Supporting Information for

Doping amount dependence of phase formation and microstructure evolution in heavily Cu-doped Bi₂Te₃ films for thermoelectric applications

Kang Hyun Seo,^a Byeong Geun Kim,^{a, ‡,*} Chang-Hyun Lim,^b Sang-Ho Kim,^a Kyu-Mann Lee,^a Jong-Young Kim,^c and Soon-Mok Choi^{a, ‡,*}

^aSchool of Energy Materials Chemical Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.

^bEnergy & Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea.

^cIcheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon 17303, Republic of Korea

E-mail: bg-kim305@gmail.com (B. G. Kim) and smchoi@koreatech.ac.kr (S. -M. Choi)

^{*t*} These authors are contributed equally to this work.

					(at.%)
	Cu	Bi	Те	Bi/Te	Cu/Te
#1	-	43.85	56.15	0.78	-
#2	28.00	31.16	40.84	0.76	0.68
#3	43.67	23.76	43.67	0.54	1.00
#4	47.94	21.63	30.43	0.71	1.57

Table S1 EDS analyses of as-deposited Cu-BT films. Cu-0.0, Cu-28.0, Cu-43.7, and Cu-47.9 weredesigned by #1, #2, #3, and #4, respectively.

Fig. S1 XRD spectra of Cu-BT films with different annealing temperatures: (a) 150 °C and (b) 300 °C.

Fig. S2 Results of TEM analyses of Cu-43.7 annealed at 300 °C: (a) High-resolution TEM (HRTEM) images and selected area electron diffraction (SAED) pattern and (b) d-spacing analysis and HRTEM image (inset).

	Cu-0.0	Cu-28.0	Cu-43.7	Cu-47.9
Measured values	d = 3.21513 nm (015) d = 5.04808 nm (006)	d = 3.21915 nm (015) d = 5.04806 nm (006)	d = 3.22580 nm (015) d = 1.81725 nm (205)	d = 3.22384 nm (015) d = 1.81408 nm (205)
Reference (JCPDS 15-0863)	d = 3.2220 nm (015) d = 5.0780 nm (006)	d = 3.2220 nm (015) d = 5.0780 nm (006)	d = 3.2220 nm (015) d = 1.8120 nm (205)	d = 3.2220 nm (015) d = 1.8120 nm (205)

Table S2 Values used for calculation of lattice parameters from the results of XRD analyses. Allpeaks were indexed by Bi2Te3 phase.

The calculation was performed by this equation:

 $\frac{1}{d^2} = \frac{4h^2 + hk + l^2}{3a^2} + \frac{l^2}{c^2}$

Fig. S3 HRTEM image of Cu-47.9 annealed at 300 °C.

Fig. S4 (a) FESEM image and EDS spectrum and (c) 3D AFM image of Cu-47.9 annealed at 500 °C.

Fig. S5 XPS spectrum of Bi element in Cu-47.9 annealed at 300 °C. The etching time was 3 min.

Fig. S6 Thickness change of Cu-BT films with/without thermal annealing.