Supporting Information

Fe₃O₄@HKUST-1 and Pd/Fe₃O₄@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic

Takashi Toyao,^{a,b} Mark J. Styles,^c Tokuichiro Yago,^a Muhammad M. Sadiq,^d Raffaele Riccò,^{c,e} Kiyonori Suzuki,^d Yu Horiuchi,^a Masahide Takahashi,^a Masaya Matsuoka,^{a*} and Paolo Falcaro^{c,e*}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

^b Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

^c CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia

^d Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia

^e Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9/Z2, 8010 Graz, Austria

* E-mail: matsumac@chem.osakafu-u.ac.jp, paolo.falcaro@tugraz.at

Figure S1. SEM images of materials after (a) 10 seconds and (b) 30 seconds of the conversion from $Fe_3O_4@Cu_2(OH)_3NO_3$ into $Fe_3O_4@HKUST-1$.

Figure S2. FT-IR spectra of Fe₃O₄@HKUST-1 and Fe₃O₄@Cu₂(OH)₃NO₃.

Figure S3. TGA curves of Fe₃O₄@HKUST-1, Fe₃O₄@Cu₂(OH)₃NO₃, HKUST-1 and Cu₂(OH)₃NO₃.

Figure S4. The results of (a) deacetalization and (b) Knoevenagel condensation using $Fe_3O_4/HKUST-1$ as a catalyst. Reaction conditions: (a) Catalyst (50 mg), benzaldehyde dimethylacetal (1 mmol), 1,4-dioxane (4 mL), 363 K, in air. (b) Catalyst (50 mg), benzaldehyde (1 mmol), malononitrile (3 mmol), 1,4-dioxane (4 mL), 363 K, in air.

Figure S5. SEM image of HKUST-1_ref.

Figure S6. Leaching test for the one-pot deacetalization-Knoevenagel condensation reaction over $Fe_3O_4@HKUST-1$. After 0.5 h of the reaction time, the catalyst was filtrated. The reaction solution was further kept at reaction conditions without solid catalyst.

Figure S7. XRD pattern of Pd/Fe₃O₄@HKUST-1.

Figure S8. Pd K-edge (a) XANES and (b) FT-EXAFS spectra of Pd/Fe₃O₄@HKUST-1, PdCl₂, PdO and Pd foil.

Figure S9. TEM images of (a) Pd/HKUST-1 and (b) Pd/Fe₃O₄@HKUST-1.

Figure S10. (a) Recycling tests for the hydrogenation of 1-octene to octane over $Pd/Fe_3O_4@HKUST-1$ and (b) XRD patterns of $Pd/Fe_3O_4@HKUST-1$ before and after the reaction.

Figure S11. Leaching test for the hydrogenation of 1-octene over $Pd/Fe_3O_4@HKUST-1$. After 0.5 h of the reaction time, the catalyst was filtrated. The reaction solution was further kept at reaction conditions without solid catalyst.