Spin pairing, electrostatic and dipolar interactions shape stacking of radical anions in alkali salts of 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2dicarbonitrile (DDQ)

Supplementary Data

Krešimir Molčanov and Biserka Kojić-Prodić
Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
e-mail: kmolcano@irb.hr

S1 ORTEP drawings of DDQ anions
S2 Details on metal coordinations
S3 Crystal packing of compounds 1-5

S1 ORTEP drawings of DDQ anions

a)

b)

Figure S1 ORTEP-3 drawings of DDQ anion in 1 at a) 120 K and b) room temperature. Displacement ellipsoids are drawn for the probability of 50%.

Figure S2 ORTEP-3 drawing of DDQ anion in 4. Displacement ellipsoids are drawn for the probability of 50%.

Figure S3 ORTEP-3 drawings of four symmetry-independent DDQ anions in 5 (labelled as a, b, cand d). Displacement ellipsoids are drawn for the probability of 50%.

S2 Details on metal coordinations

a)

b)

Figure S4 ORTEP-3 drawings of Li coordination spheres in 1 at a) 120 K and b) room temperature. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S5 ORTEP-3 drawing of Na coordination sphere in 2. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii. Symmetry operators i) 3/2-x, 1/2+y, 1/2-z; ii) 3/2-x, -1/2+y, 1/2-z.

Figure S6 ORTEP-3 drawing of K1 coordination sphere in 3. Displacement ellipsoids are drawn for the probability of 50%. Symmetry operators: i) 1-x+y, 1-x, z; ii) 1-y, $x-y, z$; iii) 1$x+y, 1-x, 1+z ; i v) 1-y, x-y, 1+z ; v) x, y, 1+z$.

Figure S7 ORTEP-3 drawing of Cs coordination sphere in 4. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii. Symmetry operators: i) $x,-1+y, z$; ii) 1-x, 1-y, 2-z; iii) $-x, 2-y, 2-z$.

Figure S8 ORTEP-3 drawings of coordination spheres of four symmetry-independent Cs ions in 5. Displacement ellipsoids are drawn for the probability of 50. Symmetry operators: i) 1-x, $1 / 2+y, z$; ii) $1-x,-1 / 2+y, z$; iii) $1-x,-y,-1 / 2+z$; iv) $-x, 1 / 2+y, z ; v) 1-x, 1 / 2+y, z$; vi) $x,-y+1 / 2$, $z+1 / 2 ;$ vii) $-x, 1 / 2+y, z$.

S3 Crystal packing of compounds 1-5

In 1 stacks of radical anions extend in the direction [100]. Lithium cation is in tetrahedral coordination, by O2 of DDQ and three water molecules (Fig. S4). These water molecules are donors of 7 symmetry-independent hydrogen bonds and acceptors of two; DDQ accepts five hydrogen bonds (Table S1). Overall, a 3D hydrogen bonding network is formed (Fig. S9).

Sodium cation in $\mathbf{2}$ has a distorted octahedral coordination (Fig. S5) by O1 of DDQ and two water molecules; two symmetry-equivalent halves of the coordination sphere are related by a 2_{1} axis. Ligands bridge the sodium ions forming chains parallel to [010]; DDQ anions from neighbouring chains form π-interaction, so the stacks are also parallel to [010] (Fig. S10). There are four symmetry-inequivalent hydrogen bonds (Table S1): donors are water molecules and acceptors are O 2 from DDQ, O 3 from MeCOEt (both accepting two hydrogen bonds), forming layers parallel to (10 $\overline{1}$).

DDQ anion in $\mathbf{3}$ has a crystallographic symmetry $C s$, so two symmetry-independent K cations are located in special positions: K 1 on a C_{3} axis (p.p. 0.33) and K 2 in an intersection of three m planes (p.p. 0.17), therefore asymmetric unit comprises a half of a DDQ anion, a half of a K cation and a half of a water molecule. K 1 is coordinated by 6 O 1 atoms and 3 Cl 1 atoms of DDQ (Fig. S6); O1 acts as a bridging ligand, forming a 3D motive (Fig. S11). K2 occupies a cavity, so its only close contacts are 4 water molecules (O 4 , distance $3.56 \AA$) and 2 symmetry-equivalent K2 (distance $3.55 \AA$). A single symmetry-inequivalent hydrogen bond links the water molecule and N1 of DDQ (Table S1), forming a cyclic motive $R_{2}^{2}(27)$ around the K2. Anions form stacks parallel to [001].

Asymmetric unit of $\mathbf{4}$ comprises a Cs cation, a DDQ anion, a water molecule and a molecule of MeCOEt. The cation is octacoordinated, by O 1 and N 1 from DDQ, three O 2 atoms from three symmetry-equivalent DDQs, two symmetry equivalent water molecules (O3) and a MeCOEt (O4) (Fig. S7). O2 and O3 act as bridging ligands. Two symmetryindependent hydrogen bonds are present (Table S1): the water molecule is a donor, while the acceptors are $\mathrm{O} 1(\mathrm{DDQ})$ and O 4 (MeCOEt). Anions and cations form layers parallel to [001]; between them are MeCOEt molecules, so the layers are held together by dispersion interactions (Fig. S12). Stacks also extend in the direction [001].

5 crystallises with $Z=4$, that is four formula units per asymmetric unit, i.e. $\mathrm{Cs}_{4} \mathrm{DDQ}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. The cations and anions form a 3D network (Fig. S13) with stacks of DDQ
anions extending in the direction [100]. The water molecule (O3) probably acts as a proton donor, but since hydrogen atoms could not be reliably located, existence of hydrogen bonds can not be determined.

Figure S9 Crystal packing of $\mathbf{1}$ viewed in the direction [100].

Figure S10 Sodium-ligand chains and π-stacks in $\mathbf{2}$ parallel to [010]. This motive also forms layers parallel to (10-1).

Figure S11 3D packing of 3. There are two symmetry independent potassium cations with the two distinctive structural roles: connecting three radical anions (K1) forming a hexameric units with bridged radical anions generating a cavity occuped by K2. K atoms are shown as spheres of arbitrary radii.

Figure S12 Layered structure of 4: cation and anions form layers parallel to [001], and in between there are only dispersion interactions.

Figure S13 Crystal packing of $\mathbf{5}$ comprising four molecules in an asymmetric unit (colourcoded: A is red, B is blue, C is yellow and D is green) viewed in the direction [100]. Cs cations and water molecules are shown as purple and red spheres of arbitrary radii.

Table S1 Geometric parameters of hydrogen bonds.

	$D-\mathrm{H} / \AA$	$\mathrm{H} \cdots \mathrm{A} / \AA$	$D \cdots A / \AA$	$D-\mathrm{H}^{\cdots}{ }^{\prime}{ }^{\circ}$	Symm. op. on A
$1,120 \mathrm{~K}$					
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 5$	0.92(2)	1.98(2)	2.874(2)	163(3)	$1-x, 1-y, 1-z$
O3-H3B $\cdots \mathrm{N} 1$	0.92(2)	2.02(2)	2.902(2)	162(3)	$-1+x,-1+y,-1+z$
O4-H4A $\cdots \mathrm{Cl} 2$	0.90(3)	2.75(2)	3.313(2)	122(3)	$x, y,-1+z$
O4-H4A \cdots O1	0.90(3)	1.97(3)	2.832(2)	162(3)	$x, y,-1+z$
O4-H4B \cdots O3	0.94(3)	1.98(4)	2.905(2)	172(3)	$1-x, 2-y, 1-z$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 1$	0.92(2)	2.00(2)	2.910(2)	170(2)	$2-x, 2-y, 2-z$
O5-H5B $\cdots \mathrm{N} 2$	0.92(3)	2.01(2)	2.924(2)	170(3)	$2-x, 2-y, 2-z$
1, RT					
O3-H3A \cdots O5	$0.95(3)$	2.02(4)	2.915(3)	158(5)	$1-x, 1-y, 1-z$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 1$	0.94(2)	2.00(2)	2.925(3)	170(4)	$-1+x,-1+y,-1+z$
O4-H4A \cdots Cl2	0.93(4)	2.79 (4)	3.342(2)	119(3)	$x, y,-1+z$
O4-H4A \cdots O1	0.93(4)	1.94(5)	2.841(4)	164(4)	$x, y,-1+z$
O4-H4B \cdots O3	0.94(6)	2.04(5)	2.955(4)	166(5)	$1-x, 2-y, 1-z$
O5-H5A \cdots O1	0.94(4)	2.01(3)	2.947(3)	173(4)	$2-x, 2-y, 2-z$
O5-H5B‥N2	0.94(4)	2.03(4)	2.954(4)	174(4)	$2-x, 2-y, 2-z$
2					
O4-H4A \cdots O3	0.95(3)	1.95(3)	2.830(5)	154(3)	$x, 1+y, z$
O4-H4B $\cdots 2$	0.94(3)	2.10(5)	2.870(4)	138(4)	$1-x, 2-y,-z$
O5-H5A \cdots O3	0.71(5)	2.22(6)	2.885(5)	157(6)	x, y, z
O5-H5B \cdots O2	0.81(6)	2.17(6)	2.888(4)	148(6)	$1 / 2+x, 3 / 2-y, 1 / 2+z$
3					
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 1$	0.95(11)	2.04(11)	2.857(14)	144(7)	x, y, z
4					
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1$	0.95(7)	2.01(8)	2.897(6)	155(7)	x, y, z
O3-H3B \cdots O4	0.94(7)	1.95(8)	2.852(6)	161(9)	$-x, 1-y, 2-z$
C11-H11B \cdots N1	0.97	2.61	3.515(9)	155	$-x, 1-y, 1-z$

