Supporting Information

Electrochemical sensor and catalyst on $Cu_3(BTC)_2$ coating electrode from $Cu(OH)_2$ films

Kenji Okada¹, Shota Sawai², Ken Ikigaki², Yasuaki Tokudome², Paolo Falcaro³, Masahide Takahashi²*

¹ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan

² Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

³ Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/Z2, 8010 Graz, Austria

Figure S1 Cross-sectional Field Emission-SEM (FE-SEM) images of the $Cu_3(BTC)_2$ coatings prepared at different EtOH:H₂O volume ratio; (a) 1:0, (b) 5:2, (c) 1:1, (d) 2:5. Broken red and orange lines show the substrate/coating and coating/air interfaces, respectively. The thickness of the films was (a) 3.1, (b) 5.1, (c) 41.5 and (d) 37.1 µm.

Figure S2 (a) Calculated specific surface area of $Cu_3(BTC)_2$ MOF component in the coatings prepared at different EtOH:H₂O volume ratios. The values were calculated by the weight ratio of $Cu_3(BTC)_2$ in the coatings obtained from TG-DTA investigation and the specific surface area of the composites obtained from BET investigation, as same method reported previously¹. (b) TG carve of $Cu_3(BTC)_2$ prepared with 1:1. (c) N₂ isotherms of $Cu_3(BTC)_2$ coating prepared at different EtOH:H₂O volume ratios.

Figure S3 pH-value of the H_3BTC -containing solution with different $H_2O/(EtOH + H_2O)$ (volume ratio)

Figure S4 (a)The electrochemical impedance spectra of the $Cu_3(BTC)_2$ coatings on gold electrodes in the frequency range of 100 kHZ to 10 mHz with an AC voltage amplitude of 10 mV in 0.1 M tetraoctylammonium tetrafluoroborate ([CH₃(CH₂)₇]₄N(BF₄)). (b) Interfacial resistance R₀ and charge-transfer-R_{ct} calculated from the electrochemical impedance spectra.

Figure S5 Plot of electrocatalytic current of glucose versus its concentrations from 75 to 1800 μ M.

Figure S6 (a) XRD patterns and (b) FTIR spectra of $Cu_3(BTC)_2$ MOF coating prepared at 1:1 before and after soaking into the NaOH electrolytic solution for electrocatalytic glucose oxidation.

¹ K. Okada, R. Ricco, Y. Tokudome, M. J. Styles, A. J. Hill, M. Takahashi, P. Falcaro, *Adv. Funct. Mater.*, 2014, 24, 1969