Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Material for CrystEngComm

Size-controlled synthesis of ZIF-8 particles and their pyrolytic conversion into ZnO aggregates as photoanode materials of dye-sensitized solar cells

Taikei Enomoto,^a Shintaro Ueno,^b Eiji Hosono,^{*c} Manabu Hagiwara,^a and Shinobu Fujihara^{*a}

a Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: shinobu@applc.keio.ac.jp b Graduate School Department of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu

400-8510, Japan

c National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan. E-mail: e-hosono@aist.go.jp

Fig. S1 (a) XRD patterns, (b) FT-IR spectra together with that of ZIF-8, and (c) optical images of the P-*X*t samples.

Fig. S2 The size distribution of the ZIF-8 particles obtained from the solutions with the 2-methylimidazole : 1-methylimidazole ratio of 1 : 0.25, 1 : 0.33, 1 : 0.42, 1 : 0.50, and 1 : 1.

Fig. S3 The size distribution of the ZnO aggregates (the P-Yr samples).

Table S1 Fabrication conditions and performance of dye-sensitized photoanodes using ZnO aggregates: the method for synthesizing aggregates, the maximum processing temperature for the film fabrication, the thickness of the obtained film, the sensitizing dye, the I^-/I_3^- redox electrolyte used for measuring the DSSC performance, and the maximum power conversion efficiency.

Method for synthesizing ZnO aggregates	Maximum processing temperature	Film thickness	Dye	Electrolyte	Maximum conversion efficiency	Ref.
Hydrolysis of zinc salt in polyol medium	350 °C	9 μm	N3	$\begin{array}{c} 0.1 \text{ M LiI} \\ 0.5 \text{ M TBAI} \\ 0.1 \text{ M I}_2 \\ 0.5 \text{ M TBP} \\ \text{acetonitrile} \end{array}$	5.4%	29
Hydrothermal and solvothermal process	350 °C	4.5 μm	N3	$\begin{array}{c} 0.3 \text{ M LiI} \\ 1.0 \text{ M DMPII} \\ 0.06 \text{ M I}_2 \\ 0.5 \text{ M TBP} \\ \text{acetonitrile} \end{array}$	3.44%	39
Hydrothermal process	500 °C	27 μm	N719	$\begin{array}{c} 0.05 \text{ M LiI} \\ 1.0 \text{ M BMIMI} \\ 0.03 \text{ M I}_2 \\ 0.5 \text{ M TBP} \\ \text{acetonitrile} \\ \text{valeronitrile} \end{array}$	5.16%	40
Template-free aqueous solution method	150 °C	32 µm	D149	0.6 M DMPII 0.05 M I ₂ 0.5 M TBP acetonitrile	4.42%	41
Polyol process	400 °C	30.0 µm	D149	$\begin{array}{c} 0.5 \text{ M DMPII} \\ 0.05 \text{ M I}_2 \\ \text{acetonitrile} \end{array}$	4.58%	42
Aqueous solution method	150 °C	26.0 μm	N719	$\begin{array}{c} 0.1 \text{ M LiI} \\ 0.6 \text{ M DMPII} \\ 0.05 \text{ M I}_2 \\ 0.5 \text{ M TBP} \\ \text{acetonitrile} \end{array}$	4.03%	43
Aqueous solution method	150 °C	32 µm	D149	$\begin{array}{c} 0.6 \text{ M DMPII} \\ 0.05 \text{ M I}_2 \\ 0.5 \text{ M TBP} \\ \text{acetonitrile} \end{array}$	4.42%	44
Pyrolysis of ZIF-8	450 °C	9 μm	N719	0.1 M LiI 0.6 M DMPII 0.05 M I ₂ 1.0 M TBP 3-methoxy- propionitrile	3.37%	This work

TBAI: tetrabutylammonium iodide

TBP: 4-tert-butylpyridine

DMPII: 1,2-dimethyl-3-propylimidazolium iodide

BMIMI: 1-butyl-3-methylimidazolium iodide