Four new zinc (II) diphosphonates obtained via an ionothermal route:

crystal structures and phase transformation behaviour

Li Zhang^a, Sanying Li^a, Lei Liu^{a*}, Jinxiang Dong^a and Zhi Lin^{b*}

^a Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering,

Taiyuan University of Technology Taiyuan 030024, Shanxi, China. Email: liulei@tyut.edu.cn.

^b Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

Supplementary Information

Table S1 The elemental analysis results four compounds

Compound	I					11				
Element	С	н	Zn	Р		С	н	Zn	Р	
Theoretical Value (wt.%)	24.46	2.05	33.29	15.78		22.41	2.82	30.49	14.46	
Observed value (wt.%)	24.15	1.79	33.80	16.49		22.79	2.91	31.08	15.01	
						IV				
Compound			III					IV		
Compound Element	С	Н	III Zn	Р	Na	С	Н	IV Zn	Р	Na
Compound Element Theoretical Value (wt.%)	C 23.95	H 2.51	III Zn 24.45	P 15.46	Na 5.73	C 25.39	H 3.17	IV Zn 17.27	P 16.38	Na 6.08

Figure S1. Simulated and experimental powder XRD patterns of compound I (a), II (b), III (c) and IV (d).

Figure S2. Powder XRD patterns of compound $Zn[HO_3PCH_2(C_6H_4)CH_2PO_3H]$ (a), experimental result with water as solvent(b), and experimental ZnO(c).

Figure S3. (a) Polyhedron representations of the 1D linear inorganic chain of compound Zn[HO₃PCH₂(C₆H₄)CH₂PO₃H] running along *a*-axis. (b) Three-dimensional structure of compound Zn[HO₃PCH₂(C₆H₄)CH₂PO₃H] in [001] direction^[1].

Figure S4. SEM images of compound I (a), II (b), III (c) and IV (d).

Figure S5. Powder XRD patterns of compound I (a), II (b), III (c) and IV (d) after calcination at different temperature.

References

1 X. Z. Xu, P. Wang, R. Hao, M. N. Gan, F. X. Sun and G. S. Zhu, Solid State Sci., 2009, 11, 68.