Robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties

Oluseun Akintola, Sven Ziegenbalg, Axel Buchholz, Helmar Görls, Winfried Plass

Supplementary Information

Crystal and framework structure of JUMP-1 with topology

Table S1: Bond lengths for the cobalt(II) ions in the crystal structure of JUMP-1 (in pm). For notation see Fig. 1 in the main text

Co1-O2	2.0380(18)
Co1-03	2.1536(19)
Co1-06	2.056(2)
Co2-01	1.978(2)
Co2-03	2.020(2)
Co2–O5	1.996(2)
Co2-07	2.001(3)

Table S2: Bond angles at the cobalt(II) ions in the crystal structure of JUMP-1 (in deg). For notation see Fig. 1 in the main text

02–Co1–O2A	86.51(11)	01–Co2–O5D	102.81(9)
02–Co1–O3B	95.03(7)	01–Co2–O7	106.59(11)
02–Co1–O3C	87.70(7)	05D–Co2–O7	95.81(12)
02–Co1–O6D	96.00(10)	01–Co2–O3C	101.07(8)
O2–Co1–O6E	172.50(8)	05D-Co2-03C	114.15(8)
O3B-Co1-O3C	176.25(10)	07–Co2–O3C	133.10(11)
O3B-Co1-O6D	85.03(8)		
O3B-Co1-O6E	92.14(8)		
06D-Co1-06E	82.40(15)		

Fig. S1: Asymmetric unit of JUMP-1 with thermal ellipsoids at the 50 % probability level. Hydrogen atoms are omitted for the sake of clarity.

Fig. S2: 3D framework of JUMP-1 viewed along the crystallographic [001] direction. 2D networks composed of linear trinuclear cobalt(II) SBUs and ntb^{3-} ligands are arranged along the (100) plane and interconnected by the bdc^{2-} pillars. Red polyhedra represent cobalt(II) centers.

Fig. S3: Representation of the 2D network composed of linear trinuclear cobalt(II) SBUs and ntb^{3-} ligands within the 3D framework of JUMP-1 viewed along the crystallographic [100] direction.

Topological analysis for JUMP-1

Fig. S4: Representation of the tfz-d topology of the network of JUMP-1 viewed along the negative crystallographic [001] direction. The red and blue spheres represent the trinuclear cobalt clusters (8-connected nodes) and the nitrogen atoms of the ntb³⁻ ligands (3-connected nodes), respectively.

Fig. S5: Representation of the tfz-d topology of the network of JUMP-1 viewed along the crystallographic [100] direction. The red and blue spheres represent the trinuclear cobalt clusters (8-connected nodes) and the nitrogen atoms of the ntb^{3-} ligands (3-connected nodes), respectively.

Table S3: Coordination sequences for JUMP-1 (topological density $TD_{10} = 1748$)

Vertex	CS_1	CS_2	CS_3	CS_4	CS_5	CS_6	CS_7	CS_8	CS_9	CS_{10}
V1	3	18	41	74	113	164	221	290	365	452
V2	8	20	44	74	116	164	224	290	368	452

Table S4: Vertex Symbols for JUMP-1

Vertex	Vertex symbol	Extended Point Symbol
V1	[4 ³]	[4.4.4]
V2	$[4^6.6^{18}.8^4]$	$\begin{bmatrix} 4.4.4.4.4.6_2.6_2.6_2.6_2.6_2.6_2.6_2.6_4.6_4.6_4.6_4.6_4.6_4.6_4.6_4.6_4.6_4$

XRPD patterns for JUMP-1

Fig. S6: XRPD pattern for JUMP-1: simulated pattern (bottom, black) and experimental pattern (top, red).

TGA profile for JUMP-1

Fig. S7: Thermogravimetric data of JUMP-1: TG curve in blue and differential TG curve (DTG) in red.

Magnetic data for JUMP-1

Fig. S8: Field-dependent magnetization for JUMP-1. Lines represent best fit (see text in main manuscript for parameters).

XRPD patterns for ion exchanged samples

Fig. S9: XRPD pattern for lithium ion exchanged sample JUMP-1(Li) (top); for comparison also the pattern of the as-synthesized sample JUMP-1 is displayed (bottom).

400

TGA profile for ion exchanged sample

200

Fig. S10: Thermogravimetric data for lithium ion exchanged sample JUMP-1(Li): TG curve in blue and differential TG curve (DTG) in red.

T/°C

600

800

Sorption data

Table S5: Consistency criteria derived from measured BET Data for activated samples of the as-synthesized (JUMP-1^{dcm} and JUMP-1^{scd}) and lithium ion exchanged (JUMP-1(Li)^{scd}) materials (for notation see text in main manuscript)

	$^{P}/P_{ m o}$ range	C	$V_{\rm m} \; [{\rm cm}^3/{\rm g}]$	$1/\sqrt{C} + 1$	$P/P_{\rm o}(V_{\rm m})$	$a(BET) \; [^{\mathrm{m}^2/\mathrm{g}}]$	R
$JUMP ext{-}1^{\mathrm{dcm}}$	0.13 - 0.28	8.16	6.34	0.26	0.26	28	0.999
$JUMP ext{-}1^{\mathrm{scd}}$	0.08 - 0.23	134	25.96	0.08	0.08	113	0.999
$JUMP ext{-}1(Li)^{\mathrm{scd}}$	0.005 - 0.026	3025	81.52	0.018	0.018	355	0.999

Fig. S11: N₂ isotherm for JUMP-1^{dcm} measured at 77 K, which is the as-synthesized sample activated by solvent-exchange with dichloromethane.

Fig. S12: Simulated pore distribution data for JUMP-1^{dcm} fitted using N₂ on carbon at 77 K (slit pores QSDFT equilibrium model).

Fig. S13: CO_2 isotherms measured at 273 K for samples derived from the as-synthesized (red) and lithium ion exchanged (blue) samples of JUMP-1.