Supporting Information

Arylsilylation of aryl halides using the magnetically recyclable bimetallic catalyst Pd–Pt–Fe₃O₄

Jisun Jang, †^a Sangmoon Byun, †^{b,c} B. Moon Kim,^b* Sunwoo Lee^a*

^a Department of Chemistry, Chonnam National University, 61186, Gwangju, Republic of Korea

^b Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea

^c The Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea

† These authors contributed equally.

Corresponding author's email address: <u>sunwoo@chonnam.ac.kr</u> and kimbm@snu.ac.kr

Materials/Instrumentation

ESCA (Electron Spectroscopy for Chemical Analysis)

1. Model: SIGMA PROBE (ThermoVG, U.K.)

X-ray source		Monochromatic A/-K (15 kV, 100W, 400 micrometer)
Wide scan	pass energy	50 eV
	step size	1.0 eV
Narrow scan	pass energy	20 eV
	step size	0.1 eV
Flood gun	off	
lon etching gun	off	

Transmission Electron Microscope II (ccd camera type)

- 1. Model: JEM-2100
- 2. Accelating Voltage: 80 to 200Kv
- 3. Gatan Digital Camera (ORIUS-SC600)
- 4. Resolution: Point image: 0.23nm
- Lattice image: 0.14nm
- 5. MAG: x50 ~ x1 500 000
- 6. Camera Length: SA DIFF Mode: 80 ~ 2 000mm

Cs-STEM (Cs corrected STEM with Cold FEG)

1. Model: JEM-ARM200F (Cold Field Emission Type, JEOL)

2. Specifications
a. HT: 60, 80, 120, 200 kV
b. Magnification: 50 to 2,000,000 X (TEM), 200 to 1,500,000 X (STEM)
c. Resolution
- STEM mode: HAADF 0.1nm/ BF 0.136nm
- TEM mode: Point 0.23nm
d. Sample tilting
- X / Y: ±35° / ±30°

3. Analysis functions
a. CCD Camera: UltraScan 1000XP (2,048 x 2,048 pixel)
b. EDS: SDD Type (Active area 100mm2/ Solid angle 0.9 str)
c. EELS: Model 965 GIF Quantum ER

Pd-Pt-Fe₃O₄ samples were analyzed on ESCA, HR-TEM and Cs-STEM (Cs corrected STEM with Cold FEG), and High resolution-Transmission Electron Microscope (ccd camera type) installed at the <u>National Center for Inter-university Research Facilities (NCIRF) at Seoul National University.</u>

Synthesis of the Pd–Pt–Fe₃O₄

340 mg of palladium(II) chloride (PdCl₂), 800 mg of potassium platinochloride (K₂PtCl₄) and 4.00 g of polyvinylpyrrolidone (PVP) (Mw ~10,000) were put in 80 mL of ethylene glycol (EG) in a 250 mL round-bottom flask. This solution was sonicated for 10 min and heated for 1 h at 100°C with magnetic stirring. Meanwhile, 1.00 g of commercially available Fe₃O₄(DK-Nano) was added to 300 mL of EG in a two-necked 500 mL round-bottom flask. Then, the prepared solution was injected dropwise then stirred at 100°C for additional 24 h. The resultant product washed with ethanol. Finally, the product was obtained via drying on a rotary evaporator.

Synthesis of the Pd–Fe₃O₄

340 mg of palladium(II) chloride (PdCl₂) and 4.00 g of polyvinylpyrrolidone (PVP) (Mw ~ 10,000) were put in 80 mL of ethylene glycol (EG) in a 250 mL round-bottom flask. This solution was sonicated for 10 min and heated for 1 h at 100°C with magnetic stirring. Meanwhile, 1.00 g of commercially available Fe₃O₄(DK-Nano) was added to 300 mL of EG in a two-necked 500 mL round-bottom flask. Then, the prepared solution was injected dropwise then stirred at 100°C for additional 24 h. The resultant product washed with ethanol. Finally, the product was obtained via drying on a rotary evaporator.

Synthesis of the Pt–Fe₃O₄

400 mg of potassium platinochloride (K₂PtCl₄) and 0.50 g of polyvinylpyrrolidone (PVP) (Mw ~10,000) were put in 80 mL of ethylene glycol (EG) in a 250 mL round-bottom flask. This solution was sonicated for 10 min and heated for 1 h at 100°C with magnetic stirring. Meanwhile, 0.50 g of commercially available Fe₃O₄(DK-Nano) was added to 300 mL of EG in a two-necked 500 mL round-bottom flask. Then, the prepared solution was injected dropwise then stirred at 100°C for additional 24 h. The resultant product washed with ethanol. Finally, the product was obtained via drying on a rotary evaporator.

Fig. S1. SEM images of Pd–Pt–Fe₃O₄ NPs: (a) 1 eq of PVP used (1 g Fe₃O₄ NPs scale); (b) 2 eq of PVP used (1 g Fe₃O₄ NPs scale); (c) 3 eq of PVP used (1 g Fe₃O₄ NPs scale); (d) 4 eq of PVP used (1 g Fe₃O₄ NPs scale)

Fig. S2. HR-TEM images of fresh NPs: (a) Fe_3O_4 NPs; (b) Pd-Pt-Fe_3O_4 NPs; (c) Pd-Fe_3O_4 NPs; (d) Pt-Fe_3O_4 NPs.

Fig. S3. SEM images of fresh NPs: (a) Fe_3O_4 NPs; (b) Pd–Pt– Fe_3O_4 NPs; (c) Pd– Fe_3O_4 NPs; (d) Pt– Fe_3O_4 NPs

Fig. S4. The SEM-EDS mapping images of (a) Fe_3O_4 NPs, (b) Pd-Pt-Fe_3O_4 NPs, (c) Pd-Fe_3O_4 NPs and (d) Pt-Fe_3O_4 NPs.

Fig. S5. (a) , (c), (e) and (g) BF-STEM image of image of Pd–Pt–Fe₃O₄ NPs; (b), (d), (f) and (h) HAADF-STEM image of image of Pd–Pt–Fe₃O₄ NPs

Fig. S6. The elemental analysis of Pd–Pt–Fe₃O₄ NPs mapping images by Cs-STEM-EDS

Fig. S7. The elemental analysis of loaded Pd–Pt alloy NPs mapping images by Cs-STEM-EDS

Fig. S8. The STEM and particle size distribution images of Pd–Pt–Fe₃O₄

Fig. S9. The XRD data of (a) Fe_3O_4 NPs; (b) Pd- Fe_3O_4 NPs; (c) Pt- Fe_3O_4 NPs; (d) Pd-Pt- Fe_3O_4 NPs.

Fig. S10. The XPS data (a) Pd 4d peaks of Fresh Pd–Pt–Fe₃O₄ NPs (b) Pt 4f peaks of Fresh Pd–Pt–Fe₃O₄ NPs

Fig. S11. The XPS data (a) Pd 4d peaks of fresh Pd–Fe₃O₄ (b) Pt 4f peaks of fresh Pt–Fe₃O₄ NPs

Fig. S12. The Pt XPS data of fresh Pt–Fe₃O₄, and Pd–Pt–Fe₃O₄ NPs

Fig. S13. The XRD (111) peak of Pd–Fe₃O₄, Pt–Fe₃O₄ and Pd–Pt–Fe₃O₄ NPs

Fig. S14. The energy disperse spectroscopy (EDS) map sum spectrum pattern of NPs: (a) Fe_3O_4 NPs; (b) Pd-Pt-Fe $_3\text{O}_4$ NPs; (c) Pd-Fe $_3\text{O}_4$ NPs; (d) Pt-Fe $_3\text{O}_4$ NPs.

Explanation of XRD, XPS and EDS data

To confirm the detailed characterization of Pd–Pt–Fe₃O₄ NPs, X-ray photoelectron spectroscopy (XPS) and Xray diffraction (XRD) were performed, and the results are shown in Fig. S8-S11. In Fig. S9, the characteristic peaks for major Pd⁰ and minor Pd²⁺ can be seen, with the peaks Pd 3d_{3/2} and Pd 3d_{25/2}, respectively.¹ Two Pt 4f5/2 and Pt 4f7/2 peaks were identified and these two binding energies in particular indicate Pt⁰ and Pt²⁺ species.² The Pd–Pt–Fe₃O₄ XPS peaks were shifted to lower binding energy compared to monometallic Pd– or Pt–Fe₃O₄, demonstrating the formation of the Pd–Pt alloy (Fig S9-10). As can be seen in Fig. S9, the X-ray diffraction (XRD) pattern of Pd–, Pt– and Pd–Pt–Fe₃O₄ NPs indicated the presence of all constituent elements in each NPs. The diffraction patterns of Pd– and Pt–Fe₃O₄ NPs in Pd(100) and Pt(100) could be clearly indexed as the platinum and palladium, respectively. A lattice peak change of Pd–Pt(100) was detected, which also indicates that the Pd–Pt NPs comprised a random alloy composition on Fe₃O₄ support (Fig. S13).³ We measured the energy dispersive spectroscopy (EDS) map sum spectrum pattern of Fe₃O₄, Pd–Fe₃O₄, Pt–Fe₃O₄, and Pd–Pt–Fe₃O₄. The presence of Pd, Pt, and Fe on Pd–Pt–Fe₃O₄ was clearly confirmed (Fig. S14).

- 1. (a) W. Yang, C. Yang, M. Sun, F. Yang, Y. Ma, Z. Zhang and X. Yang, *Talanta*, 2009, **78**, 557-564; (b) M. Peuckert and H. P. Bonzel, *Surf. Sci.*, 1984, **145**, 239-259.
- 2. K. S. Kim, A. F. Gossmann and N. Winograd, Anal. Chem., 2002, 46, 197-200.
- (a) S. Byun, Y. Song and B. M. Kim, ACS Appl. Mater. Interfaces, 2016, 8, 14637-14647; (b) W. Wang, Q. Huang, J. Liu, Z. Zou, Z. Li and H. Yang, Electrochem. Commun., 2008, 10, 1396-1399.

Fig. S15. Photographs of the magnetically separable $Pd-Pt-Fe_3O_4$ NPs: (a) dispersion state; (b) magnetic separation of $Pd-Pt-Fe_3O_4$ NPs.

Fig. S16. Reaction yields at 25, 50, 70 and 100 °C.

Fig. S17. The XPS data (a) Pd 4d peaks of Pd–Pt–Fe₃O₄ NPs after 20 cycle of the catalytic reactions (b) Pt 4f peaks of Pd–Pt–Fe₃O₄ NPs after 20 cycle of the catalytic reactions

Fig. S18. The XPS data (a) Pd 4d peaks of Pd–Fe₃O₄ NPs after 15 cycle of the catalytic reactions (b) Pt 4f peaks of Pt–Fe₃O₄ NPs after 15 cycle of the catalytic reactions

Fig. S19. (a) HR-TEM image of Spent Pd–Pt–Fe $_3O_4$ NPs (20 recycled); (b) expanded view.

Fig. S20. The mapping images of (a) Fresh Pd–Pt–Fe $_3O_4$ NPs and (b) Spent Pd–Pt–Fe $_3O_4$ NPs (20 recycled).

Fig. S21. SEM-EDS image of spent Pd–Pt–Fe $_{3}O_{4}$ NPs (20 recycled).

Fig. S22. SEM-EDS pattern: (a) spent Pd–Pt–Fe₃O₄ NPs (after 20 recycle); (b) spent Pt–Fe₃O₄ NPs (after 15 recycle); (c) spent Pd–Fe₃O₄ NPs (after 15 recycle).

Fig. S23. (a) HR-TEM image of fresh Pd–Fe₃O₄ NPs and (b) HR-TEM image of spent Pd–Fe₃O₄ NPs (after 15 recycle).

Fig. S24. (a) HR-TEM image of fresh $Pt-Fe_3O_4$ NPs and (b) HR-TEM image of Spent $Pt-Fe_3O_4$ NPs (after 15 recycle).

Fig. S25. The mapping images of (a) Fresh Pd–Fe₃O₄ NPs and (b) Spent Pd–Fe₃O₄ NPs (after 15 recycle)

Fig. S27. SEM-EDS image of spent Pd–Fe $_3O_4$ NPs (after 15 recycle).

Fig. S28. SEM-EDS image of spent $Pt-Fe_3O_4$ NPs (after 15 recycle).

Fig. S29. The XRD data of (b) 15 cycle of Pd–Fe₃O₄ NPs; (c) 15 cycle of Pt– Fe₃O₄ NPs; (d) 20 cycle of Pd–Pt–Fe₃O₄ NPs

Fig. S30. BF-STEM image of Pd-Pt-Fe₃O₄ NPs

Fig. S31. Proposed reaction mechanism

Sample	Pd (wt%)	Pt (wt%)	•
Fresh	4.10	9.60	•
After 20 reactions	3.35	6.83	

Table S1. ICP data of fresh and spent Pd-Pt-Fe₃O₄ NPs

Table S2. ICP data of fresh and spent Pd-Fe₃O₄ NPs

Sample	Pd (wt%)
Fresh	7.47
After 15 reactions	3.44

Table S3. ICP data of fresh and spent Pt-Fe₃O₄ NPs

Sample	Pt (wt%)
Fresh	10.76
After 15 reactions	2.51

General Procedure for the Pd-Pt-Fe₃O₄ catalyzed arylsilylation.

Aryl halide (0.7 mmol), diisopropylethylamine (136 mg, 1.05 mmol), Pd-Pt-Fe₃O₄ (70 mg, Pd 4.1 wt%, Pt 9.6 wt%, Pd base 3.77 mol%, Pt base 5 mol%), hydrosilane (1.05 mmol), and NMP (4 mL) were added to the reaction vial. The mixture was stirred at 70 °C for 15 h. After the mixture was extracted with Et₂O and water. The organic layer was dried over sodium sulfate. After then it was purified by chromatography on silica gel.

Methyl 4-(triethylsilyl)benzoate (**2a**)^[1] : Methyl 4-iodobenzene (183 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded methyl 4-(triethylsilyl)benzoate (154 mg, 0.62 mmol, 88%) as a colorless oil; methyl 4-iodobenzene (150 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded methyl 4-(triethylsilyl)benzoate (119 mg, 0.48 mmol, 68%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (m, 2H), 7.56 (m, 2H), 3.92 (s, 3H), 0.95 (m, 9H), 0.81 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 144.1, 134.2, 130.2, 128.4, 52.1, 7.3, 3.2; MS (EI) m/z = 250 (M⁺).

1-(4-(Triethylsilyl)phenyl)ethanone (2b)^[1]: 1-(4-Iodophenyl)ethanon (172 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 1-(4-(triethylsilyl)phenyl)ethanone (138 mg, 0.59 mmol, 84%) as a colorless oil; 1-(4-bromophenyl)ethanon (139 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 1-(4-(triethylsilyl)phenyl)ethanone (119 mg, 0.51 mmol, 73%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (m, 2H), 7.61 (m, 2H), 2.61 (s, 3H), 0.97 (m, 9H), 0.83 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 144.5, 137.1, 134.4, 127.1, 26.6, 7.3, 3.2; MS (EI) m/z = 234 (M⁺).

4-(Triethylsilyl)benzaldehyde (2c)^[1]: 4-Iodobenzaldehyde (162 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 4-(triethylsilyl)benzaldehyde (125 mg, 0.57 mmol, 81%) as a colorless oil; 4-bromobenzaldehyde (129 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 4-(triethylsilyl)benzaldehyde (94 mg, 0.43 mmol, 61%) as a

colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 0.97 (m, 9H), 0.84 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 192.5, 146.4, 136.2, 134.5, 128.3, 7.1, 2.9; MS (EI) m/z = 220 (M⁺).

Triehtyl(4-nitrophenyl)silane (2d)^[1]: 1-Iodo-4-nitrobenzene (174 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded triehtyl(4-nitrophenyl)silane (105 mg, 0.44 mmol, 63%) as a yellow oil; 1-bromo-4-nitrobenzene (94 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded triehtyl(4-nitrophenyl)silane (91 mg, 0.39 mmol, 55%) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 0.98-0.81 (m, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 148.4, 147.3, 135.0, 122.2, 7.2, 3.1; MS (EI) m/z = 237 (M⁺).

4-(Triethylsilyl)benzonitrile (2e)^[1]: 4-Iodobenzonitrile (160 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 4-(triethylsilyl)benzonitrile (112 mg, 0.52 mmol, 74%) as a colorless oil; 4-Iodobenzonitrile (126 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 4-

(triethylsilyl)benzonitrile (96 mg, 0.39 mmol, 63%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (m, 4H), 0.96 (m, 9H), 0.82 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 134.8, 131.1, 119.3, 112.5, 7.5, 3.3; MS (EI) m/z = 217 (M⁺).

Triethyl(4-(trifluoromethyl)phenyl)silane (2f)^[1]: 1-Iodo-4-

(trifluoromethyl)benzene (190 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded triethyl(4-(trifluoromethyl)phenyl)silane (82 mg, 0.32 mmol, 45%) as a colorless oil; 1-bromo-4-(trifluoromethyl)benzene (157 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded triethyl(4- (trifluoromethyl)phenyl)silane (36 mg, 0.14 mmol, 20%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (q, *J* = 8.4 Hz, 4H), 0.97 (m, 9H), 0.82 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 142.6, 134.4, 130.6 (*J*_{C-F} = 31.9 Hz), 124.3 (*J*_{C-F} = 270.6 Hz), 124.1 (*J*_{C-F} = 3.8 Hz), 7.3, 3.2; MS (EI) m/z = 260 (M⁺).

(4-Chlorophenyl)triethylsilane (2g)^[2]: 1-Chloro-4-iodobenzene (167 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded (4-

chlorophenyl)triethylsilane (133 mg, 0.59 mmol, 84%) as a colorless oil; 1bromo-4-chlorobenzene (133 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded (4-chlorophenyl)triethylsilane (116 mg, 0.51 mmol, 73%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dt, *J* = 8.4 Hz, 1.9 Hz, 2H), 7.32 (dt, *J* = 8.4 Hz, 1.8 Hz, 2H), 0.95 (m, 9H), 0.77 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 135.7, 135.5, 135.0, 127.9, 7.3, 3.3; MS (EI) m/z = 226 (M⁺).

(3,5-difluorophenyl)triethylsilane (2h): 1,3-Difluoro-5-iodobenzene (167 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded (3,5-difluorophenyl)triethylsilane (141 mg, 0.62 mmol, 88%) as a colorless oil; 1,3-Difluoro-5-iodobenzene (134 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded (3,5-difluorophenyl)triethylsilane (109 mg, 0.48 mmol, 68%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 6.96 (dt, *J* = 6.0 Hz, 2.3 Hz, 2H), 6.76 (tt, *J* = 9.2 Hz, 2.4 Hz, 1H), 0.95 (m, 9H), 0.78 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 162.8 (*J*_{C-F} = 250.0 Hz, 10.5 Hz), 142.6 (*J*_{C-F} = 9.4 Hz), 116.0 (*J*_{C-F} = 16.7 Hz, 4.5 Hz), 104.0 (*J*_{C-F} = 24.9 Hz), 7.2, 3.1; HRMS (EI) calcd. for C₁₂H₁₈F₂Si [M]⁺ 228.1146 found 228.1146.

2-(Triethylsilyl)thiophene (2i)^[4] **:** 2-Iodothiophene (92 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 2-(triethylsilyl)thiophene (110 mg, 0.56 mmol, 79%) as a colorless oil; 2-bromothiophene (113 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 2-(triethylsilyl)thiophene (76 mg, 0.39 mmol, 55%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, *J* = 4.6 Hz, 0.9 Hz, 1H), 7.26 (dd, *J* = 3.3 Hz, 0.9 Hz, 1H), 7.21 (dd, *J* = 4.6 Hz, 3.3 Hz, 1H), 1.00 (m, 9H), 0.81 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 136.5, 134.6, 130.4, 128.0, 7.4, 4.5; MS (EI) m/z = 198 (M⁺).

3-(Triethylsilyl)pyridine (2j)^[1] **:** 3-Iodopyridine (143 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 3-(triethylsilyl)pyridine (104 mg, 0.54 mmol, 77%) as a colorless oil; 3-bromopyridine (110 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 3-(Triethylsilyl)pyridine (83 mg, 0.43 mmol, 61%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.58 (d, *J* = 3.6 Hz, 1H), 7.77 (dt, *J* = 7.5 Hz, 1.9 Hz, 1H), 7.26 (ddd, *J* = 7.5 Hz, 4.9 Hz, 0.9 Hz, 1H), 0.98 (m, 9H), 0.82 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 149.7, 142.0, 132.3, 123.2, 7.2, 3.0; MS (EI) m/z = 193 (M⁺).

6-(Triethylsilyl)quinoline (2k)^[3]: 3-iodoquinoline (178 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 6-(triethylsilyl)quinoline (138 mg, 0.57 mmol, 81%) as a colorless oil; 3-bromoquinoline (113 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 6-(triethylsilyl)quinoline (131 mg, 0.54 mmol, 77%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.93 (bs, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 7.84 (dd, J = 8.4 Hz, 1.4 Hz, 1H), 7.43 (dd, J = 8.3 Hz, 4.25 Hz, 1H), 1.01 (m, 9H), 0.90 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 148.1, 136.4, 136.2, 134.4, 134.3, 127.8, 127.6, 120.8, 7.2, 3.1; MS (EI) m/z = 243 (M⁺).

3-(Triethylsilyl)quinoline (**21**)^[3] : 3-bromoquinoline (113 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded 3-(triethylsilyl)quinoline (54 mg, 0.28 mmol, 39%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.92 (bs, 1H), 8.18 (d, *J* = 7.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.96 (s, 1H), 7.83 (dd, *J* = 8.4 Hz, 1.4 Hz, 1H), 7.42 (dd, *J* = 8.3 Hz, 4.3 Hz, 1H), 1.00 (m, 9H), 0.89 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 148.3, 136.6, 136.4, 134.6, 134.5, 128.0, 127.8, 121.0, 7.4, 3.3; MS (EI) m/z = 243 (M⁺).

Triethyl(**4-methoxyphenyl**)**silane** (**2n**)^[5] **:** 4-Iodoanisole (164 mg, 0.7 mmol) and triethylsilane (122 mg, 1.05 mmol) afforded triehtyl(4-

methoxyphenyl)silane (29 mg, 0.13 mmol, 18%) as a colorless oil; 4bromoanisole (131 mg, 0.7 mmol) afforded triehtyl(4-methoxyphenyl)silane (11 mg, 0.05 mmol, 7%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 3.83 (s, 3H), 0.97 (m, 9H), 0.78 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 160.1, 135.5, 128.1, 113.4, 55.0, 7.4, 3.5; MS (EI) m/z = 222 (M⁺).

(3,5-difluorophenyl)triethylsilane (2h): Methyl 4-iodobenzene (183 mg, 0.7 mmol) and trihexylsilane (286 mg, 1.05 mmol) afforded methyl 4- (triethylsilyl)benzoate (246 mg, 0.59 mmol, 84%) as a colorless oil; methyl 4-iodobenzene (150 mg, 0.7 mmol) and trihexylsilane (286 mg, 1.05 mmol) afforded methyl 4-(triethylsilyl)benzoate (184 mg, 0.44 mmol, 63%) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 6.96 (dt, *J* = 6.0 Hz, 2.3 Hz, 2H), 6.76 (tt, *J* = 9.2 Hz, 2.4 Hz, 1H), 0.95 (m, 9H), 0.78 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 162.8 (*J*_{C-F} = 250.0 Hz, 10.5 Hz), 142.6 (*J*_{C-F} = 9.4 Hz), 116.0 (*J*_{C-F} = 16.7 Hz, 4.5 Hz), 104.0 (*J*_{C-F} = 24.9 Hz), 7.2, 3.1; HRMS (EI) calcd. for C₁₂H₁₈F₂Si [M]⁺ 228.1146 found 228.1146.

References

[1] A. Hamze, O. Provot, M. Alami, J.-D. Brion, Org. Lett. 2006, 8, 931.

[2] N. Iranpoor, H. Firouzabadi, R. Azadi, J. Organomet. Chem. 2010, 695, 887.

- [3] E. Lukevices, I. Segals, T. Lapina, Vestis. Lat. Psr. Zinat. Akad. 1978, 3, 371.
- [4] K.-S. Lee, D. Katsoulis, J. Choi, ACS Catal. 2016, 6, 1493.
- [5] Y. Yamanoi, H. Nishihara, J. Org. Chem. 2008, 17, 6671.

Methyl 4-(triethylsilyl)benzoate (2a) ¹H NMR

1-(4-(Triethylsilyl)phenyl)ethanone (2b) ¹H NMR

4-(Triethylsilyl)benzaldehyde (2c) ¹H NMR

Triehtyl(4-nitrophenyl)silane (2d) ¹H NMR

4-(Triethylsilyl)benzonitrile (2e) ¹H NMR

Triethyl(4-(trifluoromethyl)phenyl)silane (2f) ¹H NMR

(4-Chlorophenyl)triethylsilane (2g) ¹H NMR

(3,5-difluorophenyl)triethylsilane (2h) ¹H NMR

2-(Triethylsilyl)thiophene (2i) ¹H NMR

3-(Triethylsilyl)pyridine (2j) ¹H NMR

6-(Triethylsilyl)quinoline (2k) ¹H NMR

3-(Triethylsilyl)quinoline (2l) ¹H NMR

Triethyl(4-methoxyphenyl)silane (2n) ¹H NMR

