Supporting Information

Hollow Nanocubes Constructed by <001> Oriented Anatase TiO₂ Nanoarrays: Topotactic Conversion and Fast Lithium-Ion Storage

Huali You,^a Qili Wu,^a Jiade Li,^a Shiman He,^a Xiaohui Li,^a Xianfeng Yang,^b Jingling Yang,^a Yuying Meng,^a Shengfu Tong,^{*a} and Mingmei Wu^{*a}

a. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

b. Analytical and Testing Center, South China University of Technology, Guangzhou 510640, P. R. China.

Corresponding Authors

*E-mail: tongshf@mail.sysu.edu.cn

*E-mail: ceswmm@mail.sysu.edu.cn

Figure S2 N₂ adsorption-desorption isotherms of (a) OATNs-4, (b) OATNs-6, (c) OATNs-10 and (d) OATNs-24. The square (\Box) is the adsorption process, while the circle (\bullet) is the desorption process.

Figure S3 The electrochemical impendence spectroscopies (EIS) of OATNs-4, OATNs-6, OATNs-10, and OATNs-24 constructed systems; the inset is the equivalent circuit by ZView2 version according to the EIS results.

Sample name	OATNs-4	OATNs-6	OATNs-10	OATNs-24
Rp / Ω	210	118	114	395

Table S1. Rp based on fitting the EIS results as shown in Figure S4.

Figure S4 A comparison of current rate performances of OATNs-10 (this work) with previously reported ones. FGS in the figure represents for functionalized graphene sheets.

Figure S5 shows the comparison of current rate performances of OATNs-10 obtained in this work with those reported before. The electrode compositions of the previously reported results can be summarized in Table S2.

Sample name	Active material (wt%)	Carbon (wt%)	PVDF Binder (wt%)	Ref.
OATNs-10 (■)	70	20 (acetylene black)	10	This work
anatase TiO₂ quantum- dot/Graphene (►)	80	10 (Super P carbon black)	10	1
TiO₂ microbox (●)	70	20 (Super P carbon black)	10	2
Rutile TiO₂ submicroboxes (▲)	70	20 (Super P)	10	3
TiO₂ nanocages (♥)	70	20 (Super P)	10	4
Rutile TiO ₂ FGS (\blacklozenge)	80	10 (Super P carbon black)	10	5
Anatase TiO₂ FGS (◀)	80	10 (Super P carbon black)	10	5
Mesoporous TiO₂ (●)	80	10 (Super P carbon black)	10	6

Table S2.	The com	positions	of the	electrode	mentioned	in	Figure	S 5
TUDIC DE.	The com	positions	or the	cicculouc	mentioneu		inguic	55

Figure S5 (a) The cycling number dependent specific capacities of OATNs-4, OATNs-6, OATNs-10 and OATNs-24 as indicated in the figure at current rate of 50 C. (b) The specific capacities of OATNs-4, OATNs-6, OATNs-10 and OATNs-24 at the 500th cycle as a function of hydrothermally treating time of NH4TiOF3 precursor in H3BO3 solution, summarized from Figure S6a.

Figure S6 (a) Galvanostatic intermittent titration curves as a function of specific capacities observed on OATNs-4, OATNs-6, OATNs-10 and OATNs-24 constructed cells. The duration of the charge and discharge pulses have been calculated based on a 0.5 C. (b) The gap voltage between the discharge and recharge plateaus at specific capacity of 150 mAh g⁻¹ shown in Figure S7a as a function of hydrothermally treating time.

Table S3. The diffusion coefficient (D) of the as-prepared materials estimated from the GITT results shownin Figure 6 and Figure S6.

Sample name	OATNs-4	OATNs-6	OATNs-10	OATNs-24
D×10 ⁻¹² / cm ² s ⁻¹	1.3 ~ 11.6	1.3~13.7	2.4 ~ 56.5	1.1~12.1

References

- 1 R. W. Mo, Z. Y. Lei, K. N. Sun and D. Rooney, *Adv. Mater.*, 2014, **26**, 2084-2088.
- 2 X. H. Gao, G. R. Li, Y. Y. Xu, Z. L. Hong, C. D. Liang and Z. Lin, Angew. Chem. Int. Ed., 2015, 54, 14331-14335.
- 3 X. Y. Yu, H. B. Wu, L. Yu, F. X. Ma and X. W. Lou, *Angew. Chem. Int. Ed.*, 2015, **54**, 4001-4004.
- 4 Z. Y. Wang and X. W. Lou, *Adv. Mater.*, 2012, **24**, 4124-4129.
- 5 D. H. Wang, D. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay and J. Liu, *ACS Nano*, 2009, **3**, 907-914.
- 6 B. Y. Guan, L. Yu, J. Li and X. W. Lou, *Sci. Adv.*, 2016, **2**, e1501554.