Supporting information

4-Cyanopyridine, a versatile mono- and bidentate ligand. Crystal structures of related coordination polymers determined by X-ray powder diffraction.

Haishuang Zhao,^{a, b} Alexander Bodach,^a Miriam Heine,^a Yasar Krysiak,^{a, b} Jürgen Glinnemann^a, Edith Alig^a Lothar Fink,^{*a} and Martin U. Schmidt^a

^a Institute of Inorganic and Analytical Chemistry, Goethe-University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany. E-Mail: fink@chemie.uni-frankfurt.de; Fax: +49 69798 29235; Tel: +49 69798 29123

^b Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University, Jakob-Welder-Weg 11, 55128 Mainz, Germany.

Figures

Fig. S1 DTA/TG curves of [NiCl ₂ (4-CNpy) ₂] _n (3a)	. 2
Fig. S2 DTA/TG curves of [CoBr ₂ (4-CNpy) ₂] _n (4a)	. 2
Fig. S3 DTA/TG curves of [NiBr ₂ (4-CNpy) ₂] _n (5a)	. 3
Fig. S4 Combined Rietveld refinement of [CuCl ₂ (4-CNpy)] _n (1b sample 2)	. 3
Fig. S5 Fragment of one layer in [NiCl ₂ (4-CNpy)] _n (3b)	. 4
Fig. S6 IR spectrum of $[CuCl_2(4-CNpy)_2]_n$ (1a).	. 4
Fig. S7 Schematic representation for preparation of [CuCl ₂ (4-CNpy)] _n (1b)	. 5
Fig. S8 IR spectrums of $[CuCl_2(4-CNpy)]_n$ (1b).	. 5
Fig. S9 IR spectrum of [MnCl ₂ (4-CNpy) ₂] _n (2a).	. 6
Fig. S10 IR spectrum of [MnCl ₂ (4-CNpy)] _n (2b).	. 6
Fig. S11 IR spectrum of [NiCl ₂ (4-CNpy) ₂] _n (3a)	. 7
Fig. S12 IR spectrum of [NiCl ₂ (4-CNpy)] _n (3b).	. 7
Fig. S13 IR spectrum of [CoCl ₂ (4-CNpy) ₂] _n (4a).	. 8
Fig. S 14 Schematic representation for preparation of [CoBr ₂ (4-CNpy)] _n (4b)	. 8
Fig. S 15 IR spectrum of [CoCl ₂ (4-CNpy)] _n (4b).	. 9
Fig. S16 IR spectrum of [NiBr ₂ (4-CNpy) ₂] _n (5a)	. 9
Fig. S17 IR spectrum of [NiBr ₂ (4-CNpy)] _n . (5b)	10
Fig. S18 Molecular structure model for structure solutions.	10

Tables

Table S1 Results of DTA/TG measurements.	11
Table S2 Results of quantitative Rietveld analysis for the three samples of $[CuCl_2(4-CNpy)]_n$ (1b).	11
Table S3 The mean bond lengths and bond angles in the given models in CSD.	11

Fig. S1 DTA/TG curves of $[NiCl_2(4-CNpy)_2]_n$ (**3a**). Weight of starting compounds: 31.92 mg, Heating rate: 5 K/min, N₂ atmosphere, Al₂O₃ crucible, Tp: peak temperature.

Fig. S2 DTA/TG curves of $[CoBr_2(4-CNpy)_2]_n$ (**4a**). Weight of starting compounds: 19.72 mg, Heating rate: 5 K/min, N₂ atmosphere, Al₂O₃ crucible, T_p: peak temperature.

Supporting information

Fig. S3 DTA/TG curves of $[NiBr_2(4-CNpy)_2]_n$ (**5a**). Weight of starting compounds: 16.89 mg, Heating rate: 5 K/min, N₂ atmosphere, Al₂O₃ crucible, Tp: peak temperature.

Fig. S4 Plot of combined Rietveld refinement of $[CuCl_2(4-CNpy)]_n$ **1b** (sample **2**). Observed powder diagram (black points), simulated powder diagram (red solid line), difference profiles (grey solid line), and reflection positions (blue (*a*-**1b** and black (*β*-**1b**) vertical lines). Change of the scale at 60° is with a factor of 10. Radiation type: Cu $K\alpha_1$ (λ = 1.54056 Å).

Supporting information

Fig. S5 Fragment of one layer in [NiCl₂(4-CNpy)]_n (3b). H atoms have been removed for clarity.

Fig. S6 IR spectrum of $[CuCl_2(4-CNpy)_2]_n$ (**1a**).

Fig. S7 Schematic representation for preparation of $[CuCl_2(4-CNpy)]_n$ (1b). According to the DTA/TG-curves of $[CuCl_2(4-CNpy)_2]_n$ (1a), the preparation of pure $[CuCl_2(4-CNpy)]_n$ (1b) was carried out using a snap cap vial as sample carrier under a controlled nitrogen flow.

Fig. S8 IR spectrums of [CuCl₂(4-CNpy)]_{*n*} (**1b**).

Supporting information

Fig. S9 IR spectrum of $[MnCl_2(4-CNpy)_2]_n$ (2a).

Fig. S10 IR spectrum of [MnCl₂(4-CNpy)]_{*n*} (**2b**).

Supporting information

Fig. S11 IR spectrum of [NiCl₂(4-CNpy)₂]_{*n*} (**3a**).

Fig. S12 IR spectrum of $[NiCl_2(4-CNpy)]_n$ (**3b**).

Supporting information

Fig. S13 IR spectrum of $[CoCl_2(4-CNpy)_2]_n$ (4a).

Fig. S 14 Schematic representation for preparation of [CoBr₂(4-CNpy)]_n (4b).

Supporting information

Fig. S16 IR spectrum of $[NiBr_2(4-CNpy)_2]_n$ (**5a**).

Supporting information

Fig. S17 IR spectrum of [NiBr₂(4-CNpy)]_{*n*}. (5b).

Fig. S18 Molecular structure model for structure solution. Note: model for compound **1b** - **4b**: MX_2 (4-CNpy); for **3a** - **5a**: MX(4-CNpy) (M = Cu(II), Mn(II), Ni(II), Co(II), X = Cl, Br).

Compound	T/°C	m_0/mg	$\Delta m_{exp}/\mathrm{mg}$	$\Delta m_{exp}/m_0$ /%	$\Delta m_{cal}/m_0$ /%
CuCl ₂ (4-CNpy) ₂	195	12.49	0	0	0
CuCl ₂ (4-CNpy)	267		3.63	29.1	30.38
CuCl ₂	314		8.13	65.1	60.76
$MnCl_2(4-CNpy)_2$	190	17.18	0	0	0
$MnCl_2(4-CNpy)$	255		5.05 9.54	29.4	51.10
$M_{12}(4-CNPy)_{1/3}$	318		8.54	49.7	51.94
MINCI ₂	393		10.20	59.8	02.32
NiCl ₂ (4-CNpy) ₂	200	31.92	0	0	0
NiCl ₂ (4-CNpy)	259		9.13	28.6	30.82
NiCl ₂	374		18.79	58.9	61.63
CoBr ₂ (4-CNpy) ₂	175	19.72	0	0	0
$CoBr_2(4-CNpy)$	241		4.51	22.9	24.38
CoBr ₂ (4-CNpy) 1/3	339		7.66	38.8	40.64
CoBr ₂	370		9.20	46.7	48.77
NiBr ₂ (4-CNpy) ₂	203	16.89	0	0	0
NiBr ₂ (4-CNpy)	325		3.81	22.58	24.37
NiBr ₂	360		7.72	29.93	32.22

Table S1 Results of DTA/TG measurements of $[M(II)X_2(4-CNpy)_2]_n (M(II) = Cu, Mn, Ni, Co; X = Cl, Br). T: DTA peak temperatures, <math>m_0$: weight of starting compound, Δm_{exp} : relative experimental weight loss, experimental $\Delta m_{exp}/m_0$, calculated $\Delta m_{cal}/m_0$.

Table S2 Results of quantitative Rietveld analysis for the three samples of compound 1b.

	α-1b /w%	β-1b /w%	R_{wp} /%	R_{exp} /%	gof	
Sample 1	72.76(18)	27.24(18)	4.41	2.53	1.74	
Sample 2	48.21(11)	51.79(11)	5.17	2.65	1.95	
Sample 3	14.87(20)	85.13(20)	5.89	2.82	2.09	

Table S3 The mean bond lengths and bond angles in the given models after a statistic in CSD. d1 = d8, d2 = d7, d3 = d6; a2 = a8, a3 = a7, a5 = a6.

	1	2	3	4	5
bond angle <i>a</i> (°)	118.64	122.45	118.65	119.35	120.30
bond length d (Å)	1.338	1.377	1.381	1.447	1.138