Unraveling the Dual Character of Sulfur Atoms in a series of $\mathbf{H g}($ II) coordination polymers containing bis(4-pyridyl)disulfide

Alireza Azhdari Tehrani, Hosein Ghasempour, Ali Morsali, ${ }^{*}$ Antonio Bauzá, ${ }^{b}$ Antonio Frontera ${ }^{b}$ Pascal

Retailleau ${ }^{c}$

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, IllesBalears, Spain.
${ }^{\text {c}}$ Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France

Experimental Section

All starting materials, including 4,4'-Dithiodipyridine ligand, $\mathrm{Hg} \mathrm{X}_{2}$ salts were purchased from SigmaAldrich and used as received. FT-IR and ATR-FT-IR spectra were recorded using Thermo Nicolet IR 100 FT-IR. Melting points were measured on an Electrothermal 9100 apparatus. Ultrasonic generator was carried out on a TECNO-GAZ, S.p.A., Tecna 6, input: $50-60 \mathrm{~Hz} / 305$. The samples were also characterized by field emission scanning electron microscope (FE-SEM) SIGMA ZEISS and TESCAN MIRA with gold coating. The thermal behavior was measured with a PL-STA 1500 apparatus with the rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ in a static atmosphere of argon. X-ray powder diffraction (XRD) measurements were performed using a Philips X'pert diffractometer with mono chromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

Single-Crystal Diffraction

X-ray diffraction experiments were carried out at the MoKa wavelength at ambient temperature (except $\mathbf{3}$ at 173 K) using a Rigaku XtaLabPro diffractometer. A MicroMax-003 microfocus sealed tube generator coupled to a double-bounce confocal Max-Flux® multilayer optic was employed, and Bragg peak measurement was performed by an HPAD Pilatus 200 K detector. The three structures were solved by phasing intrinsic methods (SHELXT), ${ }^{1}$ and refined by full matrix least squares on F^{2} using SHELXL-2014/7.0. ${ }^{2}$ Anisotropic thermal parameters were used for all non-hydrogen atoms and aromatic H atoms, visible in residual maps, were refined with riding coordinates and with $U_{\text {eq }}$ values set at $1.2 U_{\text {eq }}$ (C atom). $\mathbf{2}$ turned out to be non-merohedral twinned as detected by the TwinRotMat macro in PLATON. ${ }^{3}$ The two domains were rotated by only 0.4° around the \boldsymbol{c} vector, giving fractional contributions of 0.82 and 0.18 , which significantly improved the final R-factors.

Figure S1. Stacked TG curves of compounds 1, 2 and 3.

Figure S2. FE-SEM images of single crystals of compounds $\mathbf{1}$ (a), $\mathbf{2}$ (b) and $\mathbf{3}$ (c) prepared using layering technique and compounds $\mathbf{1}$ (d), $\mathbf{2}$ (e) and $\mathbf{3}$ (f) prepared using ultransonic irradiation

(a)

1 ATR-IR
$\longrightarrow 2$ ATR-IR
$\longrightarrow 3$ ATR-IR
(b)

(c)

2 ATR-IR
2 FT-IR
(d)

(e)

Figure S3. FT-IR spectra (a) ATR-IR spectra (b) and comparison of FT-IR and ATR-IR spectra of compounds $\mathbf{1 - 3}$ prepared by ultrasonic irradiation. The FT-IR spectra of the compounds generated by the sonochemical method and of the layering technique are indistinguishable.

(a)

(b)

Figure S4. Simulated and experimental PXRD patterns of compounds $\mathbf{1}$ (a), $\mathbf{2}$ (b) and $\mathbf{3}$ (c) prepared by layering technique and ultrasonic irradiation

Figure S5. Predicted crystal morphologies of complexes $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c) and their packing along the [110] plane.

Table S1. Face lists generated according to the BFDH law using materials studio package. ${ }^{4}$

Compound 1					
hkl	multiplicity	dhkl	distance	Total facet area	\% total facet area
$\left\{\begin{array}{lll}1 & 1 & 0\end{array}\right\}$	4	7.80568861	12.81116952	$1.385686 \mathrm{e}+003$	37.27103829
$\left\{\begin{array}{llll}1 & 1 & -1\end{array}\right\}$	4	6.52375803	15.32858815	891.10355014	23.96816321
$\left\{\begin{array}{llll}2 & 0 & 0\end{array}\right\}$	2	6.43981829	15.52838846	388.43183201	10.44771682
$\left\{\begin{array}{llll}1 & 1 & 1\end{array}\right\}$	4	6.30838364	15.85192114	685.63380039	18.44160853
$\left\{\begin{array}{lll}0 & 0 & 2\end{array}\right\}$	2	5.62549487	17.77621387	367.00788011	9.87147315
\{ $\left.\begin{array}{lll}0 & 2 & 0\end{array}\right\}$	2	4.90660000	20.38071169		
\{ $111-2\}$	4	4.64337401	21.53606404		
$\left\{\begin{array}{llll}0 & 2 & 1\end{array}\right\}$	4	4.49752029	22.23447445		
$\left\{\begin{array}{llll}1 & 1 & 2\end{array}\right\}$	4	4.48815298	22.28088044		
\{ $200-2\}$	2	4.36648314	22.90172590		

Compound 2							
$\mathbf{h k l}$		multiplicity	dhkl	distance	Total facet area	$\begin{array}{c}\text { \% total facet } \\ \text { area }\end{array}$	
$\left\{\begin{array}{lll}\{ & 1 & 1\end{array}\right.$	0						

Figure S6. Portion of the structure of the coordination compounds $\mathbf{1}$ (a), 2 (b) and $\mathbf{3}$ (c) showing the coordination geometry around the $\operatorname{Hg}($ II). Symmetry codes: (a) i at $1-x, y, 1.5-z$; ii at $1-x, y, 1 / 2-z$ (b) i at $1-x$, $\mathrm{y}, 1.5-\mathrm{z}$; ii at $1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$ (c) i at $1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$; ii at $1-\mathrm{x}, \mathrm{y}, 1.5-\mathrm{z}$. ORTEP diagrams were drawn by 30% probability.

Figure S7. Relative contributions of various non-covalent contacts to the Hirshfeld surface area in compounds 1-3.

$$
\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}
$$

Figure S8. CSD searching query for analyzing $\mathrm{S} \cdots \mathrm{X}-\mathrm{M}$ interaction (search criteria: M: any metals; Any: any atoms; Angle 1-3 in the range of $50-180^{\circ}$ and $S \cdots X$ interaction distances of 3.2-3.6, 3.3-3.7 and 3.3-3.85 for Cl, Br and I, respectively). $\mathrm{S} \cdots \mathrm{Cl}-\mathrm{M}(1147$ hits), $\mathrm{S} \cdots \mathrm{Br}-\mathrm{M}(307$ hits) and $\mathrm{S} \cdots \mathrm{I}-\mathrm{M}(212$ hits) found. The CSD searches have been done using Cambridge Structural Database, version 5.37 (Last update may 2016); CCDC: Cambridge, U.K.

Figure S9. Histogram of the $\mathrm{S} \cdots \mathrm{X}-\mathrm{M}$ chalcogen bond distance, histogram of the $\mathrm{S} \cdots \mathrm{X}-\mathrm{M}$ chalcogen bond angle and scatter-plot of chalcogen bond distance versus the $\mathrm{S} \cdots \mathrm{X}-\mathrm{M}$ angle, where X is Cl (a), Br (b) and I (c), respectively. Reported data were obtained from CSD, version 2015.

(a)

(b)

Figure S10. Scatter-plot of the $S \cdots \mathrm{X}-\mathrm{M}$ chalcogen bond distance and angle 1, 2 and 3 (defined in Figure S5), where X is Cl (a), $\mathrm{Br}(\mathrm{b})$ and $\mathrm{I}(\mathrm{c})$, respectively. Reported data were obtained from CSD, version 2015.

Table S2. Selected intra and intermolecular hydrogen bond geometries for coordination compounds 1-3.

Compound	D-H...A	d(D-H)/ \AA	$\mathbf{d}(\mathbf{H} \mathbf{A)} / \AA$	d(D...A)/̇	<D-H...A/ ${ }^{\circ}$	Sym. Code
1	C5-H5...C11	0.930	2.9573(9)	3.588(3)	126.39(14)	1.5x, -1/2+y, 1.5-z
	C3-H3...S1	0.930	2.7117(7)	3.200 (3)	113.67(13)	x, y, z
2	C2-H2...Br1	0.930	3.2436(8)	3.870(7)	126.5(4)	$-1 / 2+\mathrm{x},-1 / 2+\mathrm{y}, \mathrm{z}$
	C5-H5...S1	0.930	2.6991(1)	3.190(7)	113.8(4)	x, y, z
3	C3-H3...I1	0.930	3.3934(3)	3.949(3)	119.09(19)	1-x, 1-y, 1-z
	C3-H3...S1	0.930	2.6587(8)	3.168(3)	114.11(18)	x, y, z

References

1 Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
2 Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
3 Spek, A. L. (2009). Acta Cryst. D65, 148-155.
4 Yao, W.; Yan, Y. L.; Xue, L.; Zhang, C.; Li, G. P.; Zheng, Q. D.; Zhao, Y. S. Jiang, H.; Yao, J. N. Angew.
Chem., Int. Ed., 2013, 52, 8713.

