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Synthesis of Alkylamine Precursors 

Synthesis of methyl 5-aminopentanoate and methyl 6-aminohexanoate  

The appropriate amino acid (21 mmol) was dissolved in 100 ml of CH3OH and cooled in ice, 

before addition of 5 equivalents of SOCl2 dropwise. The mixture was stirred for 12 hours at 

room temperature. SOCl2 and CH3OH were removed by vacuum distillation to reveal a 

powdery white solid in each case, which was dried in vacuo.  

 

Methyl 5-aminopentanoate, yield 86%; mp 132-136 ˚C (lit.
S1

 132-137˚C). 1H NMR 

(DMSO-d6, 400 MHz, δ) 7.95 (s, 2H, NH2), 3.59 (s, 3H, COOMe), 2.76 (m, 2H, 1-CH2), 

2.39-2.28 (m, 2H, 4- CH2), 1.48 (m, 4H, 2-CH2, 3-CH2). 
13

C NMR (DMSO-d6, 150 Hz, δ) 

173.08 (COOMe), 51.27 (Me), 38.37 (C1), 32.65 (C4), 26.36 (C2), 21.35 (C3). HRMS-ESI
+
 

(m/z) : [M+H]
+ 

calcd for C6H14NO2, 132.1025, found 132.1030. IR vmax (cm
-1

): 3024s, 2931s, 

1734s, 1597m, 1575m, 1518m, 1474w, 1443m, 1420m, 1385m, 1345s, 1270s, 1192s, 1149s, 

1149s, 1054m, 1022w, 982m, 949m, 899m, 882m, 747s, 700w, 586w.  

 

Methyl 6-aminohexanoate, yield 98%; mp 80-84 ˚C (lit.
S2

 mp 81-82˚C) 
1
H NMR (DMSO-d6, 

400 MHz, δ) 7.92 (s, 2H, NH2), 3.58 (s, 3H, COOMe), 2.74 (m, 2H, 1-CH2), 2.30 (t, J = 7.3 

Hz, 2H, 5-CH2), 1.54 (m, 4H, 2-CH2, 4-CH2), 1.3 (q, J = 8.0 Hz, 2H, 3-CH2). 
13

C NMR 

(DMSO-d6, 150 Hz, δ) 173.22 (COOMe), 51.23 (Me), 38.50 (C1), 33.02 (C5), 26.59 (C2), 

25.27 (C4), 23.87 (C3). HRMS-ESI
+
 (m/z) : [M+H]

+ 
calcd for C7H16NO2, 146.1103, found 

146.1171. IR vmax (cm
-1

): 3019s, 2927s, 2865s, 1726s, 1627m, 1603w, 1583m, 1496m, 1425w, 

1395w, 1363m, 1313m, 1228s, 1192s, 1143s, 1094s, 1045m, 977m, 949w, 931w, 832m, 

812m, 731m, 703w, 611m. 
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2. Gel Photographs 

 

Figure S1 Inversion test for THF/H2O gels of compound 5 (left) and 3 (right). 

 

Figure S2 Weak gel and failed inversion test with compound 1. 
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Figure S3 Polarised Optical microscopy for compounds 5 (top), 3 (bottom left) and 1 

(bottom right) (all scale bars 100 μm). 

 

Figure S4 Polarised optical microscopy (cooling cycle) of 2 at 72.9 °C (top, scale bar 50 μm) 

and 62.7 °C (bottom). 

 

Figure S5 Polarised optical microscopy (cooling cycle) of 4 at 102.9 °C (left) and at 56 °C ( 

right). 
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3. Thermogravimetric Analysis 

 

Figure S6 Thermogravimetric analysis plot of gel 1 

 

Figure S7 Thermogravimetric analysis plot of gel 3 

 

Figure S8 Thermogravimetric analysis plot of gel 5 (as synthesised) 
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Figure S9 Thermogravimetric analysis plot of gel 5 following compression and rheology 

experiments 

 

Figure S10 Thermogravimetric analysis plots of crystalline samples of compounds 1 (top) 

and 3 (bottom). 
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4. Differential Scanning Calorimetry 

 

Figure S11 DSC thermograph of 2 displaying an endothermic transition onset at 81.6 °C and 

exothermic transitions onset at 71.5 °C and 60.6 °C 

 

Figure S12 DSC thermograph of 4 showing endothermic transitions onset at 59.3, 75.1 and 

95.5 °C and exothermic transitions at 98.6 and 57.2 °C 
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Figure S13 DSC thermograph of Me3-1 

 

 

Figure S14 DSC thermograph of compound 1 
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Figure S15 DSC Thermograph of compound 3 

 

Figure S16 DSC thermograph of compound 4 showing two sequential cycles 30 – 74 °C 

showing diminishing of the first phase transition on sequential heating and cooling cycles. 
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Figure S17 DSC Thermograph of compound 5 
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5. X-ray Powder Diffraction 

 

Figure S18 X-ray powder diffraction pattern for compound 1, measured at room temperature, 

compared to the simulated pattern from the single-crystal data collected at 100K. To account 

for preferred orientation caused by the needle-like crystallite morphology, the data were 

simulated with preferred orientation (011) with March-Dollase parameter of 2. 

 

Figure S19 X-ray powder diffraction pattern of compound 2 collected at room temperature 

compared to the simulated pattern from the single crystal data collected at 100K. 
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Figure S20 Sequential X-ray powder diffraction patterns for compound 3 collected 

immediately after removal of the crystals from the recrystallization solvent, showing the 

rapid loss of the original poorly-crystalline phase and growth of the collapsed 

microcrystalline phase. Each of the scans 1 – 6 corresponds to 3 minutes exposure. The dry 

sample was measured after drying the sample in vacuo with 30 minute exposure time. 

 

Figure S21 X-ray powder diffraction pattern for compound 4 (room temperature), showing 

the as-synthesised material consisting of multiple crystalline and polycrystalline phases 

(blue); the single, poorly-crystalline phase obtained by complete melting and freezing of the 

material (red); the mixture of at least two phases obtained by heating above the first phase 

transition temperature (green), and comparison with the simulated pattern for compound 4 

(orange) and the measured pattern for compound 2 (purple). 
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6. NMR Spectroscopy 

 

Figure S22 
1
H NMR spectrum of 1 

 

Figure S23 
13

C NMR spectrum of 1 
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Figure S24 
1
H NMR spectrum of 2 

 

Figure S25 
13

C NMR spectrum of 2 
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Figure S26 
1
H NMR spectrum of 3 

 

Figure S27 
13

C NMR spectrum of 3 
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Figure S28 
1
H NMR spectrum of 4 

  

Figure S29 
13

C NMR spectrum of 4 
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Figure S30 
1
H NMR spectrum of 5 

 

Figure S31 
13

C NMR spectrum of 5 
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7. Additional Figures 

 

Figure S32 The two overlapping disordered orientations of compound 2, modelled as an 

average across the entire structure by the mirror plane parallel to the phenyl ring.  
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