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Figure S1. Eggshell characterization: FESEM images of (a, b) porous eggshell with pores
visible; (c, d) outer layer eggshell membrane; (e, f) inner layer eggshell membrane at (a, c, e)
high and (b, d, f) low magnification views, as previously observed.!
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Figure S2. EDS analysis of typical Co,(OH);Cl microparticles obtained from the eggshell
reactor system. Reaction time was 3 days; other experimental conditions unchanged.
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Figure S3. FESEM image of the particles obtained from a control experiment where the aqueous
solutions of 30 ml 1 M CoCl, with 10 mM surfactant CTAB and 30 ml 1 M NaOH were directly
mixed and stirred in a beaker and then kept at 50 °C for 5 days without stirring. Note, the
Co0,(OH);Cl nanoparticles obtained in the control experiment are significantly smaller as
compared to those crystalline Co,(OH);Cl microparticles obtained in our eggshell reactor
system, indicating the important role played by eggshell reactor system in facilitating the
formation and growth of crystalline Co,(OH);Cl microstructures.
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Figure S4. Time-course experiments to monitor the changes in forming Co,(OH);Cl on outer
layer of the eggshell membrane after reaction time of (a,b) 6 h, (c,d) 1 day and (e,f) 3 days at low
(a,c,e) and high (b,d,f) magnification views.
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Figure SS5. The pH measured along with time inside of the eggshell reactor.
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Figure S6. FESEM images and EDS results of solid products obtained from the eggshell reactor
systems after 3 days of reaction where the concentration of CoCl, solution was changed while
kept other experimental parameter unchanged: (a, b, ¢) 0.01 M CoCl,, (d, e, f) 0.25 M CoCl,,
and (g, h, 1) 1 M CoCl, solution. To be noted here, the concentration of CoCl, inside the eggshell
reactor is critically important which could determine the morphology and composition of the
products obtained.
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Figure S7. Additional FESEM images for the samples obtained after different reaction time
inside the eggshell reactor system at various degrees of magnification: (a,b) after 12 hours; (c,d)
after 24 hours at low (a,c) and high (b,d) magnification views.
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Figure S8. Electrochemical performance of the as-prepared Co,(OH);Cl microstructures
collected from the eggshell reactor system: (left) first three cycle charge-discharge profiles;
(right) capacity vs cycle number plots tested at various current conditions.
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Figure S9. XRD pattern of Co304 derived from Co,(OH);Cl microstructures after calcination at
450 °C in air for 2 h.
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re S10. (a) SEM and (b) TEM characterization of the Co3;04 microstructures derived from
Co,(OH);Cl microparticles after calcination at 450 °C in air for 2 h. Inset of (b) is SAED which
agrees with XRD analysis.
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Figure S11. The dQ/dV vs V plots for the first three cycles of the as-derived nanoporous Co;04
microstructures with nanopores.
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Table S1. Summaries of reported battery performances of Co;0, reported in the literature.

Morphologies Methods Specific capacities | Current Cycles | Ref
densities

nanofibers Hydrothermal 937 mAh/g 100 mA/g 150 2

mesoporous cubes | Hydrothermal 1010 mAh/g 0.1C 60 3

nanoparticles with | Hydrothermal 888.8 mAh/g 02C 80 4

C

mesoporous Microwave 806 mAh/g 0.1C 300 3

nanoflakes assisted

mesoporous flakes | Hydrothermal 1115 mAh/g 0.05C 100 6

mesoporous Hydrothermal 913 mAh/g 200 mA/g 60 7

particles

nanowire arrays Hydrothermal 1031 mAh/g 100 mA/g 100 8

hierarchical  star- | Hydrothermal 1200 mA h/g 50 mA/g 100 ?

like

High-order Eggshell 900 mAh/g 100 mAh/g 110 This

microstructured reactor and work
calcination
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