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Experimental

Synthesis: pyrolyzed polyacrylonitrile/sulfur composite (SPAN) was prepared 

through a modified process of a previous report.1 Sulfur was purchased from the 

Aladdin (Shanghai, China). Polyacrylonitrile (PAN) was purchased from the Aldrich. 

First, sulfur and polyacrylonitrile in a mass ratio of 4:1 were manually ground to a

uniform color and then transferred to a crucible. The mixture was preheated at  155℃

for 1 h and 450℃ for 5 h in Ar with a heating rate of 5℃ min-1. The obtained sample 

is denoted as SPAN. Carbonized PAN was also prepared by going through a similar 

heat treatment aforementioned and denoted as CPAN.

Material Characterization: XRD measurements were performed by using a Rigaku 

D/max-RB instrument using Cu Kα radiation (λ = 1.5418 Å) at a range of 10−90°. 

Brurauer Emmerr Teller (BET) surface area was measured using a Tristar II3020 

instrument by adsorption of nitrogen at 77 K. The content of sulfur is detected by ICP 

test. The detailed morphology and microstructure of the as-prepared materials were 

determined by FE-SEM (JEOL, JSM-7100F). XPS (Kratos AXIS Ultra DLD) was 

applied to study the change of valence state of elements in SPAN. The Raman spectra 

were collected using an alpha 300 M+ Raman Microscope. Fourier-transform infrared 

(FTIR) spectra were recorded on a Nicolet Nexus 670 Fourier transform infrared 

spectrometer (FT-IR) with the KBr pellets method. For characterization of the samples 

after cycling, they were protected in Argon atmosphere except a short air exposure 

during the transfer process for the XPS measurement.

Electrochemical Measurements: Coin cells were assembled in a glove box 

containing pure argon gas. The working electrodes consisted of 80% SPAN active 

material, 10% acetylene black as conductive agent and 10% polyvinylidene fluoride 

(PVDF) as binder (using N-methyl-2-pyrrolidone as solvent). In the electrode, the 

weight of SPAN is ~1 mg cm-2. Potassium discs were used as both the counter and 

reference electrodes, 0.8 M KPF6 in a mixture of ethylene carbon (EC)-diethyl 

carbonate (DEC) (1:1 v/v) was used as the electrolyte. Glass fibre (GF/D) from 

Whatman was used as separator. Galvanostatic and rate charge - discharge tests   were



performed in a potential range of 0.8 - 2.9 V vs. K+/K using a multichannel battery 

testing system (LAND CT2001A, P. R. China). Cyclic voltammetry (CV) was recorded 

on a CHI 660C at a scanning rate of 0.1 mV s-1 within the same potential range. The 

AC impedance spectra were analyzed using a CHI 660C from 100 kHz to 0.001 Hz.



Figure S1. Schematic synthetic process of SPAN (0≤x≤6).



Figure S2. XRD patterns of SPAN, CPAN, PAN, and elemental Sulfur.



Figure S3. Raman spectra of SPAN, CPAN, and Sulfur.



Figure S4. FT-IR spectra of SPAN and CPAN



Figure S5. Electrochemical discharge and charge curves of SPAN toward Li at 1 C for 

the first two cycles in the potential range of 1–3 V vs Li/Li+.



Figure S6. Digital image of glass-fiber separator inside a K-SPAN coin cell after 500 

cycles, taken in a glovebox, showing the separator turns yellowish after cycling, 

possibly due to the decomposition of electrolyte.



Figure S7. The Nyquist plots of the fully charged SPAN after cycling at 1 C for different 

times.



Figure S8. Ex-situ S 2p XPS spectra of SPAN during the first two cycles.



Table S1. Electrochemical performances of positive electrode materials for K-ion and K- batteries.

Material
Voltage 

Range(V

)

Capacity 

(mAh/g) at Current

density (A/g)

Initial 

capacity

(mAh/g)

2nd

capacity 

(mAh/g)

Highest 

capacity

(mAh/g)

Cycle performance Stable CE

Longest 

cycle

number

Ref.

SPAN 0.8 - 2.9

265.5, 0.025

228, 0.075

200, 0.125

160, 0.25

111, 0.5

83.7, 0.75

270.2 270.5 275.2 149 mAh/g after 100 cycle at 0.125 A/g ~100% 100 cycle
This 

work

KVPO4F 2.0 - 4.8

~76, 0.013

~75, 0.026

~73, 0.0665

~72, 0.133

~71, 0.266

~70, 0.399

~67, 0.665

~68 ~70 ~72 ~70 mAh/g after 50 cycle at 0.013 A/g ~90% 50 cycle 2

KVOPO4 2.0-4.8

~70, 0.0133-0.226

~69, 0.399

~67, 0.532

~66, 0.665

~65 ~68 ~73 ~70 mAh/g after 50 cycle at 0.013 A/g ~90% 50 cycle 2

KTi2(PO4)3 1.2 -2.8

~80, 0.064

~78, 0.128

~73, 0.256

~65, 0.64

~75.6 ~72.6 ~90 83 mAh/g after 100 cycle at 0.064 A/g ~100% 100 cycle 3



K3V2(PO4)3 2.5 - 4.3

54, 0.02

45, 0.05

30, 0.1

25, 0.2

54 53 54 52 mAh/g after 100 cycle at 0.02 A/g ~100% 100 cycle 4

K0.67Ni0.17Co0.17M 

n0.66O2
2.0 - 4.3

76.5, 0.02

70.2, 0.04

65.6, 0.06

58, 0.08

49, 0.1

76.5 76 76.5 66.8 mAh/g after 100 cycle at 0.02 A/g ~100% 100 cycle 5

KPBNP 2.0 - 4.0

76, 0.05

65, 0.1

56.1, 0.2

46.1, 0.3

36, 0.4

76.7 74.5 76.7 73.2 mAh/g after 100 cycle at 0.05 A/g ~90% 150 cycle 6

PTCDA 1.5 -3.5

117, 0.05

92, 0.1

88, 0.2

73, 0.5

117 117 90 mAh/g after 200 cycle at 0.05 A/g ~100% 200 cycle 7

PAQS 1.5 -3.4 198, 0.02 211 198 211 142.5 mAh/g after 50 cycle at 0.02 A/g ~100% 50 cycle 8

NI-KMHCF 2.5 -4.6 / ~86 ~95 ~110 ~100 mAh/g after 100 cycle at 0.156 A/g ~100% 100 cycle 9

PANI@CMK-3/S 1.2 - 2.4 ~500, 0.05
523.5

mAh/(gsulfur
-1)

490
mAh/(gsulfur

-1)

523.5
mAh/(gsulfur

-1)
329.3 mAh/(gsulfur-1) after 50 cycle at 0.05 A/g ~100% 50 cycle 10

Sulfur 

(150℃)
12 - 3.0

~400, 0.33mA /cm2；

~320, 1.32；

~300, 2.31；

~285, 3.3；260, 9.9

~280 ~310 ~300 mAh/g after 100 cycle at 2.31mA /cm2 ~100% 1000 cycle 11
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