Supplementary Information

Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide

Youshi Lan,^a Minman Tong,^{b*} Qingyuan Yang^{*a} and Chongli Zhong^a

^aBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^bSchool of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China.

*Corresponding authors. E-mail: <u>qyyang@mail.buct.edu.cn</u>; <u>tongmm@jsnu.edu.cn</u>

Contents

- 1. Structural properties of the 187 COFs in the database
- 2. Force field parameters and models
- 3. I₂ adsorption properties of top 10 existing COFs and the designed material
- 4. Properties of 12 MOFs with **pts** topology for I₂ adsorption
- 5. Properties of top 10 existing COFs and other adsorbents for CH₃I adsorption

1. Structural properties of the 187 COFs in the database

Material	PLD (Å)	LCD (Å)	S_{acc} (m ² /g)	V_{free} (cm ³ /g)	φ
1. 2D-NiPc-BTDA-COF ¹	12.0	12.3	1250	0.68	0.62
2. 3D-Py-COF ²	21.6	24.4	7229	6.62	0.93
3. 3D-Py-COF-2P ²	12.3	13.5	7310	3.05	0.85
4. 4PE-1P ³	23.9	24.3	2344	1.40	0.73
5. 4PE-2P ³	32.0	32.3	2458	1.76	0.77
6. 4PE-3P ³	38.9	39.2	2802	2.28	0.81
7. $4PE-TT^3$	27.2	27.6	2234	1.42	0.75
8. AB-COF ⁴	11.1	11.6	1948	0.96	0.65
9. ACOF-1 ⁵	11.1	11.6	1948	0.96	0.65
10. AEM-COF-16	29.1	29.3	1902	1.59	0.76
11. AEM-COF-2 ⁶	32.1	32.3	1316	1.22	0.72
12. ATFG-COF ⁴	9.9	10.4	1517	0.70	0.62
13. AzO-COF ⁷	34.3	34.5	2113	2.01	0.81
14. BDT-COF ⁸	29.8	30.0	1797	1.54	0.77
15. BF-COF-19	8.6	13.3	5097	1.96	0.79
16. BF-COF-2 ⁹	7.6	13.1	4300	1.66	0.78
17. BLP-2H-AA ¹⁰	9.0	9.5	1115	0.56	0.50
18. BLP-2H-AB ¹⁰	2.9	4.0	396	0.57	0.51
19. CC-TAPH-COF ¹¹	7.2	9.3	4355	1.53	0.75
20. COF-1 ¹²	3.1	4.2	0	0.56	0.51
21. COF-10 ¹³	31.3	31.5	1949	1.74	0.78
22. COF-102 ¹⁴	8.0	9.0	5129	1.86	0.78
23. COF-103 ¹⁴	8.5	9.7	5315	2.05	0.80
24. COF-105 ¹⁴	16.1	18.8	6645	5.17	0.91
25. COF-108 ¹⁴	19.1	27.5	6387	5.37	0.92

Table S1. Structural properties of the 187 experimental COFs examined in this work

26. COF-11Å ¹⁵	7.7	8.4	515	0.61	0.54
27. COF-14Å ¹⁵	9.8	10.5	1355	0.75	0.59
28. COF-16Å ¹⁵	12.2	12.7	1936	0.86	0.64
29. COF-18Å ¹⁵	14.3	14.7	1705	0.89	0.66
30. COF-202 ¹⁶	5.4	9.9	4240	1.39	0.72
31. COF-300 ¹⁷	9.3	9.4	3301	1.33	0.73
32. COF-320 ¹⁸	8.3	8.5	1814	0.89	0.63
33. COF-366 ¹⁹	18.7	20.5	4107	2.24	0.81
34. COF-42-bnn ²⁰	16.8	17.2	2686	1.30	0.73
35. COF-42-gra ²⁰	5.1	6.0	2346	1.00	0.66
36. COF-43-bnn ²⁰	32.3	32.5	2630	2.36	0.82
37. COF-43-gra ²⁰	13.4	13.6	3769	1.77	0.78
38. COF-5 ¹²	23.4	23.7	1707	1.24	0.72
39. COF-505 ²¹	2.0	3.7	0	0.22	0.32
40. COF-6 ¹³	8.6	9.1	1128	0.53	0.53
41. COF-66 ¹⁹	21.9	22.2	1742	1.24	0.73
42. COF-8 ¹³	16.2	16.5	1601	0.93	0.65
43. COF-AA-H ²²	25.3	25.7	2314	1.45	0.74
44. $\text{COF}_{\text{BTA-PDA}}^{23}$	16.8	17.1	2403	1.36	0.71
45. CTF-NDC ²⁴	3.3	4.3	0	0.26	0.35
46. COF-JLU2 ²⁵	9.9	10.4	1368	0.67	0.60
47. COF-JLU3 ²⁶	11.3	12.1	4393	1.70	0.75
48. COF-LZU1 ²⁷	15.6	16.0	2172	1.24	0.71
49. COF-LZU8 ²⁸	13.0	13.5	805	0.82	0.62
50. COF-SDU1 ²⁹	43.1	43.3	2409	2.60	0.84
51. COF-TpAzo ³⁰	25.8	26.1	2081	1.56	0.78
52. CoPc-PorDBA ³¹	24.7	25.5	4128	2.76	0.85
53. CPF-1 ³²	23.1	24.0	5087	2.96	0.86
54. CPF-2 ³²	21.6	22.5	5177	2.82	0.86

55. CS-COF ³³	20.2	20.4	1620	1.01	0.66
56. CTC-COF ³⁴	18.7	18.8	1513	0.91	0.65
57. CTF-0 ³⁵	1.3	2.6	0	0.15	0.25
58. CTF-1 ³⁶	8.4	8.9	1004	0.50	0.51
59. CTF-2-AA ³⁷	10.6	11.0	1251	0.61	0.55
60. CTF-2-AB ³⁷	3.3	4.9	443	0.61	0.55
61. CTF_FUM ²⁴	6.0	6.7	1045	0.50	0.52
62. CuP-Ph COF ³⁸	19.0	20.1	4025	2.32	0.83
63. CuP-SQ-COF ³⁹	11.3	12.9	3240	1.46	0.76
64. CuP-TFPh COF ⁴⁰	17.9	19.0	4439	2.07	0.83
65. DA-COF ⁴¹	19.1	19.4	1646	1.08	0.71
66. DAAQ-TFP-COF ⁴²	22.0	22.2	1761	1.18	0.73
67. DBA-COF 1 ⁴³	29.2	29.4	1965	1.59	0.76
68. DBA-COF 2 ⁴³	34.2	34.4	2127	2.00	0.80
69. BDT-OEt-COF ⁸	23.2	23.5	1851	1.18	0.72
70. 2,3-DhaTab ⁴⁴	29.1	29.3	2098	1.81	0.78
71. 2,5-DhaTab ⁴⁴	29.5	29.6	2212	1.87	0.78
72. DhaTab ⁴⁵	32.1	32.3	2130	1.99	0.79
73. 2,3-DhaTph ⁴⁶	18.2	19.2	4381	2.34	0.82
74. 2,5-DhaTph ⁴⁴	17.4	18.5	4382	2.34	0.82
75. 2,3-DhaTta ⁴⁷	29.2	29.2	2093	1.82	0.79
76. 2,3-DmaTph ⁴⁶	16.4	17.6	4206	2.14	0.81
77. D _{TP} -A _{NDI} -COF ⁴⁸	43.8	43.9	1842	2.19	0.82
78. EB-COF:Br ⁴⁹	10.0	10.6	1336	0.62	0.58
79. H ₂ P-COF ⁵⁰	19.2	20.3	4417	2.54	0.83
80. HAT-COF ⁵¹	9.1	9.9	1734	0.84	0.63
81. TTF-Py-COF ⁵²	14.3	14.5	2054	1.10	0.69
82. HBC-COF ⁵³	10.6	10.8	1520	0.74	0.59
83. HCC-H ₂ P-COF ⁵⁴	14.4	15.7	4134	2.07	0.80

84. HO-H ₂ P-COF ⁵⁵	17.5	18.5	4399	2.36	0.83
85. HO ₂ C-H ₂ P-COF ⁵⁵	9.4	10.9	4927	1.90	0.79
86. HP-COF-1 ⁵⁶	14.4	14.8	2003	1.06	0.67
87. HP-COF-2 ⁵⁶	16.8	17.2	2429	1.35	0.72
88. HPB-COF ⁵³	5.8	7.6	2479	0.96	0.65
89. ICOF-1 ⁵⁷	15.0	15.2	2146	1.20	0.70
90. ICOF-2 ⁵⁷	16.6	17.2	2383	1.32	0.72
91. ILCOF-1-AA ⁵⁸	20.8	21.2	3865	2.57	0.83
92. ILCOF-1-AB ⁵⁸	9.4	11.1	6714	2.42	0.82
93. iPrTAPB-TFP ⁵⁹	6.5	7.5	712	0.49	0.48
94. iPrTAPB-TFPB ⁵⁹	15.4	15.9	1738	1.07	0.66
95. MPCOF ⁶⁰	9.8	10.3	1394	0.66	0.61
96. NPN-1 ⁶¹	4.1	5.3	958	0.49	0.51
97. NPN-2 ⁶¹	4.2	5.3	1125	0.56	0.54
98. NPN-3 ⁶¹	5.4	6.1	941	0.47	0.50
99. NN-TAPH-COF ¹¹	7.2	9.3	4435	1.53	0.75
100. NTU-COF-1 ⁶²	18.4	18.7	1916	1.20	0.70
101. NTU-COF-2 ⁶²	24.6	24.8	2117	1.70	0.77
102. NUS-2 ⁶³	9.9	10.4	1368	0.67	0.60
103. NUS-3 ⁶³	16.7	17.0	2036	0.99	0.68
104. EB-COF:Cl ⁴⁹	10.0	10.6	1490	0.69	0.59
105. OH-TAPH-COF ¹¹	17.5	18.5	4369	2.44	0.83
106. TpPa-Py ⁶⁴	16.0	16.3	1649	0.95	0.66
107. PC-COF ⁶⁵	41.1	41.1	3056	3.01	0.85
108. Pc-PBBA-COF ⁶⁶	16.5	16.8	1391	0.81	0.64
109. PCTF-1 ⁶⁷	13.4	13.7	1872	1.07	0.68
110. PCTF-2 ⁶⁷	21.4	21.5	2279	1.57	0.75
111. PCTF-3 ⁶⁷	27.7	27.8	2364	1.95	0.79
112. PCTF-4 ⁶⁷	17.5	17.9	1942	1.24	0.72

113.	Ph-An-COF ⁶⁸	22.1	22.3	1701	1.16	0.71
114.	Ph-AnCD-COF ⁶⁸	21.0	23.7	5283	2.76	0.85
115.	PI-2-COF ⁶⁹	23.4	23.7	2286	1.57	0.75
116.	PI-3-COF ⁶⁹	30.4	30.6	2280	2.03	0.80
117.	PI-COF-4 ⁶⁹	13.4	17.5	5113	3.19	0.88
118.	PI-COF-4-2P ⁷⁰	7.6	8.2	5020	1.36	0.75
119.	PI-COF-5 ⁷⁰	22.4	26.6	6479	7.30	0.94
120.	PI-COF-5-2P ⁷⁰	10.5	13.4	6543	3.42	0.88
121.	Por-COF ⁷¹	18.6	20.4	4010	2.24	0.81
122.	POR-COF ⁷²	12.6	14.1	3548	1.54	0.77
123.	PPy-COF ⁷³	13.3	13.7	1332	0.65	0.57
124.	Py-2,2'-BPyPh-	23.2	23.5	2251		
CO	DF ⁷⁴				1.64	0.77
125.	Py-2,3-BPyPh-	22.7	22.9	2243		
CO	DF ⁷⁴				1.62	0.76
126.	Py-2,3-DHPh-	21.0	21.5	4568		
CO	DF ⁷⁴				2.70	0.85
127.	EB-COF:F ⁴⁹	10.0	10.6	1594	0.73	0.60
128.	Py-An-COF ⁷⁵	19.2	19.5	2344	1.47	0.74
129.	Py-Azine-COF ⁷⁶	12.5	13.0	2031	1.11	0.69
130.	EB-COF:I ⁴⁹	9.6	10.3	1530	0.60	0.53
131.	Py-COF ⁷⁷	21.6	24.4	7229	6.62	0.93
132.	NUS-9 ⁷⁸	12.0	13.0	2392	1.23	0.74
133.	Py-DHPh-COF ⁷⁴	19.9	20.2	4796	2.70	0.85
134.	NUS-10 ⁷⁸	12.0	13.0	1959	0.95	0.70
135.	Star-COF-1 ⁷⁹	30.4	30.6	1371	1.22	0.71
136.	Star-COF-2 ⁷⁹	37.3	37.4	1496	1.51	0.75
137.	Star-COF-3 ⁷⁹	40.0	40.2	1602	1.72	0.77
138.	T-COF 1 ⁸⁰	7.6	8.2	1045	0.48	0.51

139.	T-COF 2 ⁸⁰	14.6	14.9	1507	0.82	0.63
140.	T-COF 3 ⁸⁰	12.4	12.7	1272	0.63	0.58
141.	TAPB-PDA COF ⁸¹	32.1	32.3	2410	2.21	0.80
142.	TAPB-TFP ⁵⁹	11.6	12.0	1496	0.80	0.62
143.	TAPB-TFPB ⁵⁹	19.0	19.3	1973	1.32	0.71
144.	TBPB-COF ⁸²	16.4	16.7	1677	0.98	0.64
145.	TD-COF-5 ⁸³	27.9	28.4	4465	3.42	0.87
146.	DAB-TFP-COF ⁴²	22.0	22.3	1739	1.20	0.73
147.	TfpBDH ⁸⁴	36.2	36.3	2102	2.08	0.81
148.	TFPT-COF ⁸⁵	34.2	34.4	2131	2.02	0.80
149.	TH-COF-1 ⁸⁶	11.7	12.1	1561	0.65	0.60
150.	Tp-Azo ⁸⁷	25.5	25.7	1829	1.36	0.75
151.	TP-COF ⁸⁸	28.5	28.7	1758	1.42	0.75
152.	Tp-Por-COF-AA ⁸⁹	41.1	41.2	1907	2.10	0.81
153.	Tp-Por-COF-AB ⁸⁹	19.9	20.1	2880	1.73	0.78
154.	Tp-Stb ⁸⁷	22.3	22.5	1987	1.33	0.73
155.	TpBD-2NO ₂ ⁹⁰	21.5	21.7	1638	1.13	0.71
156.	TPBD-ME ₂ ⁹⁰	21.6	21.6	1523	1.03	0.68
157.	TpBD-N _{H2} ⁹¹	22.1	22.2	1705	1.20	0.72
158.	TpBD-	17.7	18.1	1335		
NI	HCOCH ₃ ⁹¹				0.85	0.64
159.	TpBD-NO ₂ ⁹⁰	21.2	21.4	1517	0.98	0.69
160.	TpBD-(OMe) ₂ ⁹⁰	19.9	20.3	2149	1.34	0.73
161.	TpBD ⁹²	22.6	22.9	1717	1.20	0.71
162.	TpBDH ⁹³	21.9	22.2	1504	1.04	0.71
163.	TpPa-1-F ₂ ⁹⁰	15.3	15.6	1359	0.77	0.64
164.	TpPa-194	15.8	16.1	1643	0.93	0.66
165.	TpPa-2 ⁹⁴	13.4	13.8	1586	0.78	0.61
166.	TpPa-F ₄ ⁹⁰	14.6	14.9	1084	0.59	0.60

167.	TpPA-NO ₂ ⁹⁰	11.1	11.4	1281	0.61	0.58
168.	TpPa-SO ₃ H-Py ⁹⁵	16.0	16.3	1523	0.83	0.64
169.	TpPa-SO ₃ H ⁹⁰	12.2	12.5	1289	0.63	0.59
170.	TPT-COF-1 ⁹⁶	21.6	21.9	2122	1.38	0.74
171.	TPT-COF-2 ⁹⁶	33.8	33.9	2468	2.18	0.81
172.	TpTG-Br ⁹⁷	2.6	3.2	0	0.20	0.35
173.	TpTG-Cl ⁹⁷	2.8	3.4	0	0.23	0.36
174.	TpTG-I ⁹⁷	2.4	3.0	0	0.17	0.34
175.	TRIPTA ⁹⁸	11.9	12.4	1503	0.79	0.62
176.	TT-COF ⁹⁹	26.1	26.3	1610	1.30	0.74
177.	TTF-COF ¹⁰⁰	18.1	18.6	3391	1.92	0.79
178.	TThPP ¹⁰¹	16.7	17.8	3780	2.08	0.81
179.	ZnP-COF ⁵⁰	17.9	19.0	4000	2.27	0.82
180.	ZnPc-COF ¹⁰²	16.6	17.0	1409	0.85	0.66
181.	ZnPc-DPB ¹⁰²	26.6	26.8	1798	1.39	0.76
182.	ZnPc-NDI ¹⁰²	27.0	27.2	1428	1.20	0.73
183.	ZnPc-PPE ¹⁰²	32.1	32.2	2060	1.84	0.79
184.	ZnPc-Py ¹⁰²	18.3	18.5	1312	0.85	0.66
185.	N3-COF ¹⁰³	18.2	18.5	1885	1.23	0.71
186.	TTI-COF ¹⁰⁴	18.2	18.5	1959	1.26	0.71
187.	NUS-14 ¹⁰⁵	40.7	40.8	2537	2.71	0.84

PLD and LCD represent the pore limiting diameter and largest cavity diameter, respectively. Accessible surface area (S_{acc}) of each material was calculated by a probe molecule with a size equal to the kinetic diameter of N₂ (3.68 Å), while a probe size of 0.0 Å was applied to calculate the free volume (V_{free}) which is the absolute amount of volume not occupied by the framework atoms. The void fraction (φ) was determined from the ratio of free volume to the total volume of the cell.

2. Force field parameters and models

Atomic type	σ (Å)	$\mathcal{E}/k_B(\mathbf{K})$	<i>q</i> (e)
Iodine			
I ₂ -united	4.98	550.0	0.0
Methyl iodide			
CH ₃ I_H	2.20	10.01	0.052
CH ₃ I_C	3.40	51.22	-0.020
CH ₃ I_I	4.12	324.06	-0.137

Table S2. Potential parameters iodine¹⁰⁶ and methyl iodide¹⁰⁷ used in this work

Table S3. Potential parameters for the framework atoms of COFs¹⁰⁸

Atomic type	σ (Å)	$\mathcal{E}/k_B(\mathbf{K})$
Н	2.57	22.14
В	3.64	90.58
С	3.43	52.84
Ν	3.26	34.72
0	3.12	30.20
F	3.00	25.16
Si	3.83	202.31
Р	3.70	153.50
S	3.60	137.89
Cl	3.52	114.24
Br	3.73	126.32
Ι	4.01	170.60
Zn	2.46	62.40
Cu	3.11	2.52
Ni	2.52	7.55

Matarial	I ₂ uptake (g/g)				
Wateriai	UFF	DREIDING ¹⁰⁹			
COF-108	13.59	13.81			
COF-105	12.67	13.04			
Ph-AnCD-COF	6.85	7.12			
H ₂ P-COF	5.43	5.73			
COF-103	4.98	5.27			
COF-10	3.99	4.10			
POR-COF	3.32	3.46			
COF-202	2.83	2.92			
COF-LZU1	2.10	2.20			
COF-6	1.11	1.12			

Table S4. Comparison of the I2 uptakes calculated using UFF and DREIDING force fields

To justify the use of UFF force field for the COFs, we arbitrarily selected 10 different COFs and performed GCMC simulations to examine their I_2 uptakes at 423 K and 1 bar using the DREIDING force field¹⁰⁹, which is another popular force field that have been widely adopted in the studies of MOFs and COFs. As can been seen from the results shown in Table S4, the I_2 uptakes of these COFs are respectively very similar to those obtained using the UFF force field. Considering that the UFF one has been validated for I_2 adsorption in MOFs, it was also adopted in current study and the potential parameters are given in Table S3.

3. I₂ adsorption properties of the top 10 existing COFs and the designed material

		Topology/	I ₂ uptake	LCD	S _{acc}	
Material	Dimension	pore shape	(g/g)	(Å)	(m^{2}/g)	arphi
3D-Py-COF	3D	pts	16.7	24.4	7229	0.93
COF-108	3D	bor	13.8	27.5	6386	0.92
COF-105	3D	ctn	13.0	18.8	6644	0.91
PI-COF-5-2P	3D	dia	8.7	13.4	6542	0.88
TD-COF-5	2D	hexagonal	8.7	28.4	4464	0.87
3D-Py-COF-2P	3D	pts	8.1	13.5	7309	0.85
PI-COF-4	3D	dia	7.8	17.5	5113	0.88
Ph-AnCD-COF	2D	hexagonal	7.1	23.7	5283	0.85
CPF-1	2D	square	6.9	24.0	5086	0.86
CoPc-PorDBA	2D	square	6.5	25.5	4128	0.85

Table S5. Structural features and the uptakes of the top 10 COFs identified for I_2 adsorption

	3D-Py-COF-TANM								
	Cubic, P42/MMC								
			a=b=28.198	8 c=39.256					
Atom	X	Y	Z	Atom	X	Y	Z		
H1	0.2132	0.5000	0.1035	C20	0.5000	0.3551	0.2936		
H2	0.0468	0.5000	0.1492	C21	0.5000	0.3617	0.2574		
Н3	0.1132	0.5000	0.1890	C22	0.5000	0.3942	0.3156		
C4	0.0463	0.5000	0.0757	C23	0.5000	0.4091	0.2451		
Н5	0.1483	0.5000	0.0634	C24	0.5000	0.4400	0.3021		
C6	0.9566	0.5000	0.0386	C25	0.5000	0.4502	0.2667		
C7	0.9167	0.5000	0.0176	C26	0.5000	0.2756	0.2496		
C8	0.9127	0.5000	0.0997	H27	0.5000	0.3885	0.3444		
С9	0.8246	0.5000	0.1138	H28	0.5000	0.4720	0.3198		
C10	0.8317	0.5000	0.1491	H29	0.5000	0.4161	0.2165		
C11	0.7904	0.5000	0.1690	C30	0.5000	0.6782	0.2349		
N12	0.7776	0.5000	0.2025	H31	0.5000	0.3041	0.3365		
C13	0.1368	0.5000	0.0912	H32	0.5000	0.2438	0.2317		
C14	0.1212	0.5000	0.1605	Н33	0.5000	0.6725	0.2061		
H15	0.8797	0.5000	0.0293	C34	0.0000	0.5000	0.0190		
C16	0.0833	0.5000	0.1367	C35	0.0000	0.5000	0.0901		
H17	0.7541	0.5000	0.1562	H36	0.0000	0.5000	0.1190		
C18	0.5000	0.2683	0.2857	C37	0.5000	0.5000	0.2500		
C19	0.5000	0.3090	0.3077						

Table S6. Fractional atomic coordinates for the designed 3D-Py-COF-TANM in this work

4. Properties of 12 MOFs with pts topology for I_2 adsorption

Material ^a	LCD (Å)	Sacc	(0	I2 uptake
		(m²/g)	Ψ	(g/g)
FEBXIV	15.9	5216	0.88	7.1
FEBXOB	13.0	5353	0.84	5.8
FEBXER	12.5	5124	0.85	5.8
EFAYEQ	10.5	4647	0.78	3.8
EFAYIU	10.4	4679	0.78	3.8
SUKYON	10.8	4826	0.76	3.1
ENITAX	10.1	4033	0.78	3.0
PUWDAM	9.4	3743	0.75	2.9
SUKYIH	9.6	3743	0.75	2.8
DAKVOC	10.8	2349	0.72	2.4
DAKVUI	10.8	2213	0.71	2.3
IVETOT	9.2	2298	0.65	2.1

Table S7. Structural features and I_2 uptakes (423 K and 1 bar) of 12 MOFs with **pts** topology

^a Names of MOFs were denoted using the refcodes in the Cambridge Structural Database (CSD).

Fig. S1. Performance of the 187 COFs for I_2 adsorption at 298 K and 1 bar. The horizontal dashed line represents the I_2 uptake of the best MOF (NU-110) reported so far.

5. Properties of top 10 existing COFs and other adsorbents for CH₃I adsorption

Material	Dimension	Topology	CH ₃ I uptake	LCD	S _{acc}		
			(g/g)	(Å)	(m ² /g)	φ	
COF-103	3D	ctn	2.8	9.7	5315	0.80	
COF-102	3D	ctn	2.6	9.0	5129	0.78	
BF-COF-1	3D	ctn	2.1	8.2	5175	0.78	
BF-COF-2	3D	ctn	1.8	8.0	4485	0.76	
COF-202	3D	ctn	1.7	9.9	4240	0.72	
PI-COF-4-2P	3D	dia	1.6	8.2	5020	0.75	
COF-300	3D	dia	1.4	9.4	3301	0.73	
POR-COF	2D	square	1.2	14.1	3548	0.77	
RT-COF-1	2D	hexagonal	1.1	12.3	1724	0.61	
TTF-Py-COF	2D	square	1.1	14.5	2054	0.69	

Table S8. Structural features and the CH₃I uptakes of the top 10 COFs

Motorial	CH ₃ I uptake	Temperature	Dof	
Waterial	(g/g)	(g/g) (K)		
Zeolite (NaX)	0.10	373	110	
Zeocarbon	0.10	>323	111	
Activated carbon (AC)	0.32	>323	111	
Silver-Exchanged Zeolite (AgX)	0.25	373	111	
Silver-impregnated alumina (Ag-A)	0.22	>373	111	
TEDA-Impregnated AC	0.47	303	112	
COF-103	2.78	423	This work	
COF-102	2.58	423	This work	
BF-COF-1	2.05	423	This work	

Table S9. Comparison of the CH_3I adsorption performance between the top 3 COFs and other adsorbents.

References

- X. Ding, L. Chen, Y. Honsho, X. Feng, O. Saengsawang, J. Guo, A. Saeki, S. Seki, S. Irle, S. Nagase, V. Parasuk and D. Jiang, *J. Am. Chem. Soc.*, 2011, 133, 14510.
- 2 G. Lin, H. Ding, D. Yuan, B. Wang and C. Wang, J. Am. Chem. Soc., 2016, 138, 302.
- 3 L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras and T. Bein, *Nat. Chem.*, 2016, 8, 310.
- 4 L. Stegbauer, M. W. Hahn, A. Jentys, G. Savasci, C. Ochsenfeld, J. A. Lercher and B. V. Lotsch, *Chem. Mater.*, 2015, 27, 7874.
- 5 Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu and Y. Mu, Chem. Commun., 2014, 50, 13825.
- 6 H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin and W. Zhang, Chem. Sci., 2015, 6, 4049.
- 7 J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, Z. Zhang, N. Zhou and X. Zhu, *CrystEngComm*, 2014, 16, 6547.
- 8 M. S. Lohse, J. M. Rotter, J. T. Margraf, V. Werner, M. Becker, S. Herbert, P. Knochel, T. Clark, T. Bein and D. D. Medina, *CrystEngComm*, 2016, **18**, 4295-4302.
- 9 Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu and Y. Yan, Angew. Chem. Int. Ed., 2014, 53, 2878.
- 10 K. T. Jackson, T. E. Reich and H. M. El-Kaderi, Chem. Commun., 2012, 48, 8823.
- 11 S. Zhao, B. Dong, R. Ge, C. Wang, X. Song, W. Ma, Y. Wang, C. Hao, X. Guo and Y. Gao, *RSC Adv.* 2016, 6, 38774.
- 12 A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, *Science* 2005, **310**, 1166.
- 13 A. P. Côté, H. M. El-Kaderi, H. Furukawa, J. R. Hunt and O. M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914.
- H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe and O. M. Yaghi, *Science*, 2007, 316, 268-272.

- R. W. Tilford, S. J. Mugavero, P. J. Pellechia and J. J. Lavigne, *Adv. Mater.*, 2008, 20, 2741-2746.
- 16 J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Côté and O. M. Yaghi, *J. Am. Chem. Soc.*, 2008, 130, 11872.
- 17 F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. O. Klöck, M. Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570.
- 18 Y. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou and O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336.
- S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart and O. M. Yaghi, *Chem. Mater.*, 2011, 23, 4094.
- 20 F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki and O. M. Yaghi, J. Am. Chem. Soc., 2011, 133, 11478.
- 21 D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura, Science, 2016, 351, 361.
- 22 T. Zhou, S. Xu, Q. Wen, Z. Pang and X. Zhao, J. Am. Chem. Soc., 2014, 136, 15885.
- 23 L. Xu, X. Zhou, W. Q. Tian, T. Gao, Y. F. Zhang, S. Lei and Z. F. Liu, Angew. Chem. Int. Ed., 2014, 53, 9564.
- 24 K. Wang, H. Huang, D. Liu, C. Wang, J. Li and C. Zhong, Environ. Sci. Tech., 2016, 50, 4869.
- 25 Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu and Y. Mu, Chem. Eur. J., 2015, 21, 12079.
- 26 Z. Li, Y. Zhang, H. Xia, Y. Mu and X. Liu, Chem. Commun., 2016, 52, 6613.
- S. Ding, J. Gao, Q. Wang, Y. Zhang, W. Song, C. Su and W. Wang, J. Am. Chem. Soc., 2011, 133, 19816.
- 28 S. Ding, M. Dong, Y. Wang, Y. Chen, H. Wang, C. Su and W. Wang, J. Am. Chem. Soc., 2016, 138, 3031.
- 29 S. Lin, X. Y. Hou, X. Deng, H. L. Wang, S. Z. Sun and X. M. Zhang, RSC Adv., 2015, 5, 41017.

- R. Ge, D. Hao, Q. Shi, B. Dong, W. Leng, C. Wang and Y. Gao, J. Chem. Eng. Data., 2016, 61, 1904.
- V. S. P. K. Neti, X. Wu, M. Hosseini, R. A. Bernal, S. Deng and L. Echegoyen, *CrystEngComm*, 2013, 15, 7157.
- 32 W. Zhang, P. Jiang, Y. Wang, J. Zhang and P. Zhang, Catal. Sci. Technol., 2015, 5, 101.
- 33 J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao and D. Jiang, *Nat. Commun.*, 2013, 4.
- 34 J. Yu, Z. Chen, J. Sun, Z. Huang and Q. Zheng, J. Mater. Chem., 2012, 22, 5369.
- 35 P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A. Thomas, Chem. Mater., 2013, 25, 1542.
- 36 P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 2008, 47, 3450.
- 37 M. J. Bojdys, J. Jeromenok, A. Thomas and M. Antonietti, Adv. Mater., 2010, 22, 2202.
- 38 X. Chen, M. Addicoat, S. Irle, A. Nagai and D. Jiang, J. Am. Chem. Soc., 2013, 135, 546-549.
- 39 A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo and D. Jiang, Angew. Chem. Int. Ed., 2013, 52, 3770.
- 40 X. Chen, M. Addicoat, S. Irle, A. Nagai and D. Jiang, J. Am. Chem. Soc., 2013, 135, 546.
- 41 X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki, Y. Dong and D. Jiang, *Adv. Mater.*, 2012, 24, 3026.
- 42 C. R. DeBlase, K. E.Silberstein, T. Truong, H. D. Abruña and W. R. Dichtel, *J. Am. Chem. Soc.*, 2013, **135**, 16821.
- 43 L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec and P. L. McGrier, *Chem. Mater.*, 2015, 27, 6169.
- 44 B. P. Biswal, S. Kandambeth, S. Chandra, D. B. Shinde, S. Bera, S. Karak, B. Garai, U. K. Kharul and R. Banerjee, *J. Mater. Chem. A*, 2015, **3**, 23664.
- 45 S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma and R. Banerjee, *Nat. Commun.*, 2015, 6, 6786.

- 46 D. B. Shinde, S. Kandambeth, P. Pachfule, R. R. Kumar and R. Banerjee, *Chem. Commun.*, 2015, 51, 310.
- 47 A. Halder, S. Kandambeth, B. P. Biswal, G. Kaur, N. C. Roy, M. Addicoat, J. K. Salunke, S. Banerjee, K. Vanka, T. Heine, S. Verma and R. Banerjee, *Angew. Chem. Int. Ed.*, 2016, 55, 806.
- 48 S. Jin, K. Furukawa, M. Addicoat, L. Chen, S. Takahashi, S. Irle, T. Nakamura and D. Jiang, *Chem. Sci.*, 2013, **4**, 4505.
- 49 H. Ma, B. Liu, B. Li, L. Zhang, Y. Li, H. Tan, H. Zang and G. Zhu, J. Am. Chem. Soc., 2016, 138, 5897.
- 50 X. Feng, L. Liu, Y. Honsho, A. Saeki, S. Seki, S. Irle, Y. Dong, A. Nagai and D. Jiang, *Angew. Chem. Int. Ed.*, 2012, **51**, 2618.
- 51 S.Xu, T. Zhan, Q. Wen, Z. Pang and X. Zhao, ACS Macro Letters, 2016, 5, 99.
- 52 S. Jin, T. Sakurai, T. Kowalczyk, S. Dalapati, F. Xu, H. Wei, X. Chen, J. Gao, S. Seki, S. Irle and D. Jiang, *Chem. Eur. J.*, 2014, **20**, 14608.
- 53 S. Dalapati, M. Addicoat, S. Jin, T. Sakurai, J. Gao, H. Xu, S. Irle, S. Seki and D. Jiang, *Nat. Commun.*, 2015, **6**, 7786.
- 54 N. Huang, R. Krishna and D. Jiang, J. Am. Chem. Soc., 2015, 137, 7079.
- 55 N. Huang, X. Chen, R. Krishna and D. Jiang, Angew. Chem. Int. Ed., 2015, 54, 2986.
- 56 Y. Zhu, S. Wan, Y. Jin and W. Zhang, J. Am. Chem. Soc., 2015, 137, 13772.
- 57 Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S. Lee and W. Zhang, *Angew. Chem. Int. Ed.*, 2016, 55, 1737.
- 58 M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding and H. M. El-Kaderi, *Chem. Eur. J.*, 2013, **19**, 3324.
- 59 D. Kaleeswaran, P. Vishnoi and R. Murugavel, J. Mater. Chem. C, 2015, 3, 7159.
- 60 S. Zhang, X. Zhao, B. Li, C. Bai, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma and S. Li, J. Hazard. Mater., 2016, 314, 95.

- 61 D. Beaudoin, T. Maris and J. D. Wuest, Nat. Chem., 2013, 5, 830.
- 62 Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou and Y. Zhao, J. Am. Chem. Soc., 2015, 137, 1020.
- 63 Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo and D. Zhao, *Chem. Mater.*, 2016, 28, 1277.
- S. Chandra, T. Kundu, K. Dey, M. Addicoat, T. Heine and R. Banerjee, *Chem. Mater.*, 2016, 28, 1489.
- 65 S. Yu, H. Lyu, J. Tian, H. Wang, D. Zhang, Y. Liu and Z. Li, Polym. Chem., 2016, 7, 3392.
- 66 E. L. Spitler and W. R. Dichtel, Nat. Chem., 2010, 2, 672.
- A. Bhunia, V. Vasylyeva and C. Janiak, Chem. Commun., 2013, 49, 3961.
- 68 N. Huang, X. Ding, J. Kim, H. Ihee and D. Jiang, Angew. Chem. Int. Ed., 2015, 54, 8704.
- 69 L. Y. Bai, S. Z. F. Phua, W. Q. Lim, A. Jana, Z. Luo, H. P. Tham, L. Z. Zhao, Q. Gao and Y. L. Zhao, *Chem. Commun.*, 2016, **52**, 4128.
- 70 Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo and S. Qiu, Y. Yan, J. Am. Chem. Soc., 2015, 137, 8352.
- H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai and C. Wang, J. Mater. Chem. A, 2016, 4, 7416.
- 72 B. Nath, W. Li, J. Huang, G. Wang, Z. Fu, M. Yao and G. Xu, *CrystEngComm*, 2016, 18, 4259.
- 73 S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem. Int. Ed., 2009, 48, 5439.
- 74 X. Chen, N. Huang, J. Gao, H. Xu, F. Xu and D. Jiang, Chem. Commun., 2014, 50, 6161.
- 75 Y. Wu, H. Xu, X. Chen, J. Gao and D. Jiang, Chem. Commun., 2015, 51, 10096.
- 76 S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai and D. Jiang, J. Am. Chem. Soc., 2013, 135, 17310.
- 77 E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar and W. R. Dichtel, *Angew. Chem. Int. Ed.*, 2012, **51**, 2623.

- 78 Y. Peng, G. Xu, Z. Hu, Y. Cheng, C. Chi, D. Yuan, H. Cheng and D. Zhao, ACS App. Mater. Inter., 2016, 8, 18505.
- 79 X. Feng, Y. Dong and D. Jiang, CrystEngComm., 2013, 15, 1508.
- 80 G. H. V. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin and M. Dinca, *Proc. Natl. Acad. Sci.*, 2013, **110**, 4923.
- 81 B. J. Smith, A. C. Overholts, N. Hwang and W. R. Dichtel, Chem. Commun., 2016, 52, 3690.
- M. O. Blunt, J. C. Russell, N. R. Champness and P. H. Beton, Chem. Commun., 2010, 46, 7157.
- Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding and H. M. El-Kaderi, *CrystEngComm*, 2013, 15, 1524.
- 84 G. Das, B. P. Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma and R. Banerjee, *Chem. Sci.*, 2015, 6, 3931.
- 85 L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci., 2014, 5, 2789.
- 86 L. Wang, B. Dong, R. Ge, F. Jiang, J. Xiong, Y. Gao and J. Xu, *Microporous and Mesoporous Materials*, 2016, 224, 95.
- 87 S. Chandra, T. Kundu, S. Kandambeth, R. BabaRao, Y. Marathe, S. M. Kunjir and R. Banerjee, J. Am. Chem. Soc., 2014, 136, 6570.
- 88 S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem. Int. Ed., 2008, 47, 8826.
- 89 M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh and T. Bein, *J. Am. Chem. Soc.*, 2014, **136**, 17802.
- S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao,
 T. Heine and R. Banerjee, *J. Am. Chem. Soc.*, 2013, 135, 17853.
- 91 M. S. Lohse, T. Stassin, G. Naudin, S. Wuttke, R. Ameloot, D. De Vos, D. D. Medina and T. Bein, *Chem. Mater.*, 2016, 28, 626.
- 92 B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine and R. Banerjee, J. Am. Chem. Soc., 2013, 135, 5328.

- 93 G. Das, B. P. Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma and R. Banerjee, *Chem. Sci.*, 2015, 6, 3931.
- 94 S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine and R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524.
- S. Chandra, T. Kundu, K. Dey, M. Addicoat, T. Heine and R. Banerjee, *Chem. Mater.*, 2016, 28, 1489.
- 96 L. Xu, S. Ding, J. Liu, J. Sun, W. Wang and Q. Zheng, Chem. Commun., 2016, 52, 4706.
- 97 S. Mitra, S. Kandambeth, B. P. Biswal, M. A. Khayum, C. K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U. K. Kharul and R. Banerjee, *J. Am. Chem. Soc.*, 2016, **138**, 2823.
- 98 R. Gomes and A. Bhaumik, RSC Adv., 2016, 6, 28047.
- 99 M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel and T. Bein, Angew. Chem. Int. Ed., 2013, 52, 2920.
- 100 S. Cai, Y. Zhang, A. B. Pun, B. He, J. Yang, F. M. Toma, I. D. Sharp, O. M. Yaghi, J. Fan, S. Zheng, W. Zhang and Y. Liu, *Chem. Sci.*, 2014, **5**, 4693.
- 101 H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y. Yi, H. Liu and Y. Li, *ACS App. Mater. Inter.* 2016, 8, (8), 5366.
- 102 E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar and W. R. Dichtel, *Angew. Chem. Int. Ed.*, 2012, **51**, 2623.
- 103 L. Bai, Q. Gao and Y. Zhao, J. Mater. Chem. A, 2016, 4, 14106.
- 104 V. S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci, C. Ochsenfeld, J. P. Spatz and B.V. Lotsch, *Adv. Mater.*, 2016, 28, 8749.
- 105 Y. Peng, W. K. Wong, Z. Hu, Y. Cheng, D. Yuan, S. A. Khan and D. Zhao, *Chem.f Mater.*, 2016, 28, 5095.
- 106 J. O. Hirschfelder, C. F. Curtiss, R. B. Bird and M. G. Mayer, Molecular theory of gases and liquids, Wiley, New York, 1954.

- 107 H. Crone-Munzebrock and G. Doge, Ber. Bunsenges. Phys. Chem., 1990, 94, 297.
- 108 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. GoddardIII, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024.
- 109 S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. C, 1990, 94, 8897.
- 110 G. Ii Park, B.S. Choi II, H. Cho, J.H. Kim, J. Korean Nucl. Soc. 2000, 32, 504.
- 111 T. Fukasawa, K. Funabashi, Y. Kondo, J. Nucl. Sci. Technol. 1994, 31, 1073.
- 112 G. Park, I. Kim, J. K. Lee, S. K. Ryu and J. H. Kim, Carbon Science, 2001, 2, 9