Supporting Information

Synthetic control of coincidental formation of N-heterocyclic carbene-copper(I) complex and imidazolium cations within metalorganic frameworks

Hyun-Jung Lee,^{ab} Hyunchul Kwon,^b Jaeung Sim,^d Dalnim Song,^{ab} Yonghwi Kim,^a Jaheon Kim,^{*d} Kimoon Kim^{*abc} and Eunsung Lee^{*abc}

^{*a*} Center for Self–assembly and Complexity, Institute for Basic Science (IBS), 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.

^b Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.

^c Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.

^d Department of Chemistry, Soongsil University, 06978, Seoul, Republic of Korea.

*E-mail: eslee@postech.ac.kr

Table of Contents

Materials and methods	3
X-ray Crystallographic Analysis	4
Powder X-ray Diffraction Data	10
Thermogravimetric Analysis (TGA)	11
Gas adsorption/desorption isotherm	12
DFT calculations	12
Determination of GC yield.	13

Materials and methods

Copper chloride, copper perchlorate hexahydrate, methanol, ether, dimethyl sulfoxide, xylene, Nmethyl-2-pyrrolidone, 4-bromophenyl, (bis(pinacolate)diboron (B₂Pin₂), sodium tert-butoxide, acetone (HPLC grade) and dodecane (anhydrous) were purchased from commercial sources and used as received without further purification. Tetrahydrofuran was distilled over sodium benzophenone ketyl and stored in molecular sieves (4 Å) prior to use. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III (Ultrashield Plus 400 MHz magnet) spectrometer for ¹H. Electrospray ionization mass spectrometry (ESI-MS) spectra were measured by using a LTQ Orbitrap Velos[™] mass spectrometer (Thermo Scientific, USA). Elemental analysis (EA) for C, H, and N were conducted using Flash 2000 (Thermo Fisher Scientific Inc.). Thermogravimetric analysis (TGA) were measured in a nitrogen stream using a Scinco TGA N-1000 with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) were carried out using Rigaku SmartLab (Cu K α , $\lambda = 1.5418$ Å) at room temperature. The low pressure N₂ gas adsorption/desorption experiments were conducted on nanoPOROSITY-XQ (Mirae scientific instruments Inc.) at 77 K. The low pressure CO₂ adsorption/desorption gas experiments were performed using AUTOSORB-iQ-C (Quantachrome Corporation) and BELSORP-max (BEL Japan, Inc.) at 195 and 273 K. Single crystal X-ray diffraction (SC-XRD) data were collected on a Bruker D8 VENTURE diffractometer equipped with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) or synchrotron radiation of 2D-SMC at the Pohang Accelerator Laboratory (PAL, Korea) using an ADSC Quantum-210 detector furnished with a silicon (111) double crystal monochromator (DCM) at 100 K. A gas chromatography mass spectrometry (GC-MS) were measured using a 5977A series GC system and analyzed using the Agilent GC/MSD ChemStation Software package (Agilent Technologies).

X-ray Crystallographic Analysis

Empirical formula	$C_{30.50} H_{32.50} Cl Cu N_4 O_{10}$		
Formula weight	714.09		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 9.2442(4) Å	$\alpha = 90^{\circ}$	
	b = 26.9115(13) Å	$\beta = 90.408(2)^{\circ}$	
	c = 13.1670(7) Å	$\gamma = 90^{\circ}$	
Volume	3275.5(3) Å ³		
Z	4		
Density (calculated)	1.448 Mg/m^3		
Absorption coefficient	0.810 mm ⁻¹		
F(000)	1478		
Crystal size	0.200 x 0.100 x 0.050 mm ³		
Theta range for data collection	2.330 to 25.252°.		
Index ranges	-9<=h<=11, -32<=k<=32, -15<=l<=15		
Reflections collected	15166		
Independent reflections	5856 [$R(int) = 0.0725$]		
Completeness to theta = 25.242°	98.70%		
Absorption correction	Empirical		
Max. and min. transmission	0.9866 and 0.9734		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5856 / 93 / 489		
Goodness-of-fit on F ²	1.026		
Final R indices [I>2sigma(I)]	$R_1 = 0.0628, wR_2 = 0.1370$		
R indices (all data)	$R_1 = 0.1057, wR_2 = 0.1583$		
Extinction coefficient	n/a		
Largest diff. peak and hole	$0.728 \text{ and } -0.719 \text{ e.Å}^{-3}$		

 Table S1. Crystal data and structure refinement for Im-MOF-1.

Empirical formula	C ₂₀ H ₂₀ Cl Cu N ₃ O ₁₀			
Formula weight	561.38			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 6.6863(11) Å	$\alpha = 90^{\circ}$		
	b = 33.340(4) Å	$\beta = 107.156(5)^{\circ}$		
	c = 11.3250(19) Å	$\gamma = 90^{\circ}$		
Volume	2412.3(6) Å ³			
Z	4			
Density (calculated)	1.075 Mg/m^3	1.075 Mg/m^3		
Absorption coefficient	0.810 mm^{-1}			
F(000)	1148			
Crystal size	$0.100 \ge 0.050 \ge 0.020 \text{ mm}^3$			
Theta range for data collection	1.221 to 25.252°.			
Index ranges	-8<=h<=8, -28<=k<=40, -1	-8<=h<=8, -28<=k<=40, -11<=l<=13		
Reflections collected	19083			
Independent reflections	4362 [R(int) = 0.1145]			
Completeness to theta = 25.242°	100%			
Absorption correction	Empirical	Empirical		
Max. and min. transmission	0.979 and 0.900	0.979 and 0.900		
Refinement method	Full-matrix least-squares of	Full-matrix least-squares on F^2		
Data / restraints / parameters	4362 / 11 / 326			
Goodness-of-fit on F ²	1.009			
Final R indices [I>2sigma(I)]	$R_1 = 0.0632, wR_2 = 0.1388$	$R_1 = 0.0632, wR_2 = 0.1388$		
R indices (all data)	$R_1 = 0.1387, wR_2 = 0.1696$	$R_1 = 0.1387, wR_2 = 0.1696$		
Extinction coefficient	0.0050(7)	0.0050(7)		
Largest diff. peak and hole	$0.846 \text{ and } -0.538 \text{ e.Å}^{-3}$			

 Table S2. Crystal data and structure refinement for Im-MOF-2.

Empirical formula	C ₃₂ H ₃₉ Cl Cu ₂ N ₅ O ₈			
Formula weight	784.21			
Temperature	100(2) K			
Wavelength	0.62998 Å			
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions	a = 9.1080(18) Å	$\alpha = 90^{\circ}$		
	b = 25.909(5) Å	$\beta = 96.69(3)^{\circ}$		
	c = 14.588(3) Å	$\gamma = 90^{\circ}$		
Volume	$3419.0(12) \text{ Å}^3$			
Ζ	4			
Density (calculated)	1.523 Mg/m^3			
Absorption coefficient	0.992 mm^{-1}			
F(000)	1620	1620		
Crystal size	$0.050 \ge 0.050 \ge 0.010 \text{ mm}^3$			
Theta range for data collection	2.333 to 20.510°			
Index ranges	-9<=h<=9, -28<=k<=28, -16<=l<=15			
Reflections collected	14913	14913		
Independent reflections	$4513 [R(_{int}) = 0.0575]$			
Completeness to theta = 25.242°	91.7 %			
Absorption correction	Empirical			
Max. and min. transmission	0.9869 and 0.9367	0.9869 and 0.9367		
Refinement method	Full-matrix least-squares o	Full-matrix least-squares on F^2		
Data / restraints / parameters	4513 / 25 / 439			
Goodness-of-fit on F ²	0.969			
Final R indices [I>2sigma(I)]	$R_1 = 0.0645, wR_2 = 0.1752$			
R indices (all data)	$R_1 = 0.0809, wR_2 = 0.1878$	$R_1 = 0.0809, wR_2 = 0.1878$		
Extinction coefficient	n/a			
Largest diff. peak and hole	2.193 and -0.839 e.Å ⁻³			

 Table S3. Crystal data and structure refinement for Im-MOF-3.

Figure S1. (a) Asymmetric unit of **Im-MOF-1**. (b) Cu(II) paddle-wheel cluster and coordination environment. Perspective views from the top (c) and side (d) of **Im-MOF-1**. Hydrogen atoms, anion and solvent molecules have been omitted for clarity.

Figure S2. Crystal structure of **Im-MOF-2** (not activated) viewed along a- (a) and c-axis (b). Hydrogen atoms, perchlorate anion (ClO_4^-) and DMF solvents have been omitted for clarity. (c) Infinite SBUs representing interactions between bridging water molecules and monodentate carboxylates.

Figure S3. Asymmetric unit of **Im-MOF-3** with the thermal ellipsoid probability drawn at 50%. Selected experimental X-ray analysis [DFT calculated at the B3PW91/6-31G(d,p) for the optimized structure B] bond lengths [Å] and angles [°]. C4–N1 1.4409(3) [1.426], C11–N2 1.4285(2) [1.426], C1–N1 1.3599(2) [1.365], C1–N2 1.3627(3) [1.365], Cu(2)–C(1) 1.8855(3) [1.881], Cu(2)–Cl(1) 2.1064(4) [2.111] N1–C1–N2 103.057(2) [103.661], C1–N2–C11–C16 40.939(3) [45.354].

Figure S4. Crystal structure of **Im-MOF-3**. (a) Distorted square segment. (b) Cu(II) paddle-wheel cluster and coordination environment. Perspective views from the top (c) and side (d). Hydrogen atoms, anion and solvent molecules have been omitted for clarity.

Figure S5. Perspective views of Im-MOF-3 (a) and Im-MOF-1 (b)

Figure S6. PXRD patterns of Im-MOF-1 (a), Im-MOF-2 (b) and Im-MOF-3 (c)

Figure S7. (a) The N_2 gas adsorption isotherm measured at 77 K (b) The CO₂ gas adsorption isotherm measured at 273 K and (c) at 195 K of **Im-MOF-1**.

Figure S8. (a) The N_2 gas adsorption isotherm measured at 77 K (b) The CO₂ gas adsorption isotherm measured at 273 K and (c) at 195 K of **Im-MOF-2**.

Figure S9 (a) The N_2 gas adsorption isotherm measured at 77 K (b) The CO_2 gas adsorption isotherm measured at 273 K and (c) at 195 K of **Im-MOF-3**.

DFT calculations

Model complexes: Due to the complexity of MOFs, two simplified structures were computed for analyzing the electronic structures of **Im-MOF-3**, mainly focusing on the NHC copper(I) chloride complex. One model (A) was designed to bear a methyl group on the carboxylate function and the other (B) was extended further to the structure having a copper(II) paddle-wheel structure without axial ligands at both carboxylate terminals.

Scheme S1. Model complexes of Im-MOF-3 for DFT calculation.

Figure S10. DFT calculation of frontier molecular orbitals (HOMO) of **Im-MOF-3** after optimization at the B3PW91/6-31G(d,p).

CI CI			
$\mathbf{R} \xrightarrow{C9} \underbrace{\mathbf{Cu}}_{Cu2} \underbrace{\mathbf{Cu}}$			
Method		MOF or -R	
X-ray crystal structur	e	Im-MOF-3	
B3PW91/BSI Model A		.≹–∕ OMe	
B3PW91/BSI Model B		Me Cu O	∠Me ─Me
Bond distances	X-ray	Model A	Model B
Cu(2)—Cl(1)	2.1064(4)	2.111	2.111
Cu(2)—C(1)	1.8855(3)	1.881	1.881
C(4)—N(1)	1.4409(3)	1.426	1.426
C(11)—N(2)	1.4285(2)	1.426	1.426
C(1)—N(1)	1.3599(2)	1.365	1.365
C(1)—N(2)	1.3627(3)	1.365	1.365
Bond angles	X-ray	Model A	Model B
C(9)—C(4)—N(1)	120.654(2)	120.107	120.158
N(1)—C(1)—N(2)	103.057(2)	103.688	103.661
Cl(1)—Cu(2)—C(1)	176.437(2)	177.672	178.352
Dihedral angles	X-ray	Model A	Model B
C(1)—N(2)—C(11) —C(40.939(3) 45.090	45.354

Table S4. Selected geometry parameters by X-ray structure and DFT calculation.

Determination of GC yield

Calibration curve

GC-MS yield were calculated as follows. 1, 1, 2 and 3 μ l of 4-biphenylboronic acid pinacol ester as product (C_p) and 1, 2, 1 and 1 μ l of dodecane as internal standard (C_s) were added to 1 ml of acetone, respectively. Peak area of 4-biphenylboronic acid pinacol ester (A_P) and dodecane (A_S) were measured by conducting GC-MS analysis. Based on calibration data, a calibration curve was made by plotting the ratio of peak area versus standard concentration of the dodecane and 4-biphenylboronic acid pinacol ester.

С _р (µl/ml) ^[a]	C _s (µl/ml)	C _S /C _P (a.u.)	A _P (a.u.)	A _S (a.u.)	A_S/A_P (a.u.)
1	1	1.00	172464383	43598537	0.252797338
1	2	2.00	72377365	37284511	0.515140486
2	1	0.50	169436226	20385810	0.120315534
3	1	0.33	219261340	19648950	0.089614293

[a] Acetone was used as GC solvent

Figure S11. Calibration curve for determining GC yield.

Yield determination of borylation reactions

The reaction yield was calculated as shown below.

$$Yield = \frac{0.2584 \times x}{y + 0.0031} \times 100\% \cdots (1)$$
$$x = \frac{moles \ of \ internal \ standard}{moles \ of \ product}$$
$$y = \frac{Peak \ area \ of \ internal \ standard}{Peak \ area \ of \ product}$$

Abundance

Time→

Table S5. Peak area of dodecane as an internal standard and 4-biphenylboronic acid pinacol ester as a product.

Reagent	Yield (%)	Area (Internal standard)	Area (Product)
Im-MOF-3	33.8	43543201	176953998
Im-MOF-1	1.3	57731073	8675993
CuCl	0.0	19775142	0