Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Diiodomethane as Halogen Bond Donor toward Metal-bound Halides

Alexander S. Novikov,^a Daniil M. Ivanov,^a Margarita S. Avdontceva,^a and

Vadim Yu. Kukushkin^{a*}

^aSaint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034 Russian Federation

a

Figure S1. Packing of (*a*), (*b*), and (*c*), views along *a* axis.

It is indicated in the main text that previously we reported the structures of solvates $1 \cdot 1^{1/4}$ CH₂Cl₂ and $1 \cdot 1^{2/5}$ CH₂Br₂, which demonstrate the same packing features (**Figure S1**, *a* and *b*) being the successful examples of the Cl/Br isostructural exchange. Although the solvate $1 \cdot 1^{1/2}$ CH₂I₂ is not the same, it resembles the previous two in its packing mode (**Figure S1**, *c*). All these structures exhibit the layered motif, where the layers form complex molecules alternate with the voids filled by solvent.

Table S1. Values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$, energy density – H_b, potential energy density – V(\mathbf{r}), and Lagrangian kinetic energy – G(\mathbf{r}) (Hartree) at the bond critical points (3, –1), corresponding to the intermolecular intermolecular I•••I XBs in solid state structure of (2)₂•(CH₂I₂), bond lengths – l (Å), as well as energies for these contacts E_{int} (kcal/mol), defined by two approaches.

Contact	ρ(r)	$ abla^2 ho(\mathbf{r})$	H _b	V(r)	G(r)	E _{int} ^a	E _{int} ^b	l
I•••I	0.012	0.038	0.001	-0.008	0.009	2.5	2.4	3.65
I•••I	0.013	0.041	0.001	-0.009	0.010	2.8	2.7	3.59
$^{a} F_{} = -V(r)/2^{-1}$								

^b $E_{int} = 0.429G(\mathbf{r})^2$

Figure S2. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces (left) and RDG isosurfaces referring to the non-covalent interactions (right) for intermolecular I•••I XBs in cluster (2)₂•(CH₂I₂) from VEMWOA. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown. Length units – Å, RDG isosurface values are given in Hartree.

Figure S3. The Hirshfeld surface fingerprint plots for CH_2I_2 in $(1)_2 \cdot (CH_2I_2)$.

Figure S4. The Hirshfeld surface fingerprint plots for CH_2I_2 in solvate VEMWOA.

Identification code	$1 \cdot \frac{1}{2} CH_2 I_2$
Empirical formula	$C_{53}H_{62}N_{10}Cl_2I_2Pt_2$
Formula weight	1554.00
Temperature/K	100(2)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	10.8895(2)
b/Å	15.6795(4)
$c/\text{\AA}$	16.3632(3)
α/°	99.4445(18)
β/°	93.0501(15)
γ/°	93.7936(17)
V/Å ³	2744.15(10)
Ζ	2
$\rho_{calc}g/cm^3$	1.881
µ/mm ⁻¹	6.360
F(000)	1492.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.08$
Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range/°	6.088 to 52.998
Index ranges	$-13 \le h \le 13, -19 \le k \le 19, -20 \le l \le 20$
Reflections collected	50780
Independent reflections	$11374 [R_{int} = 0.0602, R_{sigma} = 0.0479]$
Data/restraints/parameters	11374/0/634
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0289, wR_2 = 0.0625$
Final R indexes [all data]	$R_1 = 0.0398, wR_2 = 0.0673$
Largest diff. peak/hole / e Å ⁻³	1.18/-1.04

Table S2. Crystal data and structure refinement for $1 \cdot \frac{1}{2} CH_2 I_2$.

Table S3. The Cartesian atomic coordinates of the $(1)_2 \cdot (CH_2I_2)$ model cluster.

Atom	X	Y	Z
Pt	10.421443	6.489818	4.227004
Cl	11.051766	8.736281	4.366492
N	11.531644	6.053446	5.792138
Н	11.959691	6.712461	6.138442
Ν	9.930323	4.610037	4.083167
N	9.276165	6.852112	2.670569
Н	9.231911	7.675600	2.428961

N	8.482014	4.683216	2.159971
N	11.174181	3.720584	5.930660
С	8.573631	6.020625	1.950578
С	11.708446	4.897896	6.375217
С	9.099636	4.074627	3.140898
С	10.397644	3.614973	4.890136
С	9.012621	2.613283	3.388948
С	6.872213	1.919288	2.303325
Н	6.494321	2.734122	2.543322
С	11.383958	0.737251	5.581134
Н	12.071685	1.353776	5.479659
С	8.773020	0.466660	2.151918
Н	9.673505	0.295787	2.309768
С	8.219018	1.669173	2.577147
С	9.330208	-1.083384	5.945156
Н	8.640078	-1.690122	6.090121
С	10.091503	1.044832	5.117248
С	8.005763	-0.475211	1.501188
Н	8.396799	-1.262115	1.198373
С	9.816189	2.318674	4.455243
С	7.797403	6.513063	0.715158
С	9.066793	0.115381	5.310534
Н	8.205982	0.302345	5.012551
С	6.648526	-0.250996	1.296627
Н	6.115247	-0.907558	0.908444
С	12.506317	4.788996	7.673455
С	6.101005	0.963907	1.676756
Н	5.202307	1.136979	1.506020
С	7.613290	8.041594	0.715158

		1	1
Н	7.146151	8.307888	1.510852
Н	7.105176	8.303111	-0.056375
Н	8.472991	8.468136	0.690998
С	11.633763	-0.475616	6.188374
Н	12.493973	-0.678415	6.478303
С	8.597522	6.099563	-0.510597
Н	9.474948	6.486124	-0.465497
Н	8.152869	6.410024	-1.303070
Н	8.670512	5.142334	-0.539590
С	11.492926	4.944099	8.809011
Н	11.120031	5.829044	8.784850
Н	11.930676	4.803471	9.651416
Н	10.790281	4.299161	8.701093
С	10.616559	-1.392192	6.370385
Н	10.792581	-2.210312	6.773064
С	6.409581	5.861570	0.700662
Н	6.503581	4.906900	0.647508
Н	5.915826	6.176196	-0.061207
Н	5.938844	6.092071	1.504410
С	13.584951	5.868044	7.786205
Н	14.198067	5.786869	7.051718
Н	14.060716	5.759616	8.614114
Н	13.173908	6.735504	7.763655
С	13.176747	3.423533	7.781373
Н	12.508542	2.736035	7.739495
Н	13.646770	3.362505	8.615725
Н	13.795651	3.312822	7.054940
Ι	8.269234	10.679753	4.068349
Ι	4.953991	11.204693	2.828580

С	6.668636	12.060365	3.743306
Н	6.407853	12.441925	4.596986
Н	6.990364	12.784680	3.184387
Pt	3.989334	15.030958	5.641697
N	5.042178	16.118163	6.900311
Н	5.501874	15.667004	7.472116
N	3.350163	16.685900	4.838593
N	2.851428	14.017056	4.397257
Н	2.890461	13.159849	4.469739
С	2.048299	14.470990	3.479148
N	1.910635	15.789796	3.131234
N	4.598867	18.300714	6.120724
С	3.805146	17.932496	5.143019
С	5.152285	17.392586	7.005008
С	2.515385	16.749785	3.767467
С	1.617744	18.603081	2.176079
С	3.472414	20.343807	4.205582
С	1.189199	13.531363	2.631911
С	2.440115	21.266599	3.968806
Н	1.581948	20.960824	3.780353
С	4.760335	20.823855	4.472961
Н	5.451417	20.222932	4.638865
С	3.197776	18.892932	4.181421
С	2.408219	18.181280	3.355123
С	0.091131	19.458056	0.008054
Н	-0.424612	19.759468	-0.703883
С	1.403509	19.887027	0.153018
Н	1.776364	20.456857	-0.481604
С	-0.216307	14.141864	2.474061

Ц	0 503150	1/ 206887	2 240627
П	-0.393139	14.300887	5.540027
Н	-0.779175	13.530970	1.992457
Н	-0.154438	14.967744	1.989235
С	2.693224	22.624174	4.017128
Н	2.005364	23.233216	3.876996
С	1.049552	12.142551	3.261702
Н	1.918020	11.744593	3.356734
Н	0.503482	11.587643	2.699561
Н	0.638202	12.221801	4.126657
С	2.159626	19.472605	1.233809
Н	3.033801	19.775274	1.330452
С	6.683684	17.012528	8.984579
Н	6.056394	16.418239	9.404976
Н	7.197786	17.462147	9.659469
Н	7.272524	16.506670	8.419217
С	0.317617	18.149332	2.002121
Н	-0.043026	17.548931	2.614193
С	5.921946	18.051737	8.138952
С	1.845029	13.429541	1.248306
Н	1.966083	14.309628	0.885894
Н	1.281250	12.917594	0.663615
Н	2.698258	12.996508	1.328841
С	6.934006	19.053500	7.549430
Н	7.620433	18.575230	7.079101
Н	7.328481	19.564346	8.259756
Н	6.481461	19.645255	6.942190
С	5.015236	22.181410	4.493900
Н	5.877147	22.492133	4.653361
С	-0.447720	18.571957	0.937437

Н	-1.320598	18.266159	0.840794
С	3.988028	23.072467	4.278064
Н	4.159690	23.985889	4.307057
С	4.915074	18.794911	9.028068
Н	4.449547	19.450598	8.504585
Н	5.381591	19.231126	9.744837
Н	4.285008	18.168276	9.390479
Cl	4.816903	13.074555	6.582195

Table S4. The Cartesian atomic coordinates of the $(2)_2 \cdot (CH_2I_2)$ model cluster.

Atom	X	Y	Z
С	-3.768579	4.294361	18.675412
Н	-3.071516	4.508936	18.020647
С	-3.204110	3.198598	19.528944
Н	-3.677975	3.228639	20.373708
Н	-2.282714	3.436061	19.718943
С	-3.201040	1.702295	19.061255
Н	-4.095206	1.353253	19.260023
С	-3.947218	5.541757	19.508483
Н	-4.616941	5.385833	20.180786
Н	-4.222956	6.268451	18.944333
Н	-3.115056	5.766346	19.932326
С	-2.236752	0.929825	19.949865
Н	-1.341031	1.233091	19.792019
Н	-2.297657	-0.007152	19.751097
Н	-2.463676	1.074306	20.873551
С	-5.847870	5.401568	17.041423
С	-4.952069	6.184052	16.345735
Н	-4.101794	5.852176	16.170352
1		1	

С	-5.293955	7.465780	15.895584
Н	-4 675648	7 996495	15 448357
	6.577502	7.020(70	16.120100
U	-6.577502	7.920679	10.138198
Н	-6.833123	8.757521	15.822508
С	-7.458178	7.173958	16.819270
Н	-8.308514	7.507264	16.988808
С	-7.107057	5.875064	17.286960
Н	-7.725182	5.357223	17.751726
С	-6.502019	3.138517	18.833257
С	-6.983283	1.862511	18.637412
Н	-6.673955	1.368989	17.912494
С	-7.899664	1.301755	19.476329
Н	-8.221544	0.443455	19.318484
С	-8.316201	1.986965	20.502322
Н	-8.938892	1.597869	21.072318
С	-7.878220	3.255818	20.780013
Н	-8.203149	3.702134	21.528315
С	-6.909493	3.909557	19.914788
Н	-6.590472	4.769287	20.069710
С	-1.397752	2.273065	16.778348
С	-1.404000	3.278706	15.848815
Н	-2.208164	3.524752	15.451280
С	-0.266450	3.926723	15.495126
Н	-0.309210	4.609071	14.863745
С	0.913730	3.606291	16.032968
Н	1.688532	4.055468	15.781585
С	0.958987	2.603510	16.959577
Н	1.769881	2.371769	17.351267
С	-0.197143	1.929745	17.322036

Н	-0.153372	1.237383	17.941724
С	-2.848341	-0.306127	17.117422
С	-3.933888	-1.037112	17.520804
Н	-4.667275	-0.599379	17.892032
С	-3.958986	-2.416114	17.392190
Н	-4.702517	-2.906776	17.658188
С	-2.869651	-3.034090	16.863116
Н	-2.871389	-3.962485	16.804655
С	-1.773212	-2.353172	16.418812
Н	-1.055850	-2.800919	16.030045
С	-1.758178	-0.965587	16.559118
Н	-1.015364	-0.479217	16.278505
Р	-5.253779	3.792256	17.685080
Р	-2.971700	1.519763	17.263283
Ι	-6.860852	2.969861	14.703854
Ι	-3.967442	0.764602	14.065634
Pt	-4.707475	2.315851	16.081052
С	-6.354114	-1.620756	9.637319
Н	-7.218162	-1.241674	9.412244
Н	-6.517578	-2.469043	10.078701
Ι	-5.312654	-2.002700	7.841978
Ι	-5.428316	-0.356767	10.988064
С	-0.962549	-3.922431	0.009938
Н	-0.709918	-3.014063	-0.257229
С	-2.473284	-3.983942	-0.125691
Н	-2.697930	-3.833740	-1.055224
Н	-2.758942	-4.883727	0.099384
С	-3.281628	-3.018355	0.710303
Н	-4.177452	-2.984023	0.312767

С	-0.300362	-4.863700	-1.028916
Н	-0.543383	-5.773498	-0.838917
Н	0.654061	-4.772148	-0.982147
Н	-0.600340	-4.630528	-1.911679
С	-2.744896	-1.603590	0.689841
Н	-1.862832	-1.590716	1.069839
Н	-3.322333	-1.035682	1.204300
Н	-2.709031	-1.287450	-0.216306
С	1.182749	-3.084158	1.549220
С	1.106793	-1.789555	2.081217
Н	0.380701	-1.554954	2.610290
С	2.097134	-0.855439	1.826911
Н	2.052356	-0.005722	2.201062
С	3.165210	-1.207342	0.993839
Н	3.825791	-0.582213	0.803841
С	3.245158	-2.466182	0.464766
Н	3.961418	-2.689340	-0.084769
С	2.278166	-3.398868	0.733687
Н	2.349092	-4.251446	0.371228
С	0.264609	-5.877925	1.891218
С	-0.705314	-6.863539	1.768450
Н	-1.549246	-6.621784	1.464452
С	-0.475305	-8.161003	2.069524
Н	-1.144041	-8.797575	1.964294
С	0.801586	-8.525780	2.548906
Н	0.972205	-9.406968	2.797366
С	1.771266	-7.595955	2.648290
Н	2.621210	-7.844862	2.931826
С	1.511593	-6.255577	2.323830

Н	2.185744	-5.620435	2.405676
С	-4.741828	-2.600649	3.177363
С	-4.398709	-1.277437	3.528130
Н	-3.538542	-0.954143	3.379054
С	-5.357011	-0.480648	4.089357
Н	-5.126598	0.390527	4.320278
С	-6.624241	-0.896923	4.323201
Н	-7.264068	-0.308988	4.659353
С	-6.944413	-2.210122	4.057203
Н	-7.785747	-2.537707	4.276432
С	-6.014230	-3.038382	3.457977
Н	-6.254110	-3.910987	3.241670
С	-4.339820	-5.265670	2.168908
С	-5.347594	-5.408720	1.233530
Н	-5.596164	-4.672013	0.724918
С	-5.985019	-6.583161	1.037685
Н	-6.643016	-6.658978	0.385844
С	-5.645991	-7.663189	1.812295
Н	-6.091326	-8.471421	1.698296
С	-4.677409	-7.561623	2.733058
Н	-4.455876	-8.301191	3.253363
С	-4.012351	-6.382891	2.920134
Н	-3.334167	-6.329962	3.554437
Р	-0.258163	-4.154887	1.719342
Р	-3.490293	-3.670520	2.423214
Ι	0.641589	-3.884237	5.021549
Ι	-2.913521	-3.840749	5.795341
Pt	-1.558174	-3.817590	3.541137

- 1. E. Espinosa, E. Molins and C. Lecomte, *Chem. Phys. Lett.*, 1998, **285**, 170-173.
- M. V. Vener, A. N. Egorova, A. V. Churakov and V. G. Tsirelson, *J. Comput. Chem.*, 2012, 33, 2303–2309.