Supporting information

Copper-Catalyzed Decarboxylative Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles

Navaneet Kumar,^a Mohd Yeshab Ansari,^a Ruchir Kant^b and Atul Kumar,^{*a,c}

^aMedicinal & Process Chemistry Division, ^bMolecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India. ^cAcademy of Scientific and Innovative Research, New Delhi 110001, India Fax: 91-522-26234051; <u>Tel:91-522-2612411</u>

Table of Contents:

(1)	General remarks	.S2
(2)	Optimization studies	.83
(3)	General experimental procedure	.S4
(4)	Characterization data for compounds	.S4
(5)	NMR-Spectra of Compounds (¹ H and ¹³ C)	S 11
(6)	X-Ray data for compound (3t)	534

(1) General remarks:

All the reactions were carried out in oven-dried glassware. All the chemicals and reagents were purchased from commercial sources and were used without further purification. Reagents grade solvent DMF (Spectrochem) was used for reaction. TLC (Thin Layer Chromatography) was performed on Merck-percoated silica gel and 100-200 mesh silica gel was used for column chromatography. The chromatographic solvents are mentioned as v/v ratios. All the synthesized compounds were fully characterized by ¹H, ¹³C NMR, IR, and further confirmed through ESI-MS and HRMS analyses. IR spectra were recorded on a Perkin-Elmer FT-IR RXI spectrophotometer and values reported in cm⁻¹. NMR spectra were recorded with 400 MHz spectrometers for ¹H NMR, 100 MHz for ¹³C NMR respectively. Chemical shifts are reported in δ (ppm) relative to TMS (¹H), CDCl₃ and DMSO-*d*₆ (¹³C) as internal standards. Integrals are in accordance with assignments; coupling constants are given in Hz. ESI-MS spectra were obtained on a LCQ Advantage Ion trap mass spectrometer (Finnigan thermo fischer scientific).

A good quality single crystal of size 0.22 x 0.22 x 0.07 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound 3t were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku Crystal Clear-SM Expert 2.1 b24¹ software. Structure solution and refinement were performed by using SHELX-97². Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model. Crystal data are summarized in Table 2.

(2) Optimization studies

Optimization studies were started with the reaction of 1-azido-3-bromobenzene (1.2 mmol) **1**a with 4-chlorocinnamic acid (1.0)mmol) 2a in the presence of copper(II)trifluoromethanesulfonate (20 mol %) catalyst and were taken in a 50 mL round bottom flask containing ascorbic acid/DMF (1:4, w/v) as a solvent under air condition. The reaction mixture was stirred at 115°C. A systematic optimization study, using Cu(OTf)₂ (20 mol %) and ascorbic acid/DMF (1:4, w/v) system works best for this reaction.

Entry	Catalyst (mol %)	Solvent	time (h)	yield ^b (%)
1 ^c	Cul (15)	Toluene	16	-
2	Cul (15)	MeOH	14	21
3	Cul (15)	DMF	15	25
4	Cul (15)	MeCN	15	20
5	Cul (15)	DMF/MeOH (1:4, w/v)	14	23
6	Cul (15)	DMF/MeCN (1:4, w/v)	15	18
7	CuCl (15)	DMF	16	15
8	CuBr (15)	DMF	15	20
9	Cul (20)	DMF	15	30
10	Cu(OTf) ₂ (15)	DMF	16	35
11	Cu(OTf) ₂ (15)	Ascorbic acid/DMF (1:4, w/v)	16	70
12	Cu(OTf) ₂ (20)	Ascorbic acid/DMF (1:4, w/v)	16	80
13	Cu(OTf) ₂ (15)	Isoascorbic acid/ DMF (1:4, w/v)	16	70
14	Cu(OTf) ₂ (20)	Isoascorbic acid/DMF (1:4, w/v)	16	75
15	Cul (20)	Ascorbic acid/DMF (1:4, w/v)	15	45
16 ^d	Cu(OTf) ₂ (20)	Ascorbic acid/DMF (1:4, w/v)	16	12

^aReaction conditions: Organic azides (1.2 mmol), cinnamic acids (1.0 mmol) and Cu(OTf)₂ (20 mol%), air (1atm) in Ascorbic acid/DMF (1:4, w/v), 10-16 hrs. ^bYields of isolated products.^cNo reaction takes place. ^dUnder N₂ in 16 hrs.

Table1. Optimization by varying catalyst and solvent

(3) Representative experimental procedure for the synthesis of 1,5disubstituted 1,2,3-triazole 3(a-w):

Organic azides (1.2)mmol) **1a**. cinnamic acids (1.0)mmol) 2a and copper(II)trifluoromethanesulfonate (20 mol %) were taken in a 50 mL round bottom flask containing ascorbic acid/DMF (1:4, w/v) as a solvent under air condition, the reaction mixture was stirred at 115°C. The completion of reaction was monitored by TLC, the reaction mixture was allowed to cool at room temperature. Then reaction mixture was filtered through celite and washed 3-4 times by ethyl acetate and water. The extracted layer was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified by 100-200 mesh silica gel by column chromatography with hexane:ethyl acetate (95:5) to afford 1,5-disubstituted 1,2,3-triazole derivatives.

(4) Characterization data of all the synthesized compounds:

1-(4-nitrophenyl)-5-phenyl-1*H*-1,2,3-triazole (3a):

Yellow solid; yield 69 %; **mp:** 164-165 °C; ¹**H NMR (400 MHz; DMSO-***d*₆): δ 8.31(app. dt, J_1 =9.1 Hz and J_2 =2.2 Hz, 2H), 7.90 (s, 1H), 7.60 (app. dt, J_I =9.1Hz and J_2 =2.2 Hz, 2H), 7.49-7.41 (m, 3H), 7.28-7.25(m, 2H); ¹³C NMR (100 MHz; DMSO-*d*₆) δ 147.9, 141.4, 138.4, 134.3, 130.0, 129.5, 129.1, 126.8, 126.3, 125.4; **IR (KBr) max** 3400, 3019, 2400, 1529, 1384, 1215, 856, 758, 669; **ESI-MS (m/z)** = 267(M+H); Analysis cald. for C₁₄H₁₀N₄O₂C, 63.15; H, 3.89; N, 21.04; Found: C, 63.18; H, 3.91; N, 21.08; **ESI-HRMS** for cald. C₁₄H₁₀N₄O₂; (M+H), 267.0879; found: m/z 267.0882.

1-(4-chlorophenyl)-5-phenyl-1*H*-1,2,3-triazole (3b):

Light brown solid; yield 75 %; **mp:** 88-89 °C. ¹**H NMR** (**400 MHz**, **DMSO-***d*₆) δ 8.13 (s, 1H), 7.61 (dt, *J*₁=8.1 Hz and *J*₂=2.1 Hz, 2H), 7.47-7.44 (m, 2H), 7.43-7.41(m, 3H), 7.32-7.28 (m, 2H). ¹³**C NMR** (**100 MHz**, **DMSO-***d*₆) δ 138.2, 135.5, 134.6, 133.7, 130.1, 129.8, 129.4, 129.0, 127.8, 126.5; **IR** (**KBr**) **max** 3400, 3019, 2400, 1529, 1384, 1215, 856, 758, 669, 528;

ESI-MS (m/z) = 256 (M+H); Analysis cald. for $C_{14}H_{11}N_3Cl$: C, 65.76; H, 3.94; N, 16.41; Found: C, 65.80; H, 3.98; N, 16.38; **ESI-HRMS** for cald. $C_{14}H_{11}N_3Cl$; (M+H), 256.0636; found: m/z 256.0634.

1-(4-iodophenyl)-5-phenyl-1*H*-1,2,3-triazole (3c):

Brown solid; yield 71 %; **mp:** 114-116 °C.¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (s, 1H), 7.69 (dt, J_I = 8.6 Hz and J_2 =2.0 Hz, 2H), 7.33-7.28 (m, 3H), 7.19-7.14 (m, 2H), 7.04 (dt, J_I =8.7 Hz and J_2 =2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 137.6, 136.2, 133.6, 129.4, 129.0, 128.6, 126.6, 126.4, 94.6; **IR (KBr) max** 3389, 3019, 2499, 1629, 1402, 1215, 929, 757, 669; **ESI-MS (m/z)** = 348 (M+H); Analysis cald. for C₁₄H₁₁N₃I: C, 48.44; H, 2.90; N, 12.10; Found: C, 48.50; H, 2.86; N, 12.13; **ESI-HRMS** for cald. C₁₄H₁₁N₃I; (M+H), 347.9992; found: m/z 347.9993.

1-(4-fluorophenyl)-5-phenyl-1*H*-1,2,3-triazole (3d):

Light yellow solid; yield 73 %; **mp:** 140-141 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.88 (s, 1H), 7.41-7.36 (m, 5H), 7.25-7.23 (m, 2H), 7.17-7.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 161.4, 137.8, 133.4, 132.7, 129.3, 128.9,128.6, 127.1, 127.0, 126.5, 116.5, 116.3; **IR** (**KBr**) **max** 3853, 3750, 3392, 3019, 2399,1622, 1402, 1215, 928, 757, 669; **ESI-MS** (**m/z**) = 240 (M+H); Analysis cald. for **C**₁₄**H**₁₀**N**₃**F**: C, 70.28; H, 4.21; N, 17.56; Found: C, 70.32; H, 4.24; N,17.59; **ESI-HRMS** for cald. **C**₁₄**H**₁₀**N**₃**F**; (**M**+**H**), 240.0932; found: m/z 240.0935.

1-(4-bromophenyl)-5-phenyl-1*H*-1,2,3-triazole (3e):

Yellow solid; yield 71 %; **mp**:151-152 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.58 (dt, J_1 =8.7 Hz and J_2 =2.0 Hz, 2H), 7.42-7.37 (m, 3H), 7.28-7.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 135.6, 132.6, 129.4, 129.0, 128.6, 126.5, 126.4, 123.2; **IR** (**KBr**) **max** 3392, 3019, 2399,1622, 1402, 1215, 928, 757, 669; **ESI-MS** (**m**/**z**) = 300 (M+H); Analysis cald. for **C**₁₄**H**₁₀**N**₃**Br**: C, 56.02; H, 3.36; N, 14.00; Found: C, 56.06; H, 3.39; N, 14.03; **ESI-HRMS** for cald. **C**₁₄**H**₁₀**N**₃**Br**; (**M**+**H**), 300.0131; found: m/z 300.0134.

5-phenyl-1-(*p*-tolyl)-1*H*-1,2,3-triazole (3f):

Light brown solid; yield 79 %; **mp:** 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.37-7.25 (m, 9H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.6, 134.1, 133.3, 129.9, 129.1, 128.8, 128.5, 126.9, 125.0, 21.2; **IR** (**KBr**) **max** 3400, 1637, 1403, 1217, 1069, 771, 669; **ESI-MS** (**m**/z) = 236 (M+H); Analysis cald. for C₁₅H₁₃N₃: C, 76.57; H, 5.57;

N,17.86; Found: C, 76.60; H, 5.61; N, 17.90; **ESI-HRMS** for cald. C₁₅H₁₃N₃; (M+H), 236.1211; found: m/z 236.1210.

1-(2-methyl-4-nitrophenyl)-5-phenyl-1*H*-1,2,3-triazole (3g):

Light yellow solid; yield 65 %; **mp:** 130-132 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.23 (s, 1H), 8.18 (d, *J*=7.6 Hz, 1H), 7.9 (s, 1H), 7.47 (d, *J*=8.4 Hz, 1H), 7.37-7.17 (m, 5H), 2.12 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 148.3, 140.9, 138.9, 137.4, 132.6, 129.7, 129.2, 128.8, 127.7, 126.4, 125.9, 122.1, 18.0; **IR** (**KBr**) **max** 3400, 3019, 2399,1644, 1402, 1215, 928, 770, 669; **ESI-MS** (**m**/**z**) = 281 (M+H); Analysis cald. for **C**₁₅**H**₁₂**N**₄**O**₂: **C**, 64.28; H, 4.32; N, 19.99; Found: C, 64.32; H, 4.35; N, 19.95; **ESI-HRMS** for cald. **C**₁₅**H**₁₂**N**₄**O**₂; (**M**+**H**), 281.1033; found: m/z 281.1036.

1-(3,4-dimethylphenyl)-5-phenyl-1*H*-1,2,3-triazole (3h):

Light yellow solid; yield 69 %; **mp:** 140-141 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.77 (s, 1H), 7.29-7.25 (m, 3H), 7.17-7.15 (m, 3H), 7.06 (d, *J*=8.0 Hz, 1H), 6.90 (d, *J*=8.0 Hz, 1H), 2.22 (s, 3H), 2.18 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 138.0, 137.9, 137.5, 134.3, 133.1, 130.2, 129.0, 128.7, 128.5, 126.9, 126.1, 122.4, 19.7, 19.4; **IR** (**KBr**) **max** 3394, 3019, 2400,1637, 1385, 1067, 669; **ESI-MS** (**m/z**) = 250 (M+H); Analysis cald. for **C**₁₆**H**₁₅**N**₃: C, 77.81; H, 6.06; N, 16.85; Found: C, 77.85; H, 6.10; N, 16.90; **ESI-HRMS** for cald. **C**₁₆**H**₁₅**N**₃; (**M+H**), 250.1336; found: m/z 250.131

1-(3-bromophenyl)-5-phenyl-1*H*-1,2,3-triazole (3i):

Yellow solid; yield 79 %; **mp:** 132-133 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (s, 1H), 7.65 (t, *J*=2.0 Hz, 1H), 7.59 (d, *J*=2.0 Hz, 1H), 7.44-7.37 (m, 3H), 7.30 (d, *J*=8.1 Hz, 1H), 7.27-7.24 (m, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 137.8, 137.6, 133.5, 132.3, 130.5, 129.5, 129.0, 128.6, 128.2, 126.3, 123.6, 122.8; **IR (KBr) max** 3385, 3019, 2399,1644, 1402, 1215, 770, 669; **ESI-MS (m/z)** = 300 (M+H); Analysis cald. for **C**₁₄**H**₁₀**N**₃**Br**: C, 56.02; H, 3.36; N, 14.00; Found: C, 56.07; H, 3.40; N, 14.03; **ESI-HRMS** for cald.**C**₁₄**H**₁₀**N**₃**Br**;(**M**+**H**), 300.0131; found: m/z 300.0136.

1,5-diphenyl-1*H*-1,2,3-triazole (3j):

Off-white solid; yield 75 %; **mp:** 113-114 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.46-7.43 (m, 3H), 7.40-7.33 (m, 5H), 7.25-7.23 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 136.6, 133.4, 129.3, 129.2, 128.8, 128.6, 126.7, 125.2; **IR (KBr) max** 3400, 3019,

2399,1637, 1403, 1155, 1068, 929, 769, 669; **ESI-MS** (**m**/**z**) = 222 (M+H); Analysis cald. for **C**₁₄**H**₁₁**N**₃: C, 76.00; H, 5.01; N, 18.99; Found: C, 76.03; H, 5.05; N, 18.95; **ESI-HRMS** for cald. **C**₁₄**H**₁₁**N**₃; (**M**+**H**), 222.1026; found: m/z 222.1027.

5-(4-methoxyphenyl)-1-(4-nitrophenyl)-1*H*-1,2,3-triazole (3k):

Yellow solid; yield 60 %; mp: 114-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J*=8.9 Hz, 2H), 7.84 (s, 1H), 7.61 (d, *J*=8.9 Hz, 2H), 7.17 (d, *J*=8.6 Hz, 2H), 6.94 (d, *J*=8.6 Hz, 2H), 3.8 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 147.4, 141.4, 137.9, 133.7, 130.1, 125.3, 124.8, 118.0, 114.7, 55.4; IR (KBr) max 3392, 3019, 2399,1650, 1403, 1215, 1155, 928, 770, 669; ESI-MS (m/z) = 297 (M+H); Analysis cald. for C₁₅H₁₂N₄O₃: C, 60.81; H, 4.08; N 18.91; Found: C, 60.85; H, 4.12; N, 18.95; ESI-HRMS for cald. C₁₅H₁₂N₄O₃; (M+H), 297.0986; found: m/z 297.0992.

5-(4-methoxyphenyl)-1-(*p*-tolyl)-1*H*-1,2,3-triazole (3l):

White solid; yield 62 %; **mp:** 135-136 °C; ¹**H NMR** (400 MHz, **CDCl**₃) δ 7.81 (s, 1H), 7.27-7.23 (m, 4H), 7.18-7.16 (m, 2H), 6.89-6.87 (m, 2H), 3.83 (s, 3H), 2.42 (s, 3H); ¹³**C NMR** (100 MHz, **CDCl**₃) δ 160.2, 139.2, 137.5, 134.2, 132.8, 129.9, 125.0, 119.0, 114.2, 55.3, 21.2; **IR** (**KBr**) **max** 3390, 3019, 1639, 1402, 1215, 1067, 770, 669; **ESI-MS** (**m**/**z**) = 266 (M+H); Analysis cald. for **C**₁₆**H**₁₅**ON**₃: C, 72.43; H, 5.70; N, 15.84; Found: C, 72.46; H, 5.73; N, 15.87; **ESI-HRMS** for cald. **C**₁₆**H**₁₅**ON**₃; (**M**+**H**), 266.1283; found: m/z 266.1278.

5-(4-chlorophenyl)-1-(4-iodophenyl)-1*H*-1,2,3-triazole (3m):

Light yellow solid; yield 70 %; **mp**:140-142 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.77 (s, 1H), 7.71 (d, *J*=8.5 Hz, 2H), 7.29 (d, *J*=8.5 Hz, 2H), 7.09 (d, *J*=8.5 Hz, 2H), 7.03 (d, *J*=8.5 Hz, 2H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 138.7, 136.6, 136.0, 135.8, 133.6, 129.8, 129.4, 128.8, 126.6, 124.9, 94.9; **IR** (**KBr**) **max** 3676, 3019, 2399,1650, 1403, 1215, 1065, 928, 770, 669; **ESI-MS** (**m/z**) = 381 (M+H); Analysis cald. for **C**₁₄**H**₉**N**₃**CII**: C, 44.07; H, 2.38; N, 11.01; Found: C, 44.4; H, 2.40; N, 11.05; **ESI-HRMS** for cald. **C**₁₄**H**₉**N**₃**CII**; (**M**+**H**), 381.9602; found: m/z 381.9601.

5-(4-chlorophenyl)-1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazole (3n):

Yellow solid; yield 69 %; **mp**:121-123 °C; ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.25 (s, 1H), 8.20 (d, *J*=8.4 Hz, 1H), 7.98 (s, 1H), 7.47 (d, *J*=8.4 Hz, 1H), 7.34 (d, *J*=7.4 Hz, 2H), 7.11 (d, *J*=7.6 Hz, 2H) 2.13 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 148.5, 140.6, 137.9, 137.3, 136.0,

132.7, 129.6, 128.9, 128.7, 126.5, 124.3, 122.2, 18.0; **IR** (**KBr**) **max** 3847, 3740, 3395,1639, 1402, 1067, 770; **ESI-MS** (**m/z**) = 315 (M+H); Analysis cald. for **C**₁₅**H**₁₁**ClN**₄**O**₂: C, 57.24; H, 3.52; N, 17.80; Found: C, 57.27, H, 3.55, N, 17.84; **ESI-HRMS** for cald. **C**₁₅**H**₁₁**ClN**₄**O**₂; (**M+H**), 315.0645; found: m/z 315.0650.

5-(4-chlorophenyl)-1-(3,4-dimethylphenyl)-1*H*-1,2,3-triazole (30):

White solid; yield 75 %; **mp:** 117-118 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.76 (s, 1H), 7.24 (d, *J*=8.0 Hz, 2H), 7.13 (s, 1H), 7.10-7.09 (m, 3H), 6.89 (d, *J*=7.9 Hz, 1H), 2.23 (s, 3H), 2.20 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 138.3, 138.2, 136.5, 135.2, 134.0, 133.2, 130.3, 129.1, 126.2, 125.4, 122.4, 19.7, 19.5; **IR** (**KBr**) **max** 3390, 3019, 2399,1637, 1507, 1385, 1067, 928, 669; **ESI-MS** (**m**/**z**) = 284 (M+H); Analysis cald. for **C**₁₆**H**₁₄**N**₃**Cl**: C, 67.73; H, 4.97; N, 14.81; Found: C, 67.76; H, 4.93; N, 14.84; **ESI-HRMS** for cald. **C**₁₆**H**₁₄**N**₃**Cl**; (**M+H**), 284.1010; found: m/z 284.1014.

5-(4-chlorophenyl)-1-(4-nitrophenyl)-1*H*-1,2,3-triazole (3p):

Yellow solid; yield 70 %; **mp**:115-117 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, *J*=8.8 Hz, 2H), 7.90 (s, 1H), 7.60 (d, *J*=8.7 Hz, 2H), 7.42 (d, *J*=8.1 Hz, 2H), 7.20 (d, *J*=8.2 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.7, 141.0, 136.9, 136.3, 134.2, 129.9, 129.6, 125.3, 125.0, 124.5; **IR** (**KBr**) **max** 3019, 1639, 1530, 1402, 1215, 1067, 770, 669; **ESI-MS** (**m**/z) = 301 (M+H); Analysis cald. for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; N, 18.63; Found: C, 55.96; H, 3.05; N, 18.66; **ESI-HRMS** for cald. C₁₄H₉ClN₄O₂; (**M**+**H**), 301.0487; found: m/z 301.0484.

5-(4-chlorophenyl)-1-(*p*-tolyl)-1*H*-1,2,3-triazole (3q):

Light yellow solid; yield 75 %; **mp**:139-141 °C; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.86 (s, 1H), 7.33 (d, *J*=8.4 Hz, 2H), 7.28-7.22 (m, 4H), 7.17 (d, *J*=8.4 Hz, 2H), 2.42 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 139.6, 136.6, 135.3, 133.9, 133.3, 130.0, 129.8, 129.1, 125.3,125.0, 21.2; **IR** (**KBr**) **max** 3400, 3019, 2399, 1639, 1530, 1402, 1215, 1067, 770, 669, 626; **ESI-MS** (**m/z**) = 270 (M+H); Analysis cald. for **C**₁₅**H**₁₂**ClN**₃: C,66.79; H,4.48; N,15.58; Found: C, 66.82; H, 4.51; N, 15.63; **ESI-HRMS** for cald. **C**₁₅**H**₁₂**ClN**₃; (**M**+**H**), 270.0809; found: m/z 270.0813.

5-(4-chlorophenyl)-1-phenyl-1*H*-1,2,3-triazole (3r):

White solid; yield 76 %; **mp:** 105-107 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.48-7.46 (m, 3H), 7.38-7.33 (m, 4H), 7.19-7.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 136.3, 135.5, 133.4, 129.8, 129.5, 129.2, 125.2; **IR (KBr) max** 3401, 3019, 1639, 1530, 1402, 1215, 1067, 770, 669; **ESI-MS (m/z)** = 256 (M+H); Analysis cald. for C₁₄H₁₀ClN₃: C, 65.76; H, 3.94; N, 16.43; Found: C, 65.80; H, 3.91; N, 16.48; **ESI-HRMS** for cald. C₁₄H₁₀ClN₃; (M+H), 256.0644; found: m/z 256.0649.

5-(4-chlorophenyl)-1-(3-fluorophenyl)-1*H*-1,2,3-triazole (3s):

Off-white solid; yield 79 %; **mp**: 142-143 °C; ¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.86 (s, 1H), 7.46-7.36 (m, 3H), 7.20-7.12 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 161.4, 136.7, 135.8, 133.6, 130.8, 130.8, 129.8, 129.3, 124.8, 120.8, 120.8, 116.6, 116.4, 112.9, 112.7; **IR** (**KBr**) **max** 3400, 3018, 1609, 1403, 1216, 1070, 669; **ESI-MS** (**m**/**z**) = 274 (M+H); Analysis cald. for **C**₁₄**H**₉**N**₃**ClF**: C, 61.44; H, 3.31; N, 15.35; Found: C, 61.49; H, 3.35; N, 15.38; **ESI-HRMS** for cald. **C**₁₄**H**₉**N**₃**ClF**; (**M**+**H**), 274.0539; found: m/z 274.0533.

1-(3-bromophenyl)-5-(4-chlorophenyl)-1*H*-1,2,3-triazole (3t):

White solid; yield 80 %; **mp:** 133-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.65 (d, *J*=8.5 Hz, 2H), 7.38-7.32 (m, 3H), 7.20 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.7, 135.8, 133.6, 132.5, 130.6, 129.8, 129.4, 128.2, 124.7, 123.6, 123.0; **IR** (KBr) max 3660, 3399, 3018, 1644, 1482, 1403, 1070, 826, 668; **ESI-MS** (m/z) = 333 (M+H); Analysis cald. for C₁₄H₉N₃ClBr: C, 50.26; H, 2.71; N, 12.56; Found: C, 50.31; H, 2.76; N, 12.60; **ESI-HRMS** for cald. C₁₄H₉N₃ClBr; (M+H), 333.9741; found: m/z 333.9739.

1-(3,4-dimethylphenyl)-5-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazole(3u):

White solid; yield 65 %; **mp:** 147-149 °C; ¹**H NMR** (400 MHz, **CDCl**₃) δ 7.93 (s, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 2.0 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.99-697 (m, 1H), 2.34 (s, 3H), 2.30 (s, 3H); ¹³**C NMR** (100 MHz, **CDCl**₃) δ 138.5, 138.4, 136.2, 133.9, 133.6, 131.2, 130.8, 130.5, 130.4, 128.7, 126.2, 125.8, 125.8, 125.7, 125.7, 125.0, 122.5, 19.7, 19.5; **IR** (**KBr**) **max** 3853, 3750, 3392, 3019, 2399, 1325, 1215, 928, 757, 669; **ESI-MS** (m/z) = 318 (M+H); Analysis cald. for **C**₁₇**H**₁₄**N**₃**F**₃: C, 64.35; H, 4.45; N, 13.24; Found: C, 64.32; H, 4.40; N,13.27; **ESI-HRMS** for cald. **C**₁₇**H**₁₄**N**₃**F**₃; (**M+H**), 318.1213; found: m/z 318.1211.

1-(3,4-dimethylphenyl)-5-(3-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazole(3v):

Yellow oil; yield 61 %; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.55 (s, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.21-7.18 (m, 2H), 6.99 (d, *J* = 7.4 Hz, 1H), 2.33 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 138.3, 136.2, 133.8, 133.4, 131.6, 131.5, 131.2, 130.4, 129.3, 127.8, 126.1, 125.7, 125.2, 122.4, 19.7, 19.5; **IR (KBr) max** 3853, 3750, 3392, 2399,1622, 1402, 1215, 928, 757, 669; **ESI-MS (m/z)** = 318 (M+H); Analysis cald. for C₁₇H₁₄N₃F₃: C, 64.35; H, 4.45; N, 13.24; Found: C, 64.32; H, 4.49; N,13.28; **ESI-HRMS** for cald. C₁₇H₁₄N₃F₃; (M+H), 318.1213; found: m/z 318.1231.

1-(*p*-tolyl)-5-(3-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazole (3w):

Light yellow oil; yield 60 %; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.54 (s, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.28-7.22 (m, 4H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 136.2, 133.6, 133.5, 131.7, 131.6, 131.2, 130.1, 129.4, 127.8, 125.8, 125.3, 125.2, 125.0, 124.8, 21.1; IR (KBr) max 3853, 3750, 3019, 2399,1622, 1402, 1215, 928, 669; ESI-MS (m/z) = 304 (M+H); Analysis cald. for C₁₆H₁₂N₃F₃: C, 63.36; H, 3.99; N, 13.86; Found: C, 63.40; H, 4.02; N,13.89; ESI-HRMS for cald. C₁₆H₁₂N₃F₃; (M+H), 304.1061; found: m/z 304.1065.

(5) NMR-Spectra of Compounds

Figure2: ¹³C NMR of compound (3a)

Figure 3: ¹H NMR of compound (3b)

Figure 4: ¹³C NMR of compound (3b)

Figure 5: ¹H NMR of compound (3c)

Figure 6: ¹³C NMR of compound (3c)

7,7835 7,4172 7,4172 7,4172 7,3979 7,3979 7,3951 7,3951 7,3951 7,3726 7,3375 7,375 7,175

Figure 8: ¹³C NMR of compound (3d)

Figure 10:¹³C NMR of compound (3e)

Figure 12: ¹³C NMR of compound (3f)

Figure 14: ¹³C NMR of compound (3g)

Figure 15: ¹H NMR of compound (3h)

Figure 16: ¹³C NMR of compound (3h)

Figure 18: ¹³C NMR of compound (3i)

Figure 19: ¹H NMR of compound (3j)

Figure 20: ¹³C NMR of compound (3j)

Figure 22: ¹³C NMR of compound (3k)

Figure 24: ¹³C NMR of compound (3l)

Figure 26: ¹³C NMR of compound (3m)

Figure 28: ¹³C NMR of compound (3n)

Figure 29: ¹H NMR of compound (30)

Figure 30: ¹³C NMR of compound (30)

Figure 32: ¹³C NMR of compound (3p)

Figure 34: ¹³C NMR of compound (3q)

Figure 36: ¹³C NMR of compound (3r)

Figure 38: ¹³C NMR of compound (3s)

Figure 40: ¹³C NMR of compound (3t)

Figure 42: ¹³C NMR of compound (3u)

Figure 44: ¹³C NMR of compound (3v)

Figure 46: ¹³C NMR of compound (3w)

(6) X-Ray Data for compound (3t)

ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound 3t determined at 293 K.

X-Ray Data Collection and Structure Refinement Details:

A good quality single crystal of size $0.22 \times 0.22 \times 0.07$ mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **3t** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24¹ software. Structure solution and refinement were performed by using SHELX-97². Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model. Crystal data are summarized in Table 2.

- 1. CrystalClear 2.1, Rigaku Corporation, Tokyo, Japan
- 2. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122.

Supplementary:

Compound	3t		
Empirical formula	C ₁₄ H ₉ Br CL N ₃		
Formula weight	334.60		
Crystal System	Orthorhombic		
Space group	$P 2_1 2_1 2_1$		
a (Å)	7.656(2)		
b (Å)	9.850(3)		
<i>c</i> (Å)	18.330(5)		
α (°)	90.00		
β (°)	90.00		
γ (°)	90.00		
$V(Å^3)$	1382.3(7)		
Ζ	4		
$D_c (g/cm^3)$	1.608		
F_{000}	664		
μ (mm ⁻¹)	3.155		
θ_{\max} (°)	25.38		
Total reflections	9574		
Unique reflections	2525		
Reflections $[I > 2\sigma(I)]$	1999		
Parameters	173		
$R_{ m int}$	0.0571		
Goodness-of-fit	0.987		
$R[F^2 > 2\sigma(F^2)]$	0.0367		
wR (F^2 , all data)	0.0768		
CCDC No.	1571573		

 Table 2. Crystal data and structure refinement details for 3t