Supporting information

S1. Alternative structure of RbAg4I5@SWNT with external octahedral positions occupied by silver

atoms.

S2. Additional experimental images and structure descriptions of $Rb_xAg_{1-x}I@SWNT$ nanocomposites.

Composite	Experimental + models	Structure	Reference
RbI@SWNT	2 mm	<i>Рт3т,</i> d ₁ = 7.3 Å, D _{SWNT} = 1.4 Å	Present article
	(a)	Rocksalt a = b = c = 0.46 nm $D_{SWNT} = 1.35 Å$ (17,0)	1. A. Kirkland, et al. // 2005 Microsc. Microanal. 11, pp. 401–409.
	(b)		
	0.4mm		

AgI@SWNT	(a) d_1 d_2 d_4	P ² <i>mm,</i> d ₁ = 7.5 Å, D _{SWNT} = 1.32- 1.4 nm	1. A. Eliseev, et al. // 2010, Carbon, V. 48 (10), pp. 2708-2721. 2. 2. A. Eliseev et et al. // Electronic Properties of Carbon Nanotubes, Ed. Ed. J.M. Marulanda, InTech, 2011, pp. 127-156
	L nm 1 • Ag • C	P ² mm, d ₁ = 7.5 Å, D _{SWNT} = 1.4 nm	Present article
		Cubic D _{SWNT} = 1.6 nm	1. A. Kirkland, et al. // 2005 Microsc. Microanal. 11, pp. 401–409.
	(b) <111> <111> <10>		
RbAg₄I₅@SW NT	a di=0.39 nm a	Cubic (<i>fcc</i>) d ₁ = 3.8 Å, D _{SWNT} = 1.4 nm	Present article

S3. Summary of Raman study.

Table S3. The positions of RBM- and G-lines in the Raman spectra of pristine SWNTs andnanocomposites at different laser excitation energies. The relative shifts of peak positions aregiven in the parentheses.

Sample	Laser energy, eV	RBM-mode, cm ⁻¹	G-mode, cm ⁻¹	SWNTs diameter, nm	Conductivity type	Possible chiralities
SWNT	2.41	150.1	1553.8	1.52	<i>m</i> -SWNT	(11, 11)*; (15, 6); (14, 8)
		164.8*	1572.9	1.38	<i>s-</i> SWNT	(11, 9)*; (15, 4)*; (12, 8)
		173.4	1592.9	1.31	<i>s-</i> SWNT	(10, 9)*; (14, 4); (12, 7)
	1.96	148.8	1542.3	1.53	m-SWNT	(14, 8)*; (19, 1)*; (11, 11)
		164.6*	1562.9	1.38	m-SWNT	(10, 10)*; (13, 7)*; (14, 5)
	1.58	153.5	1564.9 1587.7 1607.5	1.48	m-SWNT	(15, 6)*, (16, 4), (12, 9)
		164.8*		1.38	m-SWNT	(10, 10)*, (13, 7)*, (14, 5)
		184.5		1.23	s-SWNT	(15, 1)*; (10, 8); (11, 7)
RbI@SWNT	2.41	169.6 [*] (+4.8)	1558.7	1.34	s-SWNT	(13, 6)*; (17, 0); (16, 2);
		181.6 (+8.2)	1571.1 (-1.8) 1594.1 (+1.2)	1.25	s-SWNT	(10, 8)*; (11, 7); (15, 1)
	1.96	154.0 (+5.2)	1552.1 1567.5 (+4.6) 1590.7 (-0.2)	1.48	m-SWNT	(15, 6)*, (16, 4), (12, 9)
		168.6* (+4.0)		1.34	m-SWNT	(14, 5)*; (15, 3); (16, 1)
	1.58	165.9* (+1.1)	1567.2	1.37	m-SWNT	(10, 10)*; (14, 5); (13, 7)

		179.7 (-4.8)	1582.7 (-5.0) 1605.2 (-2.3)	1.26	s-SWNT	(16, 0)*; (13, 5); (14, 3)
RbAg₄I₅@SW NT	2.41	170.4* (+5.6)	1557.7 1572.1 (-0.8) 1597.2(+4.3)	1.33	<i>s</i> -SWNT	(13, 6)*; (12, 7); (17, 0)
		179.1 (+5.7)		1.26	<i>s</i> -SWNT	(16, 0)*; (13, 5); (14, 3)
	1.96	165.7* (+16.9)	1552.1 1573.6 (+10.7) 1598.9 (+8.0)	1.37	m-SWNT	(10, 10)*; (14, 5); (13, 7)
		176.6 (+12.0)		1.28	m-SWNT	(12, 6)*; (9, 9); (11, 8)
	1.58	168.9 (+4.1)	1568.4	1.34	m-SWNT	(14, 5)*; (15, 3); (10, 10)
		181.0* (-3.5)	1612.7 (+5.2)	1.25	s-SWNT	(14, 3)*; (11, 7)*; (10, 8)
AgI@SWNT	2.41	173.4* (+8.6)	1558.3 1575.7 (-2.8) 1599.9 (+7.0)	1.31	<i>s</i> -SWNT	(10, 9)*; (14, 4); (12, 7)
		179.2 (-5.8)		1.26	<i>s</i> -SWNT	(16, 0)*; (13, 5); (14, 3)
	1.96	165.9* (+17.1)	1554.6 1573.5 (+10.6) 1597.9 (+7.0)	1.37	m-SWNT	(10, 10)*; (14, 5); (13, 7)
		176.4 (+11.8)		1.28	m-SWNT	(12, 6)*; (9, 9); (11, 8)
	1.58	175.0* (+10.2)	1583.3 1601.6 (+13.9) 1616.9 (+9.4)	1.29	m-SWNT	(12, 6)*; (9, 9); (11, 8)
		187.1 (+2.6)		1.21	s-SWNT	(12, 5)*; (15, 1); (11, 6)

*Predominantly excited type of SWNTs.

Spectroelectrochemical experiments were carried out in 0.2M solution of LiClO₄ in DME in potential rage of -1.4V - +1.4 V vs. Ag-pseudoreference electrode in potentiostatic staircase mode with a potential step of 5 mV. Black dashed lines represent Kohn anomaly of samples on the electrochemical Raman maps. a) Raw SWNT; b) RbI@SWNT; c) RbAg₄I₅@SWNT, white dashed line represents Kohn anomaly for raw SWNT; d) Agl@SWNT

Table S5. Summary of the results of the C 1s peak fitti				
Sample	Feature	Relative intensity	Binding Energy, eV	
CIA/NIT	SWNT	0.887	284.50	
SVVINT	Ox	0.113	284.91	
	SWNT	0.527	284.50	
RbI@SWNT	Filled SWNT	0.383	284.71 (+0.21)	
	Ox	0.089	285.10	
	SWNT	0.218	284.50	
RbAg₄I₅@SWNT	Filled SWNT	0.429	284.20 (-0.30)	
	Ox	0.353	284.91	
	SWNT	0.178	284.50	
Agl@SWNT	Filled SWNT	0.584	284.22 (-0.28)	
	Ox	0.238	284.91	

S5. Numerical results of XPS C 1s study.

S6. The secondary electron cutoff spectra.

Secondary electron cutoff spectra recorded with the photon energy 75 eV. The graph shows noticeable deviation of electron work function of nanocomposites as compared to pristine SWNT. The values of electron work function were extracted as an intersection point of linear approximations of background and the secondary electron emission edge.