	
500-	
400 -	
300 -	
200-	
100 -	
	₽ / \
0	
	5 10 15 20 min
	Area Percent Report
Sorted By	: Sional
Multiplier	: 1.0000
Dilution	: 1.0000
	Lution Factor with ISTDs
ose durcipiter a pi	THE TOR FACTOR WITH ISIDS
Signal 1: VWD1 A, W	lavelength=254 nm
bighti i. Vobi A, o	ercicity bit-bor ibit
Peak RetTime Type	Width Area Height Area
	[min] mAU *s [mAU] %
	 [mm] mm -2 [mm]
	0.4450 286.03668 9.56381 1.1036
	0.4490 2.56322e4 828.27850 98.8964
2 IO.41I AD	0.11/0 2.0002254 020.21000 00.0004
Totals :	2.59183e4 837.84231
ICOULD .	5.07100C2 001.07201

Instrument 1 5/14/2016 9:45:15 PM WZF

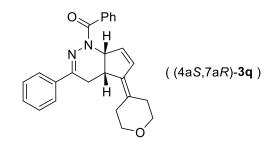


Data File D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\082-0201.D Sample Name: SZM-5-59-B Acq. Operator : WZF Seq. Line : 2 Location : Vial 82 Acq. Instrument : Instrument 1 Injection Date : 4/28/2016 4:26:47 PM Inj: 1 Inj Volume : 5 µl Acq. Method : D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\ICH-20-80-1ML-254NM-25MIN.M Last changed : 4/28/2016 3:58:30 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM-5-59\SZM-5-59-A-B 2016-04-28 15-59-04\082-0201.D\DA.M (ICH-20-80-1ML-254NM-25MIN.M) Last changed : 5/14/2016 9:54:57 PM by WZF (modified after loading) W/D1 A. Wavelength=254 nm (D/LC/DATA%20/MS20/MS-59%20/MS-59-A-B 2016-04-28 15:59-04-082-0201.D) mAU ₽ ₩. 200 150 100 50 ٥ 15 20 10 17.5 5 7.5 12.5 225 2.5 min Area Percent Report _____ Sorted By Simual . Multiplier 1.0000 1 1.0000 Dilution 1 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Height Area Area 1 16.523 BV 0.4347 6473.54395 229.95941 50.2671 2 18.149 VB 0.4829 6404.75293 204.73796 49.7329 1.28783e4 434.69737 Totals :

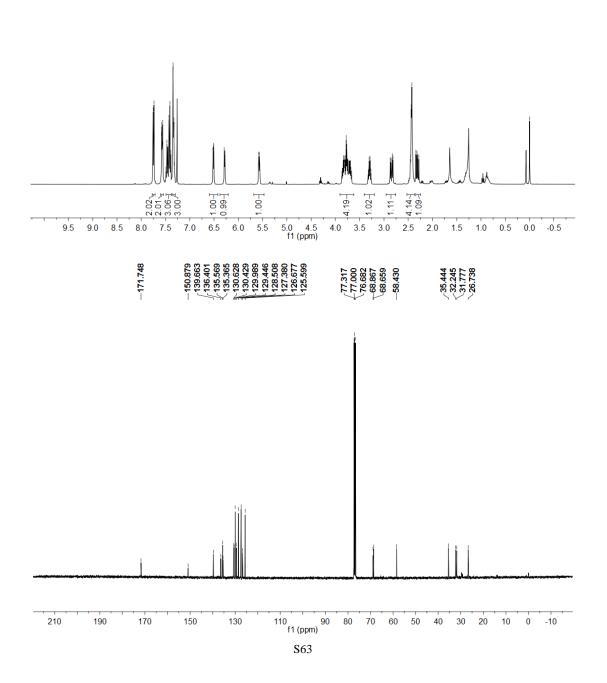
Instrument 1 5/14/2016 9:55:01 PM WZF

Sample Name: SZM-5-60-B _____ Acq. Operator : WZF Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 82 Injection Date : 4/28/2016 5:25:31 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\ICH-20-80-1ML-Acg. Method 254NM-25MIN.M Last changed : 4/28/2016 3:58:30 PM by WZF Analysis Method : D:\LC\DATA\SZM\SZM\5-60\SZM-5-60\ZZM-5-60-A-B-C 2016-04-28 16-57-35\082-0201.D\DA.M (ICH-20-80-1ML-254NM-25MIN.M) Last changed : 5/14/2016 9:48:44 PM by WZF (modified after loading) W/D1 A, Wavelength=254 nm (D:LC/DATAIS2M/S-20/45-60/AB-C 2016-0428 16-57-35082-0201.D) mAU ю 800 -600 400 -200 -15.695 D 20 10 15 -5 min _____ Area Percent Report Sorted By Simual : : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Area Peak RetTime Type Width 1 15.695 BV 0.4133 256.11285 9.55233 0.8846 2 17.115 VB 0.4636 2.86958e4 956.46973 99.1154 2.89520e4 966.02205 Totals : _____ Instrument 1 5/14/2016 9:48:48 PM WZF

Data File D:\LC\DATA\SZM\SZM-5-60\SZM-5-60-A-B-C 2016-04-28 16-57-35\082-0201.D


Data File D:\LC\DATA\WL\WL-FULVENE\WL-FULVENE-2 2016-11-16 20-06-10\041-0101.D Sample Name: WL-Heptane

```
Acq. Operator : LHC
                                      Seq. Line : 1
Acq. Instrument : Instrument 1
                                     Location : Vial 41
Injection Date : 11/16/2016 8:07:31 PM
                                       Inj: 1
                                     Inj Volume : 5 µl
           : D:\LC\DATA\WL\WL-FULVENE\WL-FULVENE-2 2016-11-16 20-06-10\IE-80-20-30MIN-
Acq. Method
             245NM.M
Last changed : 11/16/2016 8:05:10 PM by LHC
Analysis Method : D:\LC\DATA\WL\WL-FULVENE\WL-FULVENE-2 2016-11-16 20-06-10\041-0101.D\DA.M
             (IE-80-20-30MIN-245NM.M)
Last changed : 11/20/2017 7:10:12 PM by SXS
             (modified after loading)
      WID1 A Wavelength=254 nm (DALC/DATAWILWL-FULVENEWL-FULVENE2 2016 11-16 20-06 10/041-0101.D)
 mAU
                                                    ŝ
                                                     $8€
                                                      ŧ
   250
   200
   150
   100
   50
    D
                                             12
                                                    14
                                      10
                                                          16
                                                                 18
                  4
                         é
                                å
                                                                       min
_____
                   Area Percent Report
_____
Sorted By
               :
                      Signal
          : 1.0000
: 1.0000
Multiplier
Dilution
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 Å, Wavelength=254 nm
Peak RetTime Type Width Area
                             Height
                                     Area
 # [min] [min] mAU *s [mAU ]
                                      8
----|-----|-----|-----|
  1 13.904 W 0.3109 5407.17432 271.58078 48.9699
  2 14.485 VB 0.3556 5634.65967 241.16479 51.0301
                    1.10418e4 512.74557
Totals :
```


Instrument 1 11/20/2017 7:10:15 PM SXS

Data File D:\LC\DATA\WL\WL-FULVENE\WL-OPT 2016-11-17 15-03-41\045-0101.D Sample Name: wl-heptane

Acq. Operator : HR Seq. Line : 1 Acq. Instrument : Instrument 1 Location : Vial 45 Inj: 1 Injection Date : 11/17/2016 3:04:59 PM Inj Volume : 5 µl : D:\LC\DATA\WL\WL-FULVENE\WL-OPT 2016-11-17 15-03-41\IE-80-20-30MIN-245NM. Acq. Method M Last changed : 11/16/2016 8:05:10 PM by LHC Analysis Method : D:\LC\DATA\WL-WL-WL-WL-OPT 2016-11-17 15-03-41\045-0101.D\DA.M (IE-80-20-30MIN-245NM.M) Last changed : 11/20/2017 7:11:36 PM by SXS (modified after loading) VWD1 A, Wavelength=254 nm (D.N.CODATAWULWL-FULVENEWUL-OPT 2016-11-17 15-03-41/045-0101.0) mAU 938 ,9⁵⁰ 700 -600 -500 -400 300 -200 100 -D 12 14 16 18 10 mi Area Percent Report _____ Sorted By : Signal : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] ł ----|-----|-----|-----|-----|-----| 1 14.012 MF 0.1486 131.31300 14.72354 0.7848 2 14.338 FM 0.3903 1.66000e4 708.83008 99.2152 Totals : 1.67313e4 723.55361 Instrument 1 11/20/2017 7:11:40 PM SXS



Data File D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\041-0101.D Sample Name: pyran-rac

_____ Seq. Line : 1 Acq. Operator : LHC Acq. Instrument : Instrument 1 Location : Vial 41 Injection Date : 12/1/2016 10:38:41 AM Inj: 1 Inj Volume : 5 µl : D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\IE-70-30-30MIN-254NM.M : 11/17/2016 3:01:35 PM by HR Acq. Method Last changed Analysis Method : D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\041-0101.D\DA.M (IE-70-30-30MIN-254NM.M) Last changed : 11/20/2017 6:57:56 PM by SXS (modified after loading) W0D1 A, Wavelength=254 nm (D./LC/DATAW/LW/L-FULVENEW YRAN 2016-12-01 10-37-33/041-0101.D) mAU 22.818 200 150 -100 50 ٥ 10 15 20 25 Area Percent Report Sorted By : Signal : 1.0000 : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] 5 1 18.863 BB 0.4838 7371.16406 235.03664 49.8493 2 22.818 BB 0.5980 7415.71777 188.81071 50.1507 Instrument 1 11/20/2017 6:57:59 PM SXS Page 1 of 2 Data File D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\042-0201.D Sample Name: pyran-opt

```
_____
Acq. Operator : LHC
                                     Seq. Line : 2
Acq. Instrument : Instrument 1
                                     Location : Vial 42
Injection Date : 12/1/2016 11:10:06 AM
                                       Inj: 1
                                    Inj Volume : 5 µl
           : D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\IE-70-30-30MIN-254NM.M
: 11/17/2016 3:01:35 PM by HR
Acq. Method
Last changed
Analysis Method : D:\LC\DATA\WL\WL-FULVENE\PYRAN 2016-12-01 10-37-33\042-0201.D\DA.M (IE-
              70-30-30MIN-254NM.M)
Last changed : 11/20/2017 6:58:26 PM by SXS
              (modified after loading)
      W0D1 A, Wavelength=254 nm (D.LC/DATAWULWL-FULVENEVP YRAN 2016-12-01 10-37-33/042-0201.D)
 mAU
   350 -
   300 -
   25D ·
   200
   150
   100 -
   50
    ٥
                           10
                                      15
                                                 20
                                                             25
Area Percent Report
------
Sorted By
                :
                    Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=254 nm
Peak RetTime Type Width Area
                            Height
                                     Area
 # [min] [min] mAU *s [mAU ]
                                       8
1 18.782 BB 0.4854 1.10444e4 352.02325 100.0000
```

Instrument 1 11/20/2017 6:58:28 PM SXS

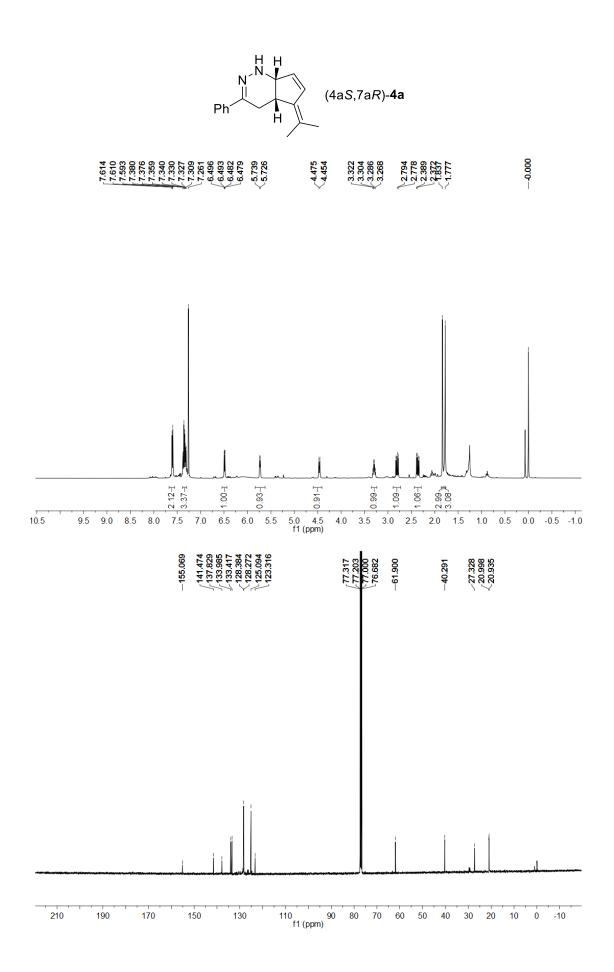
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

Data File D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-RAC 2016-12-10 16-35-47\051-0101.D Sample Name: WL-p-OMe-RAC

```
_____
Acq. Operator : LHC
                                            Seq. Line : 1
Acq. Instrument : Instrument 1
                                            Location : Vial 51
Injection Date : 12/10/2016 4:36:58 PM
                                             Inj: 1
                                           Inj Volume : 5 µl
            : D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-RAC 2016-12-10 16-35-47\AS-75-25-40MIN-
Acq. Method
               245NM.M
             : 12/10/2016 4:35:56 PM by LHC
Last changed
                (modified after loading)
Analysis Method : D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-RAC 2016-12-10 16-35-47\051-0101.D\DA.M
               (AS-75-25-40MIN-245NM.M)
Last changed : 11/20/2017 7:13:52 PM by SXS
                (modified after loading)
       WD1 A, Wavelength=254 nm (D.LC/DATAW/LW/L-FULVENEW/L-P-OME-RAC 2016-12-10 16-35-47/051-0101.D)
 mAU
    25
    20
                                   22.487
    15 ·
                             98
                             Ξ
    10 -
     5
     ٥
                                             30
                                                          40
                                                                       50
                   10
                                ź
```

Area Percent Report

Sorted By	:	Signa	મ
Multiplier	:	1.000)0
Dilution	:	1.000	00
Use Multiplier	& Dilution	Factor w	rith ISTDs


Signal 1: VWD1 Å, Wavelength=254 nm

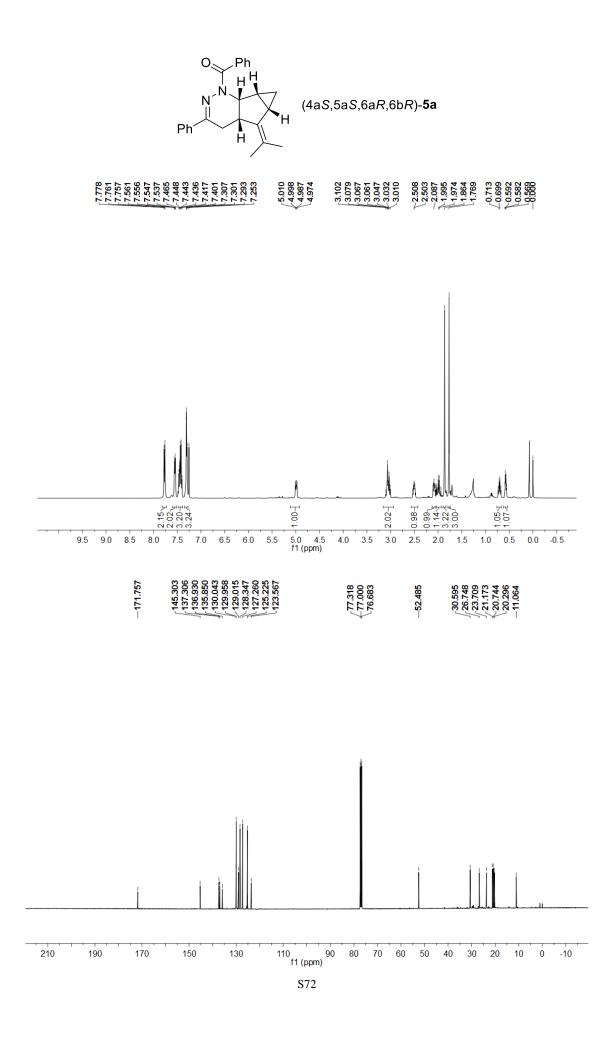
Peak	RetTime	Type	Width	Ar	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	11.553	BB	0.8068	1538.	50391	26.	96998	22.0773
2	14.160	BV	1.0342	2018.	63831	26.	99029	28.9672
3	17.495	VV	1.5073	1528.	81152	11.	91370	21.9382
4	22.487	VB	1.5151	1882.	75879	14.	75334	27.0173

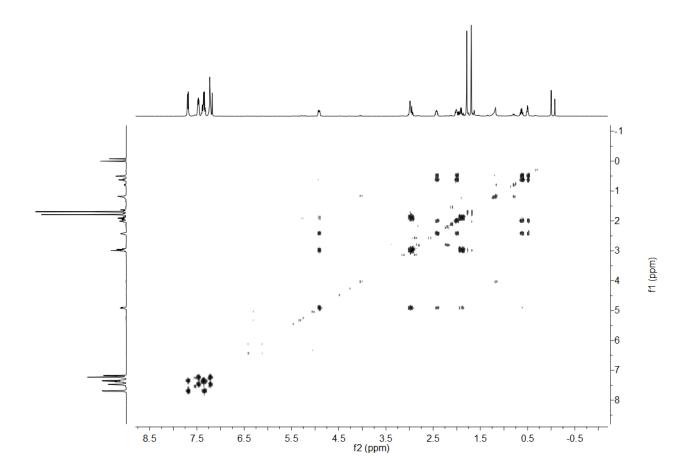
Instrument 1 11/20/2017 7:13:56 PM SXS

Data File D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-OPT 2016-12-12 09-48-11\052-0101.D Sample Name: WL-p-OMe-OPT

```
Acq. Operator : LHC
                                           Seq. Line : 1
   Acq. Instrument : Instrument 1
                                           Location : Vial 52
   Injection Date : 12/12/2016 9:49:21 AM
                                            Inj: 1
                                          Inj Volume : 5 µl
              : D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-OPT 2016-12-12 09-48-11\AS-75-25-40MIN-
   Acq. Method
                 245NM.M
   Last changed : 11/16/2016 3:54:18 PM by LHC
   Analysis Method : D:\LC\DATA\WL\WL-FULVENE\WL-P-OME-OPT 2016-12-12 09-48-11\052-0101.D\DA.M
                 (AS-75-25-40MIN-245NM.M)
   Last changed : 11/20/2017 7:12:55 PM by SXS
                 (modified after loading)
         W0D1 A, Wavelength=254 nm (DNLC/DATAW0LW0L-FULVENEW0L-P-OME-OPT 2016-12-12 09-48-11/052-0101.D)
    mAU ]
      160 -
      140 -
      120 -
      100 -
                                                         138
      an -
      60 -
      40
      20
       ٥
                             7.5
                                    10
                                           12.5
                                                   15
                                                         17.5
                                                                        22.5
               25
                      5
                                                                 20
                                                                              min
   Area Percent Report
   _____
   Sorted By
                   :
                          Signal
              : 1.0000
: 1.0000
   Multiplier
   Dilution
   Use Multiplier & Dilution Factor with ISTDs
   Signal 1: VWD1 Å, Wavelength=254 nm
   Peak RetTime Type Width Area
                                  Height
                                          Area
    # [min] [min] mAU *s [mAU ]
                                            8
   ----|-----|-----|-----|
     1 14.028 WV 1.0577 1.22597e4 170.11163 55.9214
2 17.138 WB 1.6252 9663.42773 79.31624 44.0786
                        2.19232e4 249.42787
   Totals :
Instrument 1 11/20/2017 7:12:58 PM SXS
```


Data File E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-19 18-03-33\CC-3-92-2-0PT.D Sample Name: ZQ-10-63-rac


_____ Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : 1260 Location: 71 Injection Date : 1/19/2018 6:05:01 PM Inj : 1 Inj Volume : 5.000 µl : E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-19 18-03-33\AD-80-20-254NM-15MIN.M Acq. Method Last changed : 1/19/2018 6:18:15 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-19 18-03-33\AD-80-20-254NM-15MIN.M (Sequence Method) : 1/30/2018 5:36:34 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1 B, Sig=254,4 Ref=360,100 (E:\DATA\Z0\Z0-10-63\Z0-10-63 2018-01-19 18-03-33\CC-3-92-2-0 PT.D) mAU 40 10.374 30 20 10 -D 8 12 10 6 mir Area Percent Report Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] * 1 7.953 BB 0.3615 1083.79163 44.59405 51.2522 2 10.374 BB 0.4594 1030.83118 34.31964 48.7478 2114.62280 78.91369 Totals :


1260 1/30/2018 5:36:38 PM SYSTEM

Data File E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-18 21-47-39\XSM 20180118.D Sample Name: ZQ-10-63-opt

_____ Seq. Line : 1 Acq. Operator : SYSTEM Location : Acq. Instrument : 1260 -79 Injection Date : 1/18/2018 9:49:12 PM Inj : 1 Inj Volume : 10.000 µl : E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-18 21-47-39\AD-80-20-254NM-15MIN.M Acq. Method Last changed : 1/18/2018 10:02:47 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\ZQ\ZQ-10-63\ZQ-10-63 2018-01-18 21-47-39\AD-80-20-254NM-15MIN.M (Sequence Method) : 1/30/2018 5:41:09 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1_B, Sig=254,4 Ref=360,100 (E:\DATA\Z0\Z0-10-63\Z0-10-63 2018-01-18 21-47-39\X SM 20180118.D) mAU 800 600 400 200 7,991 n 4 8 12 10 14 mir Area Percent Report Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 B, Sig=254,4 Ref=360,100 Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] * 1 7.991 BB 0.3144 111.74111 4.45842 0.3669 2 10.519 BB 0.4973 3.03478e4 921.28625 99.6331 3.04595e4 925.74467 Totals :

1260 1/30/2018 5:41:13 PM SYSTEM

Data File E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\WL-18-861.D Sample Name: HUANBINGWAN-RAC _____ Acq. Operator : SYSTEM Seq. Line : 2 Acq. Instrument : 1260 Location : 98 Injection Date : 1/27/2018 12:30:02 AM Inj : 1 Inj Volume : 5.000 µl : E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\AdH-90-10-254NM-25min.M Acq. Method : 1/27/2018 12:45:10 AM by SYSTEM Last changed (modified after loading) Analysis Method : E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\AdH-90-10-254NM-25min.M (Sequence Method) : 1/30/2018 4:36:22 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1 D, Sig=230.4 Ref=360,100 (E:\DATAWLWL-18-86WL-18-86L 2018-01-27 00-02-06WWL-18-861.D) 151,10 mAU] 8 1. Sala 10.497 100 8 80 -60 40 20 ٥ 10 12 14 mir Ś. 6 _____ Area Percent Report ------Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 D, Sig=230,4 Ref=360,100 Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] * ----|-----|----|-----|-----|-----| 1 6.030 MF 0.2571 1671.18250 108.33324 22.2053 2 7.616 BB 0.2681 2109.69629 118.28862 28.0320 3 9.035 BB 0.3079 1625.44397 79.37770 21.5976 4 10.497 BB 0.3515 2119.71777 90.76039 28.1651 7526.04053 396.75995 Totals :

1260 1/30/2018 4:36:44 PM SYSTEM

Data File E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\WL-18-863.D Sample Name: HUANBINGWAN-0PT-2

```
_____
Acq. Operator : SYSTEM
                                      Seg. Line :
                                                 4
Acq. Instrument : 1260
                                       Location : 100
Injection Date : 1/27/2018 1:03:18 AM
                                           Inj :
                                                 1
                                     Inj Volume : 5.000 µl
Acq. Method
            : E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\AdH-90-10-254NM-25min.M
Last changed : 1/27/2018 12:45:10 AM by SYSTEM
Analysis Method : E:\DATA\WL\WL-18-86\WL-18-86L 2018-01-27 00-02-06\AdH-90-10-254NM-25min.M (
              Sequence Method)
Last changed
           : 1/30/2018 4:39:07 PM by SYSTEM
              (modified after loading)
Additional Info : Peak(s) manually integrated
     DAD1 D, Sig=230,4 Ref=360,100 (EADATAW/LWL-18-86W/L-18-86L 2018-01-27 00-02-06W/L-18-863.D)
                                             . 88<sup>69,51</sup>
  mAU _
   400 -
   350 -
   300 -
   250 <del>|</del>
   200 -
   150 -
   100 -
                                                             00 400 - 2 Stak
   50 -
    D
                                           6
                                                                    10
                                                                          min
Area Percent Report
Sorted By
                 :
                      Sional
Multiplier
                 :
                       1.0000
Dilution
                 :
                       1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 D, Sig=230,4 Ref=360,100
Peak RetTime Type Width
                              Height
                      Area
                                       Area
             [min] [mAU*s]
 # [min]
                              [mAU]
                                        *
1 6.031 MF 0.2593 6865.56592 441.22797 99.6823
  2 8.920 MM 0.3964 21.87943 9.19872e-1 0.3177
Totals :
                    6887.44534 442.14784
*** End of Report ***
```

1260 1/30/2018 4:39:11 PM SYSTEM