Syntheses, structures and luminescence properties of five

coordination polymers based on designed 2,7-bis(4-benzoic acid)-

N-(4-benzoic acid) carbazole

Dong-Hui Chen^{ab}, Ling Lin^{ab}, Tian-Lu Sheng^a, Yue-Hong Wen^a, Sheng-Min Hu^a, Rui-Biao Fu^a, Chao Zhuo^{ab}, Hao-Ran Li^{ab} and Xin-Tao Wu^{*a}

^{a.} State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou

350002, Fujian, PR China.

E-mail: wxt@fjirsm.ac.cn

_

^{b.} University of the Chinese Academy of Sciences, Beijing, 100049, China.

Table S1. Selected bond lengths (Å) and angles (deg) for TCZ-001 - TCZ-005

TCZ-001					
Zn(1)-O(4)#1	1.926(3)	Zn(2)-O(2)	2.193(3)		
Zn(1)-O(6)	1.929(3)	Zn(3)-O(5)	2.056(3)		
Zn(1)-O(8)	1.941(3)	Zn(3)-O(3)#1	2.058(3)		
Zn(1)-O(16)	2.009(3)	Zn(3)-O(13)	2.087(3)		
Zn(2)-O(11)#2	1.983(3)	Zn(3)-O(15)	2.103(3)		
Zn(2)-O(17)	2.016(3)	Zn(3)-O(7)	2.109(3)		
Zn(2)-O(10)	2.021(3)	Zn(3)-O(14)	2.158(3)		
Zn(2)-O(1)	2.150(3)				
O(4)#1-Zn(1)-O(6)	129.39(13)	O(5)-Zn(3)-O(3)#1	96.61(11)		
O(4)#1-Zn(1)-O(8)	111.66(14)	O(5)-Zn(3)-O(13)	85.66(11)		
O(6)-Zn(1)-O(8)	106.95(13)	O(3)#1-Zn(3)-O(13)	172.02(11)		
O(4)#1-Zn(1)-O(16)	97.73(15)	O(5)-Zn(3)-O(15)	93.14(12)		
O(6)-Zn(1)-O(16)	103.95(13)	O(3)#1-Zn(3)-O(15)	85.68(12)		
O(8)-Zn(1)-O(16)	103.34(14)	O(13)-Zn(3)-O(15)	86.56(11)		
O(11)#2-Zn(2)-O(17)	97.24(16)	O(5)-Zn(3)-O(7)	96.66(12)		
O(11)#2-Zn(2)-O(10)	111.91(13)	O(3)#1-Zn(3)-O(7)	96.36(12)		
O(17)-Zn(2)-O(10)	104.52(14)	O(13)-Zn(3)-O(7)	90.96(12)		
O(11)#2-Zn(2)-O(1)	97.44(13)	O(15)-Zn(3)-O(7)	169.68(12)		
O(17)-Zn(2)-O(1)	98.28(13)	O(5)-Zn(3)-O(14)	176.55(11)		
O(10)-Zn(2)-O(1)	139.65(11)	O(3)#1-Zn(3)-O(14)	86.72(11)		
O(11)#2-Zn(2)-O(2)	93.08(15)	O(13)-Zn(3)-O(14)	91.16(11)		
O(17)-Zn(2)-O(2)	157.45(13)	O(15)-Zn(3)-O(14)	87.99(11)		
O(10)-Zn(2)-O(2)	89.98(11)	O(7)-Zn(3)-O(14)	82.04(11)		
O(1)-Zn(2)-O(2)	60.40(10)				

Zn(1)-O(6)	2.0198(17)	Zn(2)-O(3)#5	1.978(2)
Zn(1)-O(6)#1	2.0198(17)	Zn(2)-O(1)#3	1.984(2)
Zn(1)-O(2)#2	2.046(3)	Zn(2)-O(7)	1.997(2)
Zn(1)-O(2)#3	2.046(3)	Zn(2)-O(3)#5	1.978(2)
Zn(1)-O(4)#4	2.094(2)	Zn(2)-O(1)#3	1.984(2)
Zn(1)-O(4)#5	2.094(2)	Zn(2)-O(7)	1.997(2)
Zn(2)-O(5)	1.9455(19)		
O(6)-Zn(1)-O(6)#1	180.000(1)	O(6)#1-Zn(1)-O(4)#5	91.60(8)
O(6)-Zn(1)-O(2)#2	89.45(13)	O(2)#2-Zn(1)-O(4)#5	87.59(16)
O(6)#1-Zn(1)-O(2)#2	90.55(13)	O(2)#3-Zn(1)-O(4)#5	92.41(16)
O(6)-Zn(1)-O(2)#3	90.55(13)	O(4)#4-Zn(1)-O(4)#5	180.000(1)
O(6)#1-Zn(1)-O(2)#3	89.45(13)	O(5)-Zn(2)-O(3)#5	130.12(11)
O(2)#2-Zn(1)-O(2)#3	180.00(9)	O(5)-Zn(2)-O(1)#3	117.99(10)
O(6)-Zn(1)-O(4)#4	91.60(8)	O(3)#5-Zn(2)-O(1)#3	105.20(11)
O(6)#1-Zn(1)-O(4)#4	88.40(8)	O(5)-Zn(2)-O(7)	97.49(10)
O(2)#2-Zn(1)-O(4)#4	92.41(16)	O(3)#5-Zn(2)-O(7)	101.62(12)
O(2)#3-Zn(1)-O(4)#4	87.59(16)	O(1)#3-Zn(2)-O(7)	96.22(12)
O(6)-Zn(1)-O(4)#5	88.40(8)		

	TCZ	-003	
Zn(1)-O(5)#1	1.933(4)	Zn(2)-O(15)	1.982(3)
Zn(1)-O(3)	1.942(4)	Zn(3)-O(9)	1.981(3)
Zn(1)-O(7)#2	1.960(4)	Zn(3)-O(14)	2.024(4)
Zn(1)-O(13)	1.980(4)	Zn(3)-O(4)	2.027(4)
Zn(2)-O(11)#1	1.941(3)	Zn(3)-O(12)#1	2.031(3)
Zn(2)-O(10)	1.959(3)	Zn(3)-O(2)#2	2.049(4)
Zn(2)-O(1)#2	1.981(4)		
O(5)#1-Zn(1)-O(3)	126.33(16)	O(1)#2-Zn(2)-O(15)	99.75(15
O(5)#1-Zn(1)-O(7)#2	107.54(16)	O(9)-Zn(3)-O(14)	99.26(15
O(3)-Zn(1)-O(7)#2	98.27(17)	O(9)-Zn(3)-O(4)	109.33(1
O(5)#1-Zn(1)-O(13)	107.44(17)	O(14)-Zn(3)-O(4)	84.00(16
O(3)-Zn(1)-O(13)	96.91(18)	O(9)-Zn(3)-O(12)#1	102.86(1
O(7)#2-Zn(1)-O(13)	121.52(17)	O(14)-Zn(3)-O(12)#1	87.14(15
O(11)#1-Zn(2)-O(10)	123.71(15)	O(4)-Zn(3)-O(12)#1	147.57(1
O(11)#1-Zn(2)-O(1)#2	115.88(15)	O(9)-Zn(3)-O(2)#2	107.00(1
O(10)-Zn(2)-O(1)#2	110.09(15)	O(14)-Zn(3)-O(2)#2	153.52(1)
O(11)#1-Zn(2)-O(15)	101.70(14)	O(4)-Zn(3)-O(2)#2	84.21(16
O(10)-Zn(2)-O(15)	100.72(14)	O(12)#1-Zn(3)-O(2)#2	90.23(16
	TCZ	-004	
Cd(1)-O(7)	2.235(3)	Cd(2)-O(5)#4	2.167(2)
Cd(1)-O(7)#1	2.235(3)	Cd(2)-O(8)	2.278(3)
Cd(1)-O(6)	2.274(2)	Cd(2)-O(1)	2.306(3)
Cd(1)-O(6)#1	2.274(2)	Cd(2)-O(4)#5	2.342(2)

Cd(1)-O(4)#2	2.340(2)	Cd(2)-O(3)#5	2.347(2)
Cd(1)-O(4)#3	2.340(2)	Cd(2)-O(2)	2.376(3)
O(7)-Cd(1)-O(7)#1	180.000(1)	O(5)#4-Cd(2)-O(8)	84.21(11)
O(7)-Cd(1)-O(6)	91.40(9)	O(5)#4-Cd(2)-O(1)	101.93(10)
O(7)#1-Cd(1)-O(6)	88.60(9)	O(8)-Cd(2)-O(1)	88.11(10)
O(7)-Cd(1)-O(6)#1	88.60(9)	O(5)#4-Cd(2)-O(4)#5	101.95(9)
O(7)#1-Cd(1)-O(6)#1	91.40(9)	O(8)-Cd(2)-O(4)#5	108.41(10)
O(6)-Cd(1)-O(6)#1	180.00(13)	O(1)-Cd(2)-O(4)#5	152.13(9)
O(7)-Cd(1)-O(4)#2	90.18(10)	O(5)#4-Cd(2)-O(3)#5	157.48(9)
O(7)#1-Cd(1)-O(4)#2	89.82(10)	O(8)-Cd(2)-O(3)#5	100.21(10)
O(6)-Cd(1)-O(4)#2	87.28(9)	O(1)-Cd(2)-O(3)#5	100.28(10)
O(6)#1-Cd(1)-O(4)#2	92.72(9)	O(4)#5-Cd(2)-O(3)#5	55.63(8)
O(7)-Cd(1)-O(4)#3	89.82(10)	O(5)#4-Cd(2)-O(2)	100.66(10)
O(7)#1-Cd(1)-O(4)#3	90.18(10)	O(8)-Cd(2)-O(2)	144.11(9)
O(6)-Cd(1)-O(4)#3	92.72(9)	O(1)-Cd(2)-O(2)	56.02(9)
O(6)#1-Cd(1)-O(4)#3	87.28(9)	O(4)#5-Cd(2)-O(2)	105.30(9)
O(4)#2-Cd(1)-O(4)#3	180.00(11)	O(3)#5-Cd(2)-O(2)	88.70(10)
	TCZ	-005	
Cd(3)-O(2)	2.287(4)	Cd(1)-O(42)	2.213(5)
Cd(3)-O(9)	2.292(5)	Cd(1)-O(21)#2	2.223(4)
Cd(3)-N(27)	2.296(5)	Cd(1)-O(41)	2.281(5)
Cd(3)-O(11)#1	2.346(5)	Cd(1)-O(14)	2.316(5)
Cd(3)-O(12)#1	2.445(4)	Cd(2)-O(40)	2.222(4)
Cd(3)-O(1)	2.501(5)	Cd(2)-O(18)	2.238(5)
Cd(3)-O(10)	2.631(6)	Cd(2)-O(39)	2.277(5)
Cd(4)-O(35)#2	2.283(5)	Cd(2)-O(16)#1	2.295(5)
Cd(4)-O(26)	2.291(4)	Cd(2)-O(19)	2.381(4)
Cd(4)-N(50)	2.321(5)	Cd(2)-O(20)	2.406(5)
Cd(4)-O(34)	2.324(5)	Cd(5)-O(17)	2.169(4)
Cd(4)-O(33)	2.444(4)	Cd(5)-O(38)	2.205(4)
Cd(4)-O(25)	2.574(5)	Cd(5)-O(15)#1	2.214(4)
Cd(6)-O(45)	2.247(7)	Cd(5)-O(37)	2.275(5)
Cd(6)-O(29)	2.318(5)	Cd(5)-O(19)	2.331(5)
Cd(6)-O(28)#1	2.343(5)	Cd(8)-O(43)	2.222(4)
Cd(6)-O(32)	2.352(5)	Cd(8)-O(24)	2.241(4)
Cd(6)-O(31)	2.368(5)	Cd(8)-O(44)	2.268(5)
Cd(6)-O(30)	2.375(5)	Cd(8)-O(22)#2	2.280(5)
Cd(6)-O(27)#1	2.378(5)	Cd(8)-O(13)	2.389(4)
Cd(7)-O(5)#1	2.232(6)	Cd(8)-O(14)	2.391(4)
Cd(7)-O(46)	2.313(7)	Cd(0A)-O(59)	2.252(6)
Cd(7)-O(3)	2.337(7)	Cd(0A)-O(6BA)	2.269(5)
Cd(7)-O(8)#1	2.337(5)	Cd(0A)-O(58)	2.281(6)
Cd(7)-O(4)	2.425(7)	Cd(0A)-O(60)	2.293(5)

Cd(7)-O(7)#1	2.445(5)	Cd(0A)-N(25)	2.295(7)
Cd(7)-O(6)#1	2.489(7)	Cd(0A)-O(61)	2.314(6)
Cd(1)-O(23)	2.182(4)		
O(2)-Cd(3)-O(9)	99.82(17)	O(45)-Cd(6)-O(32)	171.0(3)
O(2)-Cd(3)-N(27)	160.1(2)	O(29)-Cd(6)-O(32)	98.0(2)
O(9)-Cd(3)-N(27)	89.23(19)	O(28)#1-Cd(6)-O(32)	90.12(19)
O(2)-Cd(3)-O(11)#1	90.98(16)	O(45)-Cd(6)-O(31)	116.2(3)
O(9)-Cd(3)-O(11)#1	132.45(18)	O(29)-Cd(6)-O(31)	82.82(17)
N(27)-Cd(3)-O(11)#1	95.96(19)	O(28)#1-Cd(6)-O(31)	131.68(17)
O(2)-Cd(3)-O(12)#1	80.85(16)	O(32)-Cd(6)-O(31)	55.52(18)
O(9)-Cd(3)-O(12)#1	173.15(19)	O(45)-Cd(6)-O(30)	94.9(2)
N(27)-Cd(3)-O(12)#1	88.11(18)	O(29)-Cd(6)-O(30)	56.32(17)
O(11)#1-Cd(3)-O(12)#1	54.17(16)	O(28)#1-Cd(6)-O(30)	84.34(17)
O(2)-Cd(3)-O(1)	54.25(16)	O(32)-Cd(6)-O(30)	93.36(19)
O(9)-Cd(3)-O(1)	79.97(17)	O(31)-Cd(6)-O(30)	125.74(18)
N(27)-Cd(3)-O(1)	110.92(19)	O(45)-Cd(6)-O(27)#1	84.7(3)
O(11)#1-Cd(3)-O(1)	138.97(14)	O(29)-Cd(6)-O(27)#1	161.1(2)
O(12)#1-Cd(3)-O(1)	95.10(16)	O(28)#1-Cd(6)-O(27)#1	55.77(19)
O(2)-Cd(3)-O(10)	100.50(17)	O(32)-Cd(6)-O(27)#1	91.3(2)
O(9)-Cd(3)-O(10)	52.41(18)	O(31)-Cd(6)-O(27)#1	89.00(18)
N(27)-Cd(3)-O(10)	99.08(18)	O(30)-Cd(6)-O(27)#1	139.84(19)
O(11)#1-Cd(3)-O(10)	80.15(16)	O(5)#1-Cd(7)-O(46)	86.3(2)
O(12)#1-Cd(3)-O(10)	134.30(16)	O(5)#1-Cd(7)-O(3)	172.3(3)
O(1)-Cd(3)-O(10)	122.99(16)	O(46)-Cd(7)-O(3)	89.4(3)
O(35)#2-Cd(4)-O(26)	95.75(19)	O(5)#1-Cd(7)-O(8)#1	93.4(2)
O(35)#2-Cd(4)-N(50)	92.3(2)	O(46)-Cd(7)-O(8)#1	98.5(2)
O(26)-Cd(4)-N(50)	160.0(2)	O(3)-Cd(7)-O(8)#1	81.0(3)
O(35)#2-Cd(4)-O(34)	131.0(2)	O(5)#1-Cd(7)-O(4)	133.9(2)
O(26)-Cd(4)-O(34)	95.17(17)	O(46)-Cd(7)-O(4)	114.5(3)
N(50)-Cd(4)-O(34)	93.24(19)	O(3)-Cd(7)-O(4)	53.8(2)
O(35)#2-Cd(4)-O(33)	174.1(2)	O(8)#1-Cd(7)-O(4)	121.0(2)
O(26)-Cd(4)-O(33)	83.72(17)	O(5)#1-Cd(7)-O(7)#1	87.8(2)
N(50)-Cd(4)-O(33)	86.36(18)	O(46)-Cd(7)-O(7)#1	152.4(2)
O(34)-Cd(4)-O(33)	54.93(17)	O(3)-Cd(7)-O(7)#1	93.2(3)
O(35)#2-Cd(4)-O(25)	81.77(18)	O(8)#1-Cd(7)-O(7)#1	54.95(18)
O(26)-Cd(4)-O(25)	53.51(16)	O(4)-Cd(7)-O(7)#1	88.6(2)
N(50)-Cd(4)-O(25)	110.03(19)	O(5)#1-Cd(7)-O(6)#1	55.1(2)
O(34)-Cd(4)-O(25)	139.83(16)	O(46)-Cd(7)-O(6)#1	108.8(3)
O(33)-Cd(4)-O(25)	93.23(16)	O(3)-Cd(7)-O(6)#1	132.5(2)
O(45)-Cd(6)-O(29)	83.7(3)	O(8)#1-Cd(7)-O(6)#1	135.2(2)
O(45)-Cd(6)-O(28)#1	94.3(3)	O(4)-Cd(7)-O(6)#1	78.9(2)
O(29)-Cd(6)-O(28)#1	140.09(17)	O(7)#1-Cd(7)-O(6)#1	89.54(19)

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z-1; #2 x-

1,y,z+1 for **TCZ-001**;#1 -x+3/2,-y+3/2,-z+1;#2 x,-y+1,z-1/2;#3 -x+3/2,y+1/2,z+3/2;#4 -x+2,-y+1,-z+2#5 x-1/2,y+1/2,z-1; #6 -x+3/2,y-1/2,-z+3/2; #7 x+1/2,y-1/2,z+1 for **TCZ-002**; #1 x-1,y-1,z-1;#2 -x,-y+1,-z+1; #3 x+1,y+1,z+1 for **TCZ-003**; #1 -x-2,-y,-z+3; #2 x-2,y,z+1; #3 -x,-y,-z+2; #4 -x-1,-y+1,-z+2; #5 -x+1,-y+1,z+1; #6 x+2,y,z-1 for **TCZ-004**; #1 x,y+1,z; #2 x,y-1,z for **TCZ-005**

001 and (d) Infrared spectra for the TCZ-001 powders after measurement.

Fig. S13 (a) Metal elemental weight (%) of the powders after measurements in different Eu³⁺ concentrations in DMA solution; (b)PXRD patterns of the powders after measurements in different Eu³⁺ concentrations in DMA solution; (c) Infrared spectra for TCZ-004 and (d) Infrared spectra for the powders after measurement.